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SOME DYNAMIC INEQUALITIES APPLICABLE
TO PARTIAL INTEGRODIFFERENTIAL EQUATIONS
ON TIME SCALES

DEEPAK B. PACHPATTE

ABSTRACT. The main objective of the paper is to study explicit bounds of
certain dynamic integral inequalities on time scales. Using these inequalities
we prove the uniqueness of some partial integrodifferential equations on time
scales.

1. INTRODUCTION

The study time scale calculus was initiated in 1989 by Stefan Hilger [5] a German
Mathematician in his Ph.D dissertation. Since then many authors have applied time
scales calculus for various applications in Mathematics. Mathematical inequalities on
time scales plays very important role. Recently many authors have studied various
properties of dynamic inequalities on time scales [2} [6] [7, [8] 9} [10 [T} 12} (13} [14]. Let
R denotes the real number Z the set of integers and T denotes the arbitrary time
scales. Let T; and T3 be two time scales, and let 2 = Ty x Ts. The rd-continuous
function is denoted by C.q. We denote the partial delta derivative of w(x,y) with
respect to z, y and zy for (z,y) € Q by w? (x,9), w2 (z,y), w42 (z,y) =
w221 (z,y). The basic information about time scales calculus can be found in
[Tl 3, @, 5.

2. MAIN RESULTS

In [7] the author has obtained some estimates of the some Gronwall like inequa-
lities while in [6], [14] the authors have studied some nonlinear dynamic integral
inequalities on time scales. Motivated by the above research work in this paper we
obtain some explicit bounds of certain dynamic inequalities on time scales.

Theorem 2.1. Let u(t), h(t) € Cra(T,Ry), p(7,5) € Cra(Q,Ry) defined for T,
s €T, and ¢ > 0 be a constant. If

(2.1) u(t)gc—i—/t [h(T)u(T)—|—/Tp(T,s)u(s)As]AT7

to to
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fort € T. Then

(2.2) u(t) < cem, (¢, to) ,
where
(2.3 H(®)=h)+ [ pltran

Proof. Let ¢ > 0 and define a function w(¢) by right hand side of (2.1). Then
w(t) > 0 and non decreasing for w(ty) = ¢, u(t) < w(t) and

wA(t):h(t)u(t)Jr/t p(t,T)u(r)AT
gh(t)w(t)+/t p(t,T)w(r)AT
< w(t) [h (t)+/t p(th)AT},

(2.4)

t
< h(t) —|—/ p(t, T)AT.
to
Integrating (2.4) we get
(2.5) w(t) < cep, (t,to) .
Since u(t) < w(t) we get (2.4). O

Theorem 2.2. Let u(t), h(t), p(t,7) be as in Theorem[2.4] and f(t), g(t) € Cra(T,
R+), p(’T, S) € Crd(Q,R+), If

(26)  u() Sf(t)+g(t)/tt [h(r)u(r)+/ttp(7,s)u(s)As}At,

fort €T, then

(2.7) u(t) < f(8) +g(t) K2 (t) em, (¢ to) ,

where

2 m(0) =90+ [ p(t.rg(r) Ar,
and

(2.9) K (t) = /t [h () f () + /t p(1,5) f(s) As} Ar.
Proof. Define a function w(t) by right hand side of equation
(2.10) w(t) = /t [h () u(r) +/t p(r,8)u(s) As} At,
then becomes

(2.11) u(t) < f(t) + g(t)w(t).
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From and we get
w(t) < / (A7) + g(rw(r)} + / p(r. ) LF(s) + gls)w(s)) As| Ar

:/tt [h(T)f<T)+/ttp(T,S)f(S)AS}AT
+/tt [h (T)g(T)w(T)+/ttp(T’ s) g (s)w(s) As]Ar

t t
(2.12) S”“”/to [hmgmwm+/t0p<7,s>g<s>w<sms}m,
where . .
n=ct [ [p0 7@+ [ pms s as]ar,
where € is arbitrarily small constant.
From we have

wt) [ wir) | [
2 Ed < [ im0 55+ [ pra)

Now applying Theorem to yields

(2.14) w(t) < n(t)em, (t,to) -

Using in and letting € — 0, we get (2.7). O
Theorem 2.3. Let a; € Crq(T,Ry), ¢ = 1,2 satisfying

(2.15) 0 <a;(t,u) —a; (t,v) < b; (t,v) (u—0),

for u > v >0 where b;(t,v) are non negative rd-continuous function. If
t t
216) u(®) < f0)+90) [ [parru@)+ [ prs)osule)as]ar,
to to

t €T then
(2.17) u(t) < f(t) +9(t)Ks (t) e, (L, to)

w ($)

n(s)

As} AT

(218)  Hy()=h®ar(tf (1) + / p(t,7)as (t, f (7)) Ar,
and
(219)  Ks(t)=h@a(tf(0)g(t)+ / p(t.7)bs (£, f (7)) g (7) A,

fort e .

