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Abstract. The motivation for this paper comes from physical problems defined on
bounded smooth domains Ω in 3D. Numerical schemes for these problems are usually de-
fined on some polyhedral domains Ωh and if there is some additional compactness result
available, then the method may converge even if Ωh → Ω only in the sense of compacts.
Hence, we use the idea of meshing the whole space and defining the approximative domains
as a subset of this partition.
Numerical schemes for which quantities are defined on dual partitions usually require

some additional quality. One of the used approaches is the concept of well-centeredness, in
which the center of the circumsphere of any element lies inside that element. We show that
the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror
images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of
the parameter is computed. For this value of the parameter, Sommerville tetrahedron is
invariant with respect to reflection, i.e., 3D space is tiled by copies of a single tetrahedron.

Keywords: rigid mesh; well-centered mesh; approximative domain; single element mesh;
Sommerville tetrahedron

MSC 2010 : 65N30, 65N50

1. Introduction

One of the widely accepted full models of a compressible, viscous and heat conduct-

ing fluid is the Navier-Stokes-Fourier system. For a convergence proof to a numerical

method for this system in a smooth bounded domain Ω ⊂ R
3, developed recently

in [2], we are looking for a family of approximative closed polyhedral domains Ωh,

The research of R.Hošek leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ ERC Grant Agreement 320078.
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h → 0, admitting a mesh Th consisting of compact convex tetrahedral elements that
have diameters of order h, with the following properties.

(M1) The mesh is face-to-face, i.e., any face of any element T ∈ Th is either a subset
of ∂Ωh or a face of another element T

′ ∈ Th.
(M2) The approximative domains Ωh converge to Ω in the following sense

(1.1) Ω ⊂ Ω ⊂ Ωh ⊂ {x ∈ R
3 : dist(x,Ω) < h}.

(M3) In every element T ∈ Th there exists a point xT ∈ intT such that for T, T ′

sharing a common face σ we have that the segment xTxT ′ is orthogonal to σ

and

(1.2) dσ := |xT − xT ′ | > ch > 0,

with c > 0 a universal constant independent of T and T ′.

For the method developed in [2] we succeeded to relax the condition (1.2) to dσ > 0.

Anyway, some works discussed later require the stronger condition (1.2). Therefore,

we will construct approximative domains and mesh satisfying the conditions (M1)–

(M3) listed above.

Note that the usual convergence ∂Ωh → ∂Ω in W 1,1 is substituted by a weaker

condition (1.1) thanks to an additional result on compactness obtained.

The property (M3) emanates from the need of dealing with the Neumann boundary

condition for the temperature and was introduced by Eymard et al. [1], Definition 3.6.

The easiest way to ensure dσ > 0 is to guarantee that the center of the circumsphere

(also called circumcenter) of any element building the mesh lies strictly inside that

element. This property is called d-well-centeredness, where d denotes the dimension.

A special structure of the mesh will then imply also the existence of c > 0 such that

dσ > ch > 0.

The concept of well-centeredness has been extensively studied by VanderZee et al.,

see [10] and [11]. However, to our knowledge, there are so far only few applications,

moreover without ambitions on a rigorous proof of convergence of the method.

Hirani, a coauthor of VanderZee in [10] and [11], with his colleagues uses well-

centered elements in [5] for modelling the equations of Darcy’s flow model. It de-

scribes the flow of a viscous incompressible fluid in a porous medium, with pressure

being defined in the circumcenters of the elements. They point out that for good

quality Delaunay mesh their method works well, and the use of a well-centered mesh

is therefore not necessary.

Sazonov et al. use well-centered elements in [7] for a co-volume method for

Maxwell’s equations. Electric and magnetic fields are defined on mutually orthogo-

nal meshes. As the time step has to be proportional to dσ, it is necessary to keep it

as large as possible. Therefore, well-centered mesh is used. See [7] for details.
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In order to satisfy the above requirements for domains Ωh and their meshes Th, we
construct a 3-well-centered face-to-face mesh that covers R3, whose elements have

radius comparable to h. Then for any Ω ∈ C0,1 given, we simply define Ωh as a union

of elements having nonempty intersection with Ω.

