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Abstract. A graph X, with a group G of automorphisms of X, is said to be (G, s)-
transitive, for some s > 1, if G is transitive on s-arcs but not on (s + 1)-arcs. Let X be
a connected (G, s)-transitive graph of prime valency p > 5, and Gv the vertex stabilizer of
a vertex v ∈ V (X). Suppose that Gv is solvable. Weiss (1974) proved that |Gv | | p(p− 1)2.
In this paper, we prove that Gv ∼= (Zp ⋊Zm)×Zn for some positive integers m and n such
that n | m and m | p− 1.
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1. Introduction

Throughout this paper, we consider undirected finite graphs without loops or

multiple edges. For a graph X , we use V (X), E(X) and Aut(X) to denote its vertex

set, edge set, and its full automorphism group, respectively.

An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of ver-

tices of X such that vi−1 is adjacent to vi for 1 6 i 6 s, and vi−1 6= vi+1 for

1 6 i 6 s− 1. A 1-arc is called an arc for short and a 0-arc is a vertex. For a sub-

group G 6 Aut(X), X is said to be (G, s)-arc-transitive and (G, s)-regular if G is

transitive and regular on the set of s-arcs in X , respectively. A (G, s)-arc-transitive

graph is said to be (G, s)-transitive if the graph is not (G, s + 1)-arc-transitive.

A graphX is called s-arc-transitive, s-regular and s-transitive if it is (Aut(X), s)-arc-
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transitive, (Aut(X), s)-regular and (Aut(X), s)-transitive, respectively. In particu-

lar, X is said to be vertex-transitive and symmetric if it is (Aut(X), 0)-arc-transitive

and (Aut(X), 1)-arc-transitive, respectively.

Let p be a prime and n a positive integer. We denote by Zn the cyclic group of

order n, by Zn
p the elementary abelian group of order p

n, by D2n the dihedral group

of order 2n, by Fn the Frobenius group of order n, and by An and Sn the alternating

group and the symmetric group of degree n, respectively. For two groupsM and N ,

N ⋊M stands for a semidirect product of N by M .

Let X be a connected (G, s)-transitive graph with some positive integer s and let

Gv be the stabilizer of v ∈ V (X) in G. If X has valency 3, then by Djoković and

Miller [4], Gv is isomorphic to Z3, S3, S3 × Z2, S4 and S4 × Z2 for s = 1, 2, 3, 4

and 5, respectively. If X has valency 4, then by [3], Gv is isomorphic to a 2-group

for s = 1; by [8], Theorem 4, Gv is isomorphic to A4 or S4 for s = 2 and to Z3 ×A4,

Z3 ⋊ S4 or S3 × S4 for s = 3; by [9], Theorem 1.1, Gv is isomorphic to Z
2
3 ⋊GL(2, 3)

for s = 4, and to [35] ⋊ GL(2, 3) for s = 7. If X has valency 5, then by Guo and

Feng [6], Theorem 1.1, Gv is isomorphic to Z5, D10 or D20 for s = 1, F20, Z2 × F20,

A5 or S5 for s = 2, Z4 ×F20, A4 ×A5, S4 × S5 or (A4 ×A5)⋊Z2 with A4 ⋊Z2 = S4
and A5 ⋊Z2 = S5 for s = 3, ASL(2, 4), AGL(2, 4), AΣL(2, 4) or AΓL(2, 4) for s = 4,

or Z6
2 ⋊ΓL(2, 4) for s = 5. Furthermore, the structure of Z6

2 ⋊ΓL(2, 4) is completely

determined by Weiss [9], Theorem 1.1. For other valencies, there are many partial

results, and see [10], [12] for example. Let X be a connected (G, s)-transitive graph

with prime valency p > 5. Suppose that Gv is solvable. By Weiss [13], Theorem,

|Gv| | p(p− 1)2. In this paper, we prove that Gv
∼= (Zp ⋊Zm)×Zn for some positive

integers m and n such that Zp ⋊ Zm is a subgroup of Fp(p−1) and n | m.

The structure of the vertex stabilizer Gv plays an important role in the study of

(G, s)-transitive graphs. For example, Conder and Dobcsányi [1] exhausted all cubic

symmetric graphs on up to 768 vertices, and cubic symmetric graphs of order np or

np2 with n a given number were classified in [5], where p is a prime.

2. Main result

In this section, we determine the structure of the solvable vertex stabilizer of

connected (G, s)-transitive graph with prime valency p > 5.

