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HARDY-ROGERS-TYPE FIXED POINT THEOREMS

FOR α-GF -CONTRACTIONS

Muhammad Arshad, Eskandar Ameer, and Aftab Hussain

Abstract. The aim of this paper is to introduce some new fixed point
results of Hardy-Rogers-type for α-η-GF -contraction in a complete metric
space. We extend the concept of F -contraction into an α-η-GF -contraction
of Hardy-Rogers-type. An example has been constructed to demonstrate the
novelty of our results.

1. Introduction

The Banach contraction principle [3] is one of the earliest and most important
resluts in fixed point theory. Because of its importance and simplicity, a lot of
authors have improved generalized and extended the Banach contraction principle
in the literature (see [1–24]) and the references therein.

In [21] Samet et al. introduced a concept of α-ψ-contractive type mappings and
established various fixed point theorems for mappings in complete metric spaces.
Afterwards Karapınar et al. [16], refined the notion and obtained various fixed point
results. Hussain et al. [11], extended the concept of α-admissible mappings and
obtained useful fixed point theorems. Subsequently, Abdeljawad [1] introduced pairs
of α-admissible mappings satisfying new sufficient contractive conditions different
from those in [11, 21], and proved fixed point and common fixed point theorems.
Lately, Salimi et al. [20], modified the concept of α-ψ- contractive mappings and
established fixed point results. Throughout the article we denote by R the set of
all real numbers, by R+ the set af all positive real numbers and by N the set of all
positive integers.

Definition 1 ([21]). Let T : X → X and α : X ×X → [0,+∞). We say that T is
α-admissible if x, y ∈ X, α(x, y) ≥ 1 implies that α(Tx, Ty) ≥ 1.

Definition 2 ([20]). Let T : X → X and α, η : X×X → [0,+∞) two functions. We
say that T is α-admissible mapping with respect to η if x, y ∈ X, α(x, y) ≥ η(x, y)
implies that α(Tx, Ty) ≥ η(Tx, Ty).
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If η(x, y) = 1, then above definition reduces to Definition 1. If α(x, y) = 1, then
T is called an η-subadmissible mapping.

Definition 3 ([13]). Let (X, d) be a metric space. Let T : X → X and α, η : X ×
X → [0,+∞) be two functions. We say that T is α-η-continuous mapping on (X, d)
if for given x ∈ X, and sequence {xn} with

xn → x as n→∞, α(xn, xn+1) ≥ η(xn, xn+1)
for all n ∈ N⇒ Txn → Tx .

In [6] Edelstein proved the following version of the Banach contraction principle.

Theorem 4 ([6]). Let (X, d) be a metric space and T : X → X be a self mapping.
Assume that

d(Tx, Ty) < d(x, y) , holds for all x, y ∈ X with x 6= y .

Then T has a unique fixed point in X.

In [24] Wardowski introduced a new type of contractions called F -contractions
and proved fixed point theorems concerning F -contractions as a generalization of
the Banach contraction principle as follows.

Definition 5 ([24]). Let (X, d) be a metric space. A mapping T : X → X is said
to be an F -contraction if there exists τ > 0 such that

(1.1) ∀x, y ∈ X , d(Tx, Ty) > 0⇒ τ + F
(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
,

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, i.e. for all x, y ∈ R+ such that x < y, F (x) < F (y);

(F2) For each sequence {αn}∞n=1 of positive numbers, lim
n→∞

αn = 0 if and only if

lim
n→∞

F (αn) = −∞ ;

(F3) There exists k ∈ (0, 1) such that limα→ 0+αkF (α) = 0.
We denote by z, the set of all functions satisfying the conditions (F1)–(F3).

Example 6 ([24]). Let F : R+ → R be given by the formula F (α) = lnα. It is
clear that F satisfied (F1)–(F2)–(F3) for any k ∈ (0, 1). Each mapping T : X → X
satisfying (1.1) is an F -contraction such that

d(Tx, Ty) ≤ e−τd(x, y) , for all x, y ∈ X , Tx 6= Ty .

It is clear that for x, y ∈ X such that Tx = Ty the inequality d(Tx, Ty) ≤
e−τd(x, y), also holds, i.e. T is a Banach contraction.

Example 7 ([24]). If F (r) = ln r + r, r > 0 then F satisfies (F1)–(F3) and the
condition (1.1) is of the form

d(Tx, Ty)
d(x, y) ≤ ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X , Tx 6= Ty .
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Remark 8. From (F1) and (1.1) it is easy to conclude that every F -contraction
is necessarily continuous.

Theorem 9 ([24]). Let (X, d) be a complete metric space and let T : X → X be
an F -contraction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X
the sequence {Tnx}n∈N converges to x∗.

In [5] Cosentino et al. presented some fixed point results for F -contraction of
Hardy-Rogers-type for self-mappings on complete metric spaces.