We will mesh the whole 3-dimensional space with an element of one type and

its mirror image. This enables us to compute the exact distance of circumcenters

of two neighbouring elements, but it also may reduce both memory demands and

computational time.

Obviously, in 2D it is possible to tile the whole space with regular simplices,

which are equilateral triangles. In 3D it is not that easy, the regular tetrahedra do

not tile 3D, see e.g. [8]. However, there have been shown many tilings of 3D so far.

Sommerville in 1923 ([9], page 56) introduced a one-parameter family of elements

that tile an infinite prism with equilateral-triangular base (see also Goldberg [4]).

We will deal with these Sommerville II type elements and show the range of the

parameter for which they build a 3-well-centered mesh. Such mesh will then fulfil

(M1)–(M3). Moreover, we compute in a sense an ideal value of the parameter which

will guarantee that all tetrahedra in the mesh are identical.

2. Notation

We work in R3, a 3-dimensional space endowed with Euclidean coordinates. Then

for m 6 3, σm or τm will denote a simplex, which is a convex hull of m+ 1 affinely

independent points in R
3. We recall that points {P0, P1, . . . , Pm} are affinely inde-

pendent if

( m∑

i=0

ciPi = 0 &
m∑

i=0

ci = 0

)
⇒ ci = 0 ∀ i ∈ {0, . . . ,m}.

Analogously, every simplex σm determines an m-dimensional affine space.

We introduce the following list of the used notation.

A,B,C, . . . points in R
3

σm, τm or also P0P1 . . . Pm m-dimensional simplex

aff(σm) affine space determined by (vertices of) σm

Sσm circumcenter of σm

Σσm incenter of σm (center of the inscribed sphere of σm)

Rσm radius of the circumsphere of σm

̺σm radius of the inscribed sphere of σm
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Note that the above notation can be used independently of the dimension. We will

use also the following dimension-dependent notation.

A = [Ax, Ay, Az] point with its Euclidean coordinates

nABC normal vector of the plane ABC

oAB axial plane of the segment AB

oAB(C) axis of the segment AB in the plane ABC

3. 3-well-centered mesh of 3-dimensional space

3.1. Elements. Following [9], we define the tetrahedron τ3(p) depending on a pos-

itive parameter p with the following Euclidean coordinates of its vertices:

(3.1) τ3(p) := (ADEF )(p), p > 0,

A = [0, 0, 0],

D = [0, 0, 3p],

E = [1, 0, p],

F =
[1
2
,

√
3

2
, 2p

]
,

see Figure 1. All the vertices and also further derived quantities depend on p, which

will be often omitted in the notation for the sake of brevity.

x

p

B

E

1

1

1

3p

D

A

z

2p

F

C

y

Figure 1. Element τ3(p) defined in (3.1).
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3.2. Tiling the space. Consider tetrahedra ADEF (p), DEFE′(p), DE′FF ′(p),

where
E′ = E + 3p · ~e3,
F ′ = F + 3p · ~e3,

see Figure 2. They are identical and build a skew prism with an equilateral triangle

as its base. Repeating the structure periodically in the z direction, we can fill the

whole infinite triangular prism. It is obvious that with copies and reflections of those

prisms we can tile the whole 3-dimensional space, which follows from the tiling of

2D with equilateral triangles. The task is to show that we can tile in such way that

the elements build a face-to-face mesh.

E

x

E′

A

D

z

F

F ′

y

Figure 2. Three copies of element τ3(p) arranged in a prism with equilateral-triangular
base.

Lemma 3.1. It is possible to create a face-to-face partition of R3 with copies of

the tetrahedron τ3(p) and its mirror images.

P r o o f. After previous discussion it suffices to show that infinite prisms built

with elements τ3(p) can be arranged such that the elements’ edges on the prism

surfaces meet. Note that each infinite prism is a convex hull of three vertical lines of

three different types, each of them having vertices of elements in the height 3k + r,

k ∈ Z, for r = 0, 1, 2. Projecting the whole situation into xy-plane, it suffices to show

that an equilateral triangulation of R2 is a 3-vertex-colorable graph. As neighbouring
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triangles in R2 share an edge, their preimages share an infinite strip where the edges

(and thus also the facets) of elements coincide.