Theorem 2.1. Let s be a positive integer and let X be a connected (G, s)-

transitive graph of prime valency p > 5 for some G 6 Aut(X). Suppose that Gv is

solvable. Then s 6 3 and Gv is isomorphic to (Zp ⋊ Zm) × Zn, where Zp ⋊ Zm is

a subgroup of the Frobenius group Zp ⋊ Zp−1 and n | m. Moreover, if m < p − 1

then s = 1; if m = p− 1 and n < p− 1 then s = 2; if m = n = p− 1 then s = 3.
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P r o o f. Let {u, v} be an edge of X and N(v) the neighborhood of v. Denote

by G
N(v)
v the constituent of Gv acting on N(v), and by G∗

v the kernel of Gv acting

on N(v). Then G
N(v)
v = Gv/G

∗

v. Write G
∗

uv = G∗

u ∩ G∗

v. Since Gv is solvable and

p > 5, we have that |Gv| | p(p − 1)2 by [13], Theorem, and G∗

uv = 1 when u and v

are adjacent by [11], Theorem.

Let P be a Sylow p-subgroup of Gv. Since Gv is transitive on N(v), p | |Gv/G
∗

v|,

and since |Gv| | p(p − 1)2, we have P ∼= Zp. It follows that |G
∗

v| | (p − 1)2, and

hence PG∗

v/G
∗

v
∼= Zp is also a Sylow p-subgroup of Gv/G

∗

v. By [2], Corollary 3.5 B,

every transitive permutation group of prime degree p is either 2-transitive or solv-

able and has a normal Sylow p-subgroup. Clearly, Gv/G
∗

v is solvable because Gv is

solvable. Thus, PG∗

v/G
∗

v is regular and normal in Gv/G
∗

v, which implies that PG∗

v

is normal in Gv. Since any regular abelian permutation group is self-centralizing

(see [14], Proposition 4.4), PG∗

v/G
∗

v
∼= Zp is self-centralizing in Gv/G

∗

v. Thus, by

N/C-Theorem (see [7], Chapter I, Theorem 4.5), we have (Gv/G
∗

v)/(PG∗

v/G
∗

v) .

Aut(Zp) ∼= Zp−1, and hence G
N(v)
v = Gv/G

∗

v . Zp ⋊ Zp−1, where Zp ⋊ Zp−1 is the

Frobenius group of order p(p − 1). It follows that G
N(v)
uv = Guv/G

∗

v . Zp−1 and

G
N(u)
uv = Guv/G

∗

u . Zp−1. Let |Guv/G
∗

v| = m. Then Guv/G
∗

v
∼= Guv/G

∗

u
∼= Zm and

Gv/G
∗

v
∼= Zp ⋊Zm, where Zp ⋊Zm is a subgroup of the Frobenius group Zp ⋊Zp−1.

Recall that G∗

uv = 1. Thus, G∗

uG
∗

v = G∗

u × G∗

v. Since the kernel of G
∗

v acting on

N(u) is G∗

u ∩ G∗

v = G∗

uv = 1, we have that G∗

v is faithful on N(u). It follows that

G∗

v
∼= G∗

v/(G
∗

u ∩ G∗

v)
∼= G∗

vG
∗

u/G
∗

u 6 Guv/G
∗

u
∼= Zm 6 Zp−1. Thus, |G

∗

v| | p− 1 and

G∗

v is a subgroup of the cyclic group Zm. Let |G
∗

v| = n. Then G∗

v
∼= Zn, n | m and

|Guv| = mn.

Since |G∗

v| | (p− 1), by the Sylow Theorem, P is the unique normal Sylow p-sub-

group of PG∗

v, forcing that P is characteristic in PG∗

v. It follows from the normality of

PG∗

v in Gv that P is normal in Gv. Note that P ∼= Zp, |G
∗

v| | p−1 and |Guv| | (p−1)2.

Thus, we can easily deduce that P ∩G∗

v = 1 and P ∩Guv = 1. Since P and G∗

v are

normal in Gv, PG∗

v = P ×G∗

v and Gv = P ⋊Guv.

Both Guv/G
∗

u and Guv/G
∗

v are cyclic groups of order m, and there is a natural

homomorphism of Guv into Guv/G
∗

u×Guv/G
∗

v with kernel G
∗

u∩G∗

v. As noted above,

G∗

u ∩ G∗

v = 1 and so this homomorphism is an embedding of Guv into an abelian

group. Therefore Guv is an abelian group of order dividing m
2.

Let G∗

v = 〈a〉 and Guv/G
∗

v = 〈bG∗

v〉. Then Guv = 〈a, b〉 = 〈a〉〈b〉 because Guv

is abelian. Since G∗

v
∼= Zn and Guv/G

∗

v
∼= Zm, the order o(a) = n and o(b) > m.