Definition 10 ([5]). Let (X, d) be a metric space. a mapping T : X −→ X is
called an F -contraction of Hardy-Rogers-type if there exists F ∈ z and τ > 0 such
that

τ + F
(
d(Tx, Ty)

)
≤

F
(
κd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld(y, Tx)

)
,

for all x, y ∈ X with d (Tx, Ty) > 0, where κ, β, γ, δ, L ≥ 0, κ+ β + γ + 2δ = 1
and γ 6= 1.

Theorem 11 ([5]). Let (X, d) be a complete metric space and let T : X −→
X. Assume there exists F ∈ z and τ > 0 such that T is an F -contraction of
Hardy-Rogers-type, that is

τ + F
(
d(Tx, Ty)

)
≤

F
(
κd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld(y, Tx)

)
,

for all x, y ∈ X with d (Tx, Ty) > 0, where κ, β, γ, δ, L ≥ 0, κ+ β + γ + 2δ = 1
and γ 6= 1. Then T has a fixed point. Moreover, if κ + δ + L ≤ 1, then the fixed
point of T is unique.

Hussain et al. [11] introduced a family of functions as follows.
Let ∆G denotes the set of all functions G : R+4 → R+ satisfying:
(G) for all t1, t2, t3, t4 ∈ R+ with t1t2t3t4 = 0 there exists τ > 0 such that

G(t1, t2, t3, t4) = τ .

Example 12 ([14]). If G(t1, t2, t3, t4) = τevmin{t1,t2,t3,t4} where v ∈ R+ and τ > 0,
then G ∈ ∆G.

Definition 13 ([14]). Let (X, d) be a metric space and T be a self mapping on
X. Also suppose that α, η : X ×X → [0,+∞) be two functions. We say that T is
α-η-GF -contraction if for x, y ∈ X, with η(x, Tx) ≤ α(x, y) and d(Tx, Ty) > 0 we
have

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
,

where G ∈ ∆G and F ∈ ∆F .

On the other hand Secelean [22] proved the following lemma and replaced
condition (F2 by an equivalent but a more simple condition (F2′).
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Lemma 14 ([22]). Let F : R+ −→ R be an increasing map and {αn}∞n=1 be a
sequence of positive real numbers. Then the following assertions hold:

(a) if lim
n→∞

F (αn) = −∞ then lim
n→∞

αn = 0;
(b) if inf F = −∞ and lim

n→∞
αn = 0, then lim

n→∞
F (αn) = −∞.

He replaced the following condition.
(F2′) inf F = −∞
or, also, by
(F2′′) there exists a sequence {αn}∞n=1 of positive real numbers such that

lim
n→∞

F (αn) = −∞.
Recently Piri [19] replaced the following condition (F3′) instead of the condition

(F3) in Definition 5.
(F3′) F is continuous on (0,∞).
We denote by ∆F the set of all functions satisfying the conditions (F1), (F2′)

and (F3′).
For p ≥ 1, F (α) = − 1

αP
satisfies in (F1) and (F2) but it does not apply

in (F3) while satisfy conditions (F1), (F2) and (F3′). Also, a > 1, t ∈
(
0, 1

a

)
,

F (α) = −1
(α+[α])t , where [α] denotes the integral part of α, satisfies the condition

(F1) and (F2) but it does not satisfy (F3′) , while it satisfies the condition (F3) for
any k ∈

( 1
a , 1
)
. Therefore z ∩∆F = ∅.

Theorem 15 ([19]). Let T be a self-mapping of a complete metric space X into
itself. Suppose F ∈ ∆F and there exists τ > 0 such that

∀x, y ∈ X, d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)) .
Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n=1
converges to x∗.

Definition 16. Let (X, d) be a metric space and T be a self mapping on X. Also
suppose that α, η : X × X → [0,+∞) be two functions. We say that T is an
α-η-GF -contraction of Hardy-Rogers-type if for x, y ∈ X, with η(x, Tx) ≤ α(x, y)
and d(Tx, Ty) > 0 we have

(1.2) G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
κd (x, y) + βd(x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld(y, Tx)

)
,

where G ∈ ∆G, F ∈ ∆F , κ, β, γ, δ, L ≥ 0, κ+ β + γ + 2δ = 1 and γ 6= 1.

2. Main result

In this paper, we establish new some fixed point theorems for α-η-GF -contraction
of Hardy-Rogers-type in a complete metric space.

Theorem 17. Let (X, d) be a complete metric space. Let T be a self mapping
satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;
(ii) T is an α-η-GF -contraction of Hardy-Rogers-type;
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(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);
(iv) T is α-η-continuous.
Then T has a fixed point in X. Moreover, T has a unique fixed point when

α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ) and κ+ δ + L ≤ 1.