~u1

~u2

Figure 3. Illustration to the proof of Lemma 3.1: xy-plane with the basis ~u1, ~u2.

Employing the basis ~u1 = (1, 0), ~u2 = 1
2 (−1,

√
3), any vertex v of equilateral

triangulation of xy plane has unique coordinates, i.e., ~v = c1~u1 + c2~u2, with integer

values of c1, c2, see Figure 3. Then for vertex v we define its color ξ(v) equal to

ξ(v) = c1 + c2 mod 3.

Note that for any neighbouring vertices v, w we have

~v − ~w = d1~u1 + d2~u2,

with (d1, d2) ∈ {(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0, 1)}. Hence, we conclude that
ξ(v) 6= ξ(w), i.e., ξ is indeed a vertex coloring. �

An alternative proof is suggested in [6]. Reflecting the triplet of elements shown

in Figure 2 with respect to the point P = (D + E)/2, we obtain a parallelepiped.

Its copies tile the 3-dimensional space and it can be checked that the face-to-face

property of the mesh is not violated.

Note that so far we do not restrict the value of p, i.e., copies and reflections of

τ3(p) tile R3 for any p > 0.

3.3. Well-centeredness. We introduce the concept of well-centeredness by the

definition of VanderZee, see [10], page 5.

Definition 3.2. Let 0 6 k 6 n 6 d. Let σn := {V0V1 . . . Vn} be an n-

dimensional simplex. A k-dimensional face of σn is a simplex σk := {U0U1 . . . Uk}
with Ui being distinct vertices of σ

n. We say that
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(1) σn is n-well-centered if its circumcenter lies in the interior of σn,

(2) for 1 6 k < n, σn is k-well-centered if all its k-dimensional faces are k-well

centered,

(3) σn is well-centered if it is k-well centered for all k ∈ {1, . . . , n}.
Note that any simplex is 1-well-centered, as the midpoint of any segment lies

strictly inside the segment. In R2, a triangle is well-centered if and only if it is acute.

VanderZee et al. in [10] prove the following characterization for n-well-centeredness

of an n-dimensional simplex.

Theorem 3.3 (VanderZee). The n-dimensional simplex σn = V0V1 . . . Vn is n-well

centered if and only if for each i = 0, . . . , n the vertex Vi lies outside the circum-

sphere Bn
i := B(V0, V1, . . . , Vi−1, Vi+1, . . . , Vn), which is the smallest ball in R

n which

contains the (n−1)-dimensional circumsphere of the simplex V0V1 . . . Vi−1Vi+1 . . . Vn.

Theorem 3.3 will be our tool for proving the following main Theorem 3.4.

Theorem 3.4. The tetrahedron τ3(p) = ADEF (p) defined by (3.1) is 3-well-

centered if and only if

(3.2) p <

√
2

2
.

P r o o f. The proof is a simple but laborious computation based on the result of

Theorem 3.3, from which we will get the desired restriction on p. Let K, L, M , N

be affinely independent points in R
3 and let the circumsphere of the triangle LMN

have the radius rLMN and center SLMN . The goal is to determine the value of p for

which

(3.3) |K − SLMN | > rLMN

is valid for all vertices A,D,E, F alternating in the role of K. We have all necessary

ingredients for the computation since we can compute

(3.4) SLMN = oLM(N) ∩ oLN(M),

where

(3.5) oLM(N) = SLM + t · nLMN ×−−→
LM, t ∈ R,

oLN(M) = SLN + t · nLMN ×−→
LN, t ∈ R,

nLMN =
−−→
LM ×−→

LN,

for given points K, L, M , N .
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1. Vertex D

Substituting the ordered quadruplet [D,A,E, F ] for [K,L,M,N ] in (3.3), (3.4),

and (3.5), and performing the computations, we get

(3.6) nAEF =
(
−
√
3

2
p,−3

2
p,

√
3

2

)
,

oAE(F ) =
[1
2
, 0,

p

2

]
+ u

(
−3

2
p2,

√
3

2
(1 + p2),

3

2
p
)
, u ∈ R,

oAF (E) =
[1
4
,

√
3

4
, p
]
+ v

(
−3

4
− 3p2,

√
3

4
+
√
3p2, 0

)
, v ∈ R,

from which we obtain

SAEF =
[1
2
(1− p2),

√
3

6
(1 + p2), p

]
.