Proof. Define a function w(t) by

(2.20) w(t) = /tt [h (M)ay (ry,u(r))+ /tsp (1,8) as (T, u (s))] AT,
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then from we have
(2.21) u®) < ft)+g@)w(t),

From (2:20), (Z:21) and (Z-15) we have
u(t) < [ Mo e )+ oDl = S 7) + (S AT
+ [ p(rsfas(o,S(5) + gta)u(e) = aato, £(5) + aa(s S} 0] A
< [ [romt e + [ ot et Sy wle)2s] ar
# [ [+ [ ptrstants sepas]ar
<N(H) + / (Ao (7, £ (7)) g (7))
22+ [ st Sals)wls) 5] A
where
(223)  N(t)=e+ /t f [h(r)as (. £ (7)) + /t:p(f, $)as (s, f(5)) As] A7

where € > 0 is an arbitrary small constant. Using the same steps as in Theorem
we get the result. O

Theorem 2.4. Let u(x,y), h(z,y) € Cra(Q,Ry) be nonnegative functions defined
forxz,y, s, t €T and p(z,y,s,t) € Cra(Q x Q,Ry). If

u(z,y) <c+ /T: /:: [h(s,t)u(s,t)

s t

(2.24) +/ / p(s,t,&,m)u(s, t)An Af} At As,
o o

for (z,y) € Q then

(2.25) u(z,y) < ceg, (v, 20),

where

(2.26) Hl(:n,y):/:: [h(x,t)+/; /x:p(:v,t,f,n)AnAf .
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Proof. Let ¢ > 0 and define a function w(z,y) by right hand side of - ) then
(‘Tvy) > 07 'w(fﬂo,y) - 'lU(fE,ZL'()) =¢ U(ZL', ) < ( ) and

wA(wyy)=/:[ +/IO/IZpst£n Sn)AnAﬁ}At
S/j[h +/m0/mopst€n én)Anﬁé}At

]

<ute) [ e+ [ [ sto.temanadar

(2.27) m g/y [h(w,t)Jr/w: /w:p(s,t,g,n)AnAg}At.

Keeping y fixed in (2.27) , set = s and integrating it with respect to s from xg
to x we get

(2.28) w(z,y) < ceg, (z,20) -

Using (2 in u(z,y) <w(x,y) we get the result in O

Theorem 2.5. Let u(z,y), h(z,y), p(x,y,s,t), ¢ as in Theorem and f(x,y),
g(l‘,y) € Crd(QvR-‘r) f

) < fa) + o) [ [ [nGs,uts
(2.29) + /; /xt (s, t,&,n)u(&,n)An Ag} At As,

for (z,y) € Q then

(2.30) u(z,y) < f(z,y) +9g(x,y) Ko (2,y) e, (x,20) ,

@3 Hawn) = [ [eiatsn+ [ [ st ematenanagas,

(2.32)  Kolz,y) = // h(z,t) /m/m (s,t, €, mul€, )AnAg}Ams.

Proof. Define a function w(z,y) by

T Yy s t
(2.33) w(sc,y):/ / {h(m,t)u(s,t)—i—/ / p(s,t,f,n)u(f,n)AnAf]AtAs,
then we have

(2.34) u(z,y) < f(2,y) + g,y w(z,y) .
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From and (| we have
(w.1) < / ) / [ 0 7. 8) + gl (s, )}

+ /m: /xo p(s,t7§,n){f(s7t)g(s,t)w(s,t)}An Af] At As

// h(s,£)f(s,1) /mo/mo stgn)f(st)AnAg]AtAs
+/mo /ZO h(s,t)g(s,t)w(s,t)

S t
+ /mo /zo p(s,t,€,m)g(&mw(&,n)An Ag} At As

<)+ [ [ [paote.putsn

s t
@)+ [ [ snensenuenanag atas,

where

n(e) =c+ | / [h(s. )7 (5.1

(230 [ [ et emncnanad aras,

and € > 0 is an arbitrary small constant 7 (z,y) is positive, rd-continuous and
nondecreasing. From ([2.35)) we have

y)) < 1+/$: /: [h(s,t)g(sv’f):((::;))

(2.37) o [ penematen g anac] aras.