Proof. Let x0 in X, such that α(x0, Tx0) ≥ η(x0, Tx0). For x0 ∈ X, we construct
a sequence {xn}∞n=1 such that x1 = Tx0, x2 = Tx1 = T 2x0. Continuing this
process, xn+1 = Txn = Tn+1x0, for all n ∈ N. Now since, T is an α-admissible
mapping with respect to η then α(x0, x1) = α(x0, Tx0) ≥ η(x0, Tx0) = η(x0, x1).
By continuing in this process, we have

(2.1) η(xn−1, Txn−1) = η(xn−1, xn) ≤ α(xn−1, xn) , for all n ∈ N .

If there exists n ∈ N such that d(xn, Txn) = 0, there is nothing to prove. So, we
assume that xn 6= xn+1 with

(2.2) d(Txn−1, Txn) = d(xn, Txn) > 0 , ∀n ∈ N .

Since, T is an α-η-GF -contraction of Hardy-Rogers-type, for any n ∈ N, we have

G

(
d(xn−1, Txn−1), d(xn, Txn),
d(xn−1, Txn), d(xn, Txn−1)

)

+F
(
d(Txn−1, Txn)

)
≤F

(
κd (xn−1, xn) + βd (xn−1, Txn−1) + γd (xn, Txn)

+δd (xn−1, Txn) + Ld (xn, Txn−1)

)
which implies

G(d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0) + F (d(Txn−1, Txn))

≤F
(
κd (xn−1, xn) + βd (xn−1, Txn−1) + γd (xn, Txn)

+δd (xn−1, Txn) + Ld(xn, Txn−1

)
.(2.3)

Now since, d(xn−1, xn) ·d(xn, xn+1) ·d(xn−1, xn+1) · 0 = 0, so from (G) there exists
τ > 0 such that,

G
(
d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0

)
= τ .

Therefore

F
(
d(xn, xn+1)

)
= F (d (Txn−1, Txn))

≤ F
(
κd (xn−1, xn) + βd (xn−1, Txn−1) + γd (xn, Txn)

+δd (xn−1, Txn) + Ld (xn, Txn−1)

)
− τ

= F

(
κd (xn−1, xn) + βd (xn−1, xn) + γd (xn, xn+1)

+δd (xn−1, xn+1) + Ld (xn, xn)

)
− τ

≤ F
(
κd (xn−1, xn) + βd (xn−1, xn) + γd (xn, xn+1)

+δd (xn−1, xn) + δd (xn, xn+1)

)
− τ

= F ((κ+ β + δ) d (xn−1, xn) + (γ + δ) d (xn, xn+1))− τ
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Since F is strictly increasing, we deduce

d (xn, xn+1) < (κ+ β + δ) d (xn−1, xn) + (γ + δ) d (xn, xn+1) .

This implies

(1− γ − δ) d (xn, xn+1) < (κ+ β + δ) d (xn−1, xn) for all n ∈ N .

From κ+ β + γ + 2δ = 1 and γ 6= 1, we deduce that 1− γ − δ > 0 and so

d (xn, xn+1) < (κ+ β + δ)
(1− γ − δ) d (xn−1, xn) = d (xn−1, xn) for all n ∈ N .

Consequently

(2.4) F
(
d(xn, xn+1)

)
≤ F

(
d(xn−1, xn)

)
− τ .

Continuing this process, we get

F
(
d(xn, xn+1)

)
≤ F

(
d(xn−1, xn)

)
− τ

= F
(
d(Txn−2, Txn−1)

)
− τ

≤ F
(
d(xn−2, xn−1)

)
− 2τ

= F
(
d(Txn−3, Txn−2)

)
− 2τ

≤ F
(
d(xn−3, xn−2)

)
− 3τ

...
≤ F

(
d(x0, x1)

)
− nτ .

This implies that

(2.5) F
(
d(xn, xn+1)

)
≤ F

(
d(x0, x1)

)
− nτ .

And so lim
n→∞

F (d (Txn−1, Txn)) = −∞, which together with (F2′) and Lemma 14
gives that

(2.6) lim
n→∞

d(xn, Txn) = 0 .

Now, we claim that {xn}∞n=1 is a cauchy sequence. Arguing by contradiction, we
have that there exists ε > 0 and sequence {p(n)}∞n=1 and {q(n)}∞n=1 of natural
numbers such that

(2.7) p(n) > q(n) > n , d(xp(n), xq(n)) ≥ ε , d(xp(n)−1, xq(n)) < ε ∀n ∈ N .

So, we have

ε ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n))

≤ d(xp(n), xp(n)−1) + ε = d(xp(n)−1, Txp(n)−1) + ε .(2.8)

Letting n −→∞ in (2.8) and using (2.6), we obtain

(2.9) lim
n−→∞

d(xp(n), xq(n)) = ε .
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Also, from (2.6) there exists a natural number n1 ∈ N such that

(2.10) d(xp(n), Txp(n)) <
ε

4 and d(xq(n), Txq(n)) <
ε

4 , ∀ n ≥ n1 .