To conclude for which values of p it holds that |D − SAEF | > rAEF = |A − SAEF |,
it is sufficient to compare the third component of both expressions only, since A and

D differ only in that one. We get

|~e3 · (SAEF −A)| < |~e3 · (SAEF −D)|

for any p > 0, i.e., condition (3.3) holds for K = D, LMN = AEF , p > 0.

2. Vertex F

Using elementary analytic geometry in R
2 (ADE lies in the xz-plane), we obtain

the parametric equations of the axes,

oAD(E) =
[
0, 0,

3

2
p
]
+ u(1, 0, 0), u ∈ R,

oAE(D) =
[1
2
, 0,

1

2
p
]
+ v(p, 0,−1), v ∈ R,

and their intersection

(3.7) SADE =
[1
2
− p2, 0,

3

2
p
]
.

We want to obtain a bound on p such that

|SADE − F |2 − r2ADE = |SADE − F |2 − |SADE −A|2 > 0.

Substituting from (3.1) and (3.7) we get from the inequality above that

(3.8) p <

√
1

2
=

√
2

2
.
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3. Vertex E

Substituting the quadruplet [E,A,D, F ] for [K,L,M,N ] into the scheme (3.3),

(3.4), and (3.5), one can compute

nADF =
(
−3

√
3

2
p,

3

2
p, 0

)
,

oAD(F ) =
[
0, 0,

3

2
p
]
+ u

(9
2
p2,

9
√
3

2
p2, 0

)
, u ∈ R,

oAF (D) =
[1
4
,

√
3

4
, p
]
+ v(−3p2, 3

√
3p2,−3p), v ∈ R,

from which we obtain

(3.9) SADF =
[1
4
+

1

2
p2,

√
3

4
+

√
3

2
p2,

3

2
p
]
.

Again, we want to get a bound on p for which

|SADF − E|2 − r2ADF = |SADF − E|2 − |SADF −A|2 > 0.

Substituting from (3.9), we arrive at

p <

√
2

3
,

which is a weaker requirement than already obtained in (3.8) and therefore does not

affect the result.

4. Vertex A

Finally, taking [K,L,M,N ] = [A,D,E, F ] and performing the computations, we

get

(3.10) nDEF =
(√

3p, 0,

√
3

2

)
,

oDE(F ) =
[1
2
, 0, 2p

]
+ u

(
0,

√
3

2
+ 2

√
3p2, 0

)
, u ∈ R,

oDF (E) =
[1
4
,

√
3

4
,
5

2
p
]
+ v

(
−3

4
,

√
3

4
+
√
3p2,

3

2
p
)
, v ∈ R,

which gives

SDEF =
[1
2
,

√
3

6
−

√
3

3
p2, 2p

]
.

By the same token as in the first case, |~e3 · (SDEF − A)| > |~e3 · (SDEF − D)| for
any value of p > 0, which implies that |A − SDEF | > rDEF = |D − SDEF | for any
p > 0. �
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Corollary 3.5. The tetrahedron τ3(p) is well-centered if and only if

p ∈
(
0,

√
2

2

)
.

P r o o f. Using the characterization of an acute triangle (i.e., a2 + b2 > c2, where

c 6 b 6 a), one can check that for τ3(p), p ∈ (0,
√
2/2) all faces are 2-well-centered.

The tetrahedron τ3(p) is 3-well-centered for p ∈ (0,
√
2/2) by virtue of Theorem 3.4.

�

VanderZee et al. introduced also a sufficient condition of n-well-centeredness, the

so called Prism Condition, [11], Proposition 8, which applied to τn−1 = AED and

v = F gives the condition p < 1/2. This is more restrictive than the condition (3.2),

which we get by the equivalence criterion in Theorem 3.3.

We state the following corollary.

Corollary 3.6. Let Ω ⊂ R
3 be a smooth (at least Lipschitz) bounded domain.

Then there exists a family of polyhedral domains {Ωh}h→0, such that any Ωh admits

a face-to-face mesh Th, satisfying the conditions (1.1) and (1.2).