Now an application of Theorem to (2.37)) we have

(2.38) w(x,y) <7 (x,y) egy, (2, 20) -
Using (2.38), (2.34) and letting e — 0 we get (2.30]). O

Theorem 2.6. Let u(z,y), f(z,y), 9(x,v), h(z,y), p(z,y,s,t) be as in Theorem
. Let A; € Crq (2 x T,Ry), I =1,2 such that

(239) 0 < Az (LL', y?u) - Ai (SL’, y7’U) < Bz (.’E, y,’U) (U - U) )
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for 0 < v < wu where B; nonnegative rd-continuous. If
Ty
u(es) < S + o) [ [ (504 g uls0)
o o
s t
(2.40) +/ / p(s;t,&m)Ar (2, y,u(€, ) An A&] At As,
Zxo o

for (z,y) € w then

(2.41) u(z,y) < fxy) +9g(@y) Ks (z,y) e, (x,20)

where
o) = [ [ 0Bt S 0)ateon
(2.42) +/Eo /z:p(s,t,E,n)Bz(é“,mf(if,n))g(&n)AnAf AtAs,
and
Rate.n) = [ [ [rs.0s(s.t s 0)ato.n)
(243) <[ Pl 1,61 A2 (61, 1 (€0))g & ) AE] At A,

for (z,y) € Q.

Proof. Define a function w(z,y) by
z oy
w(z,y) :/ / [h(s,t)Al(s,t,u(s,t))
To SJ,‘Q .
(2.44) +/ / p(s,t,é,n)Az(i,n,U(ﬁ,n))AnAif} At As,

then we have (|2.44))
(2.45) w(z,y) < f(z,y) + 9@ y)w(zy) .

From ([2.43) and we have
Ty
wiay) < [ [ b0t ) + oo p)ute)

s t
+/ / p(s,t7£,n)Az(§7n,f(€7n)+g(£7n)w(§,n))AnA§} At As

149
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- [ [ [renaston o)
o :p(s,t,an)Ag(g,n,f(&n))AnAf} Al A
o [ s 0o tgto o)
# [ sttt ot e i anae aeas
<N+ [ [ [pena o sut)
(2.46) # [ sttt gte e n)anac aias
where
s A A LCU L CRNEN)
(2.47) # [ st emnten e m)anad avas,

in which e arbitrary small constant.
Clearly N (z,y) is positive, rd-continuous and nondecreasing. Remaining part
of the proof can be done similarly as in Theorem O

Remark. Theorem [2.2] and Theorem [2.5] are special cases of Theorem [2.3] and
Theorem 2.6 respectively with a(t,u) = u.

3. APPLICATIONS

In this section we give some applications of inequality proved in theorem to obtain
the uniqueness and bound on the solution for dynamic partial integrodifferential
equation of the form

(3.1) VA28 (g y) = F(x,y, V(x,y)) + /”” /y G(m,y,g,n,V(f,n))An AL,
(3.2) w(r,20) = k1 (x) , w(wo,y) =ka(y), Fki(wo)=ka(z0)=0,

where F € Ord (QQ X R+ — R+), G e Crd (QQ X QQ X R+ — RJ’_)
Now we give the bounds on (3.1) and (3.2).
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Theorem 3.1. Suppose that

(3.3) |F (2,9, V (2, 9)| < h(z,y) [V (2, 9)]
(3.4) G (z,y,&m,V (&) < plz,y,60) [V ()],

where h, p, ¢ are as defined in Theorem . If w(zx,y) is solution of and
then

(3.6) lw (z,y)| < ceg, (z,20) ,

for (z,y) € Q where Hy is given by (2.26)).

Proof. The solution V(x,y) of n,ﬂ satisfy the equation

Vi(z,y) =k (2) + k2 (y / / F(s,t,V (s,1))

(3.7) " / [ Gnenvicn)anagaias.
Now for (3.3 f and ( we get

xy<c—|—// (s,t) |V (s,1)]

(38) + [ / p(rv,.6m) |V<£,n)|AnAf} AtAs.

Now we apply Theorem [2.4] to glves l . The right hand side of (3.8) gives
the bounds of solution of 1- O

Now in the next theorem we give the uniqueness of solution of (3.1))—(3.2).

Theorem 3.2. Suppose

(3.9) |F(z,y,V(2,y)) — F(z,y, V(z,y))| < bz, y)|V(z,y) = V(z,y)]|,

|G(z,y,&n, V(&) — Gz, y,6,m,V(E,m))]
(3.10) < plz,y, &m)|V(En) —VI(En)],

where h, p are as defined in Theorem . Then (3.1)—(3.2) has at most one solution
for (z,y) € Q.

Proof. Let V(m y) and V(z,y) be two solution of (3.1)—(3-2) then
V(z,y)

// [{F (5.8, V(s5,1)) = F(s,1,V(5,0)}

(311)  + / {G(s.t.&mV(Em) = Gls,1,6m, V(& m) }An A At As.
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From (3.9), (3.10) and (3.11)) we have

|V (z,y) = V(z,y)| < /j /Iy [h(s7t)|V(s,t) —V(s,t)]

(312) [ wstemvien - Tien|anagatas.

Now applying Theoremwith k=0 gives |V (v,y) =V (z, y)’ < 0giving V (z,y) =

V (z,y) for (x,y) € Q. Thus there is at most one solution of (3.1)—(3.2). O
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