On the other hand, Zn
∼= G∗

u
∼= G∗

uG
∗

v/G
∗

v 6 Guv/G
∗

v
∼= Zm implies that b

m/nG∗

v ∈

G∗

uG
∗

v/G
∗

v, that is, b
m/n ∈ G∗

uG
∗

v = G∗

u×G∗

v
∼= Z

2
n. It follows that (b

m/n)n = bm = 1

and o(b) 6 m. Thus, o(b) = m. Note that |Guv| = mn. We have Guv = 〈a〉 × 〈b〉 ∼=

Zn×Zm. Recall that PG∗

v = P×G∗

v and Gv = P⋊Guv. Thus, Gv
∼= (Zp⋊Zm)×Zn,

where Zp ⋊ Zm is a subgroup of the Frobenius group Zp ⋊ Zp−1 and n | m.

783



Let m < p − 1. Then Guv cannot act on N(v) \ {u} transitively, and hence Gv

is 1-transitive on N(v). It follows that G is 1-transitive on X , that is, s = 1. Let

m = p − 1 and n < p − 1. Then G
N(v)
uv

∼= Zp−1 and Gv is 2-transitive on N(v).

However, G∗

v
∼= Zn is not transitive on N(u) \ {v} because n < p− 1. Thus, in this

case s = 2. Let m = n = p− 1. Then G
N(v)
v

∼= Fp(p−1) is 2-transitive on N(v) and

G∗

v
∼= Zp−1 is transitive on N(u) \ {v}, which implies that s = 3. This completes the

proof. �

Note that D10
∼= F10 and D20

∼= F10 × Z2. Then [15], Theorem 4.1, is a conse-

quence of Theorem 2.1. The following corollary gives the structure of solvable vertex

stabilizer of (G, s)-transitive graph with valency seven, which can be derived easily

from Theorem 2.1.

Corollary 2.2. Let X be a connected (G, s)-transitive graph of valency seven

with G 6 Aut(X) and s > 1. Suppose that Gv is solvable. Then one of the following

holds:

(1) s = 1, and Gv
∼= Z7, F14, F21, F14 × Z2 or F21 × Z3;

(2) s = 2, and Gv
∼= F42, F42 × Z2, or F42 × Z3;

(3) s = 3, and Gv
∼= F42 × Z6.

3. Realization

Let X be a connected (G, s)-transitive graph of prime valency p > 5 for G 6

Aut(X) and let v ∈ V (X). Take two positive integers m and n such that m | p− 1

and n | m. In this section, we show that each type of Gv
∼= (Zp ⋊ Zm) × Zn in

Theorem 2.1 can be realized with G as a group of automorphisms of the complete

bipartite graph Kp,p.

Clearly, Aut(Kp,p) = SpwrS2. Then Aut(Kp,p) contains an arc-transitive subgroup

A = Fp(p−1)wrS2 = ((Zp⋊Zp−1)×(Zp⋊Zp−1))⋊S2 = ((〈a1〉⋊〈b1〉)×(〈a2〉⋊〈b2〉))⋊

〈c〉, where o(a1) = o(a2) = p, o(b1) = o(b2) = p − 1, o(c) = 2, ac1 = a2, a
c
2 = a1,

bc1 = b2 and bc2 = b1. Furthermore, A has a normal subgroup N = 〈a1, a2〉 ∼= Z
2
p.

Let {u, v} ∈ E(Kp,p). Without loss of generality, we may assume that c inter-

changes u and v, Av = (〈a1〉⋊ 〈b1〉) × 〈b2〉 and Au = (〈a2〉 ⋊ 〈b2〉) × 〈b1〉. Set H =

〈(b1b2)
(p−1)/m, b

(p−1)/n
2 , c〉. Note that n | m. Since ((b1b2)

(p−1)/m)m/nb
−(p−1)/n
2 =

b
(p−1)/n
1 , we have b

(p−1)/n
1 ∈ H . It follows that H = 〈(b1b2)

(p−1)/m, b
(p−1)/n
1 , c〉.

Since c interchanges b1 and b2, we infer that c normalizes 〈(b1b2)
(p−1)/m, b

(p−1)/n
1 〉 ∼=

Zm × Zn. Thus, |H | = 2mn.

Let G = NH . Then G 6 A because N is normal in A. Since |H | = 2mn,

we have G = N ⋊ H . It follows that |G| = 2mnp2. Clearly, G is arc-transitive
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because 〈a1, a2, c〉 6 G. Thus, |Gv| = mnp. Since Av = (〈a1〉⋊ 〈b1〉)× 〈b2〉, we have

〈a1, (b1b2)
(p−1)/m, b

(p−1)/n
2 〉 6 Gv. Since b1 normalizes 〈a1〉 and b2 centralizes a1,

we can easily deduce that 〈a1, (b1b2)
(p−1)/m, b

(p−1)/n
2 〉 = (〈a1〉 ⋊ 〈(b1b2)

(p−1)/m〉) ×

〈b
(p−1)/n
2 〉 ∼= (Zp⋊Zm)×Zn. It follows thatGv

∼= (Zp⋊Zm)×Zn because |Gv| = mnp.
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