P r o o f. For h > 0 and p ∈ (0, 12
√
2) arbitrary take the tetrahedron τ3h(p) :=

1
2h · τ3(p) and mesh the whole R3 in the way described in Section 3.2. Denoting the

whole mesh with T̃h and defining the set Th := {T ∈ T̃h ; T ∩ Ω 6= ∅}, we put

Ωh :=
⋃

T∈Th

T.

The face-to-face property follows from Lemma 3.1. Convergence in the sense

of (1.1) is guaranteed, since for T ∈ Th we have

diam τ3h(p) 6
h

2

√
1 + (2p)2 6 h

√
3

2
< h.

Finally, the property (1.2) is satisfied by virtue of Theorem 3.4 and the fact that

the mesh is build by elements with equal radius of the inscribed sphere, i.e., dσ >

h̺(τ3(p)). The value of ̺(τ3(p)) will be specified in the next section, see Proposi-

tion 4.1. �
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4. Shape optimization

Notice that we have a criterion for the well-centeredness of our elements in a form

of an open interval p ∈ (0,
√
1/2). We would like to get an optimal value from

the computational point of view, which we expect to be far enough especially from

the singular value p = 0. One of the criteria used (see [3] or [6]) is the so-called

normalized shape ratio. Using the notation introduced in Section 2, we define the

normalized shape ratio of tetrahedron σ3 by

(4.1) η(σ3) :=
3̺(σ3)

R(σ3)
.

The maximal value of (4.1) is η = 1 for the regular tetrahedron. In what follows

we use a shorter notation ̺(p) := ̺(τ3(p)), analogously also for R and η. Next we

compute the radii in dependence on p.

Proposition 4.1. The radius ̺(p) of the inscribed sphere of the tetrahedron

τ3(p) equals

(4.2) ̺(p) =
3

4
√
3 + 2

√
4 + 1/p2

.

P r o o f. Note that having tetrahedron τ3(p) placed in Euclidean coordinates, we

have ̺(p) = Σy, where Σ = [Σx,Σy,Σz] are the coordinates of the center of the

inscribed sphere.

As the faces ADE and ADF are vertical, orthogonal projection of τ3 and its

inscribed sphere into xy-plane is an equilateral triangleABC and a circle that touches

both segments AB and AC (see Figure 4). The center of the circle P (Σ) = [Σx,Σy, 0]

y

x

l

C

A BΣx

Σy

P (Σ)

Figure 4. Projection of τ3(p) and its inscribed sphere into the xy-plane.
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must lie on a bisector of the 60◦ angle BAC. Hence,

(4.3) Σx =
√
3Σy.

Further, the center Σ must lie on α, an axial plane of the dihedral angle of the

planes aff(AEF ) and aff(DEF ). Recalling nAEF and nDEF from (3.6)1 and (3.10)1
respectively, and realizing that their lengths are equal, we can compute

(4.4) α : nα · x+ d = 0,

with nα = 1
2 (nAEF +nDEF ). Then d is determined by substituting x = E into (4.4)

and we get

(4.5) α :

√
3

4
px− 3

4
py +

√
3

2
z − 3

√
3

4
p = 0.

Substituting (Σx,Σy,Σz) into (4.5) and using (4.3) leads to conclusion that Σz = 3
2p.

Our problem reduces to finding a point

(4.6) Σ = Σ(p) =
[√

3̺(p), ̺(p),
3

2
p
]
,

such that dist(AEF,Σ(p)) = ̺(p). Such point Σ lies in a plane given by a normal

vector nAEF and point ̺(p)nAEF /|nAEF |. The general equation of this plane can
be expressed as

nAEF · (x, y, z)T − ̺(p)
|nAEF |2
|nAEF |

= 0,

which is

(4.7) −
√
3

2
px− 3

2
py +

√
3

2
z − ̺(p)

√
3p2 +

3

4
= 0.

Substituting (4.6) to (4.7) yields the final result. �

Proposition 4.2. The radius of the circumsphere to tetrahedron τ3(p) is given

by

(4.8) R(p) =

√
4

3
p4 +

11

12
p2 +

1

3
.

P r o o f. For the radius we have that R = |S − A| = |S|. Hence, only the center
S = [Sx, Sy, Sz] of the circumsphere is of our interest. We proceed in two steps.
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First, |SD| = |SA| = |SE| suffices to determine both Sx and Sz. The point S must

lie on a line which is a cross-section of axial planes oAE and oDE ,

oAE :
[1
2
, 0,

p

2

]
+ r(0, 1, 0) + s(−p, 0, 1), r, s ∈ R,

oDE :
[1
2
, 0, 2p

]
+ r(0, 1, 0) + t(−2p, 0,−1), r, t ∈ R.

From this we easily conclude that

(4.9) S ∈ (oAE ∩ oDE) = (Sx, 0, Sz) + r(0, 1, 0), r ∈ R,

where further computation gives Sx = 1
2 − p2 and Sz = 3

2p.

Second, we determine Sy by computing the appropriate value of parameter r in

(4.9) from the equality |SA| = |SF |, we get

S =
[1
2
− p2,

1√
3

(1
2
− p2

)
,
3

2
p
]
.

We finish the proof with computing R = |S|, which gives (4.8). �

Theorem 4.3. Let τ3(p), p ∈ (0,
√
2/2) be a one-parameter family of tetrahedra

defined in (3.1). Let ̺(p) be the radius of its inscribed sphere and R(p) the radius

of its circumsphere. Then η(p) defined by (4.1) is maximal for

p = p⋆ =

√
1

8
.

P r o o f. Both ̺(p), R(p) being continuously differentiable, one can search for the

optimum as a point of vanishing derivative. If we obtain one critical point in R
+, it

has to be maximum since η(p) > 0 and

(4.10) lim
p→0+

η(p) = lim
p→∞

η(p) = 0.

The relations in (4.10) are derived using basic algebra of limits from

lim
p→0+

̺(p) = 0, lim
p→0+

R(p) =

√
3

3
,

and

̺(p) < 1 for all p > 0, lim
p→∞

R(p) = ∞.

Solving the equation η′(p) = 0 leads to searching for roots of

32

(
2 +

√
3 ·

√
1

p2
+ 4

)
p6 +

(
30 + 11

√
3 ·

√
1

p2
+ 4

)
p4 − 2 = 0,

which, employing a new variable b = p2, can be shown to have unique solution in

positive real half-axis, which is b⋆ = 1/8, therefore p⋆ =
√
1/8. �
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Note that τ3(p⋆) is unique in the family of Sommerville II type tetrahedra having

the property that they are identical with their mirror image. Therefore, for p = p⋆,

we get a mesh that is build by copies of a single element. Moreover, τ3(p⋆) has

all faces identical—isosceles triangles with the ratio of the leg to the base equal to√
3/2. Dihedral angles of τ(p⋆) are equal to 90◦ at the longer edges and 60◦ at the

shorter ones. Naylor in [6] calls τ(p⋆) an isotet, or it is called simply the Sommerville

tetrahedron. Substituting p⋆ into (4.2) and (4.8) gives

η(p⋆) =
3̺(p⋆)

R(p⋆)
=

√
9

10
≈ 0.949.

As for Naylor (see [6]), this is a maximal value of η for meshing 3-dimensional space

with a single element type.

R em a r k 4.4. Analogously, it can be shown that the value p = p⋆ is ideal also

in the sense of maximizing the ratio of the inscribed sphere to the diameter of an

element. Note that diam τ3(p) =
√
1 + 4p2. One can compute that

κ(τ3(p⋆)) :=
̺(p⋆)

diam τ3(p⋆)
=

√
3/8√
3/2

=

√
2

8
.

We summarize the above discussion in the following corollary. If we use the con-

struction of the approximative domain and mesh introduced in the proof of Corol-

lary 3.6 with the choice p = p⋆ =
√
1/8, it is possible to get a family of approximative

domains admitting meshing by tetrahedra of one type.

Corollary 4.5. Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary. Then

there exists a family of polyhedral domains {Ωh}h→0 such that any Ωh admits a face-

to-face mesh Th, satisfying conditions (1.1) and (1.2) and such that all the elements
in Th are identical.
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