Next, we claim that
(2.11) d(Txp(n), Txq(n)) = d(xp(n)+1, xq(n)+1) > 0 ∀ n ≥ n1 .

Arguing by contradiction, there exists m ≥ n1 such that
(2.12) d(xp(m)+1, xq(m)+1) = 0 .
It follows from (2.7), (2.10) and (2.12) that

ε ≤ d(xp(m), xq(m)) ≤ d(xp(m), xp(m)+1) + d(xp(m)+1, xq(m))
≤ d(xp(m), xp(m)+1) + d(xp(m)+1, xq(m)+1) + d(xq(m)+1, xq(m))
= d(xp(m), Txp(m)) + d(xp(m)+1, xq(m)+1) + d(xq(m), Txq(m))

<
ε

4 + 0 + ε

4 .

This contradiction establishes the relation (2.11) it follows from (2.11) and (1.2)
that

G

(
d
(
xp(n), Txp(n)

)
, d
(
xq(n), Txq(n)

)
,

d
(
xp(n), Txq(n)

)
, d
(
xq(n), Txp(n)

) )+ F
(
d
(
TxP (n), Txq(n)

) )
≤ F

(
κd
(
xp(n), xq(n)

)
+ βd

(
xp(n), Txp(n)

)
+ γd

(
xq(n), Txq(n)

)
+δd

(
xp(n), Txq(n)

)
+ Ld

(
xq(n), Txp(n)

) )
∀ n ≥ n1 ,

which implies,

G

(
d
(
xp(n), xp(n)+1

)
, d
(
xq(n), xq(n)+1

)
,

d
(
xp(n), xq(n)+1

)
, d
(
xq(n), xp(n)+1

) )+ F
(
d
(
xP (n)+1, xq(n)+1

) )
≤ F

(
κd
(
xp(n), xq(n)

)
+ βd

(
xp(n), xp(n)+1

)
+ γd

(
xq(n), xq(n)+1

)
+δd

(
xp(n), xq(n)+1

)
+ Ld

(
xq(n), xp(n)+1

) )
.

Now since, 0 · d
(
xq(n), Txq(n)

)
· d
(
xp(n), Txq(n)

)
· d
(
xq(n), Txp(n)

)
= 0, so from

(G) there exists τ > 0 such that,
G
(
0, d

(
xq(n), Txq(n)

)
, d
(
xp(n), Txq(n)

)
, d
(
xq(n), Txp(n)

) )
= τ .

Therefore,

(2.13) τ + F
(
d
(
TxP (n), Txq(n)

) )
≤ F

(
κd
(
xp(n), xq(n)

)
+ βd

(
xp(n), Txp(n)

)
+ γd

(
xq(n), Txq(n)

)
+δd

(
xp(n), Txq(n)

)
+ Ld

(
xq(n), Txp(n)

) )
So from (F3′), (2.6), (2.9) and (2.13), we have

τ + F (ε) ≤ F ((κ+ δ + L) ε) = F (ε) .
This contradiction show that {xn}∞n=1 is a Cauchy sequence. By completeness of
(X, d), {xn}∞n=1 converges to some point x in X. Since T is an α-η-continuous and
η(xn−1, xn) ≤ α(xn−1, xn), for all n ∈ N, then xn+1 = Txn → Tx as n→∞. That
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is, x = Tx. Hence x is a fixed point of T . Let x, y ∈ Fix (T ) where x 6= y, then
from

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
κd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld(y, Tx)

)
= F

(
(κ+ δ + L) d (x, y)

)
.

Which is a contradiction, if κ+ δ + L ≤ 1 and hence x = y. �

Theorem 18. Let (X, d) be a complete metric space. Let T be a self mapping
satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;
(ii) T is an α-η-GF -contraction of Hardy-Rogers-type;
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);
(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x

as n→∞ then either
α(Txn, x) ≥ η(Txn, T 2xn) or α(T 2xn, x) ≥ η(T 2xn, T

3xn)
holds for all n ∈ N.

Then T has a fixed point in X. Moreover, T has a unique fixed point when
α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ) and κ+ δ + L ≤ 1.
Proof. As similar lines of the Theorem 17, we can conclude that

α(xn, xn+1) ≥ η(xn, xn+1) and xn → x as n→∞ .

Since, by (iv), either
α(Txn, x) ≥ η(Txn, T 2xn) or α(T 2xn, x) ≥ η(T 2xn, T

3xn) ,
holds for all n ∈ N. This implies

α(xn+1, x) ≥ η(xn+1, xn+2) or α(xn+2, x) ≥ η(xn+2, xn+3) .
Then there exists a subsequence {xnk} of {xn} such that

η(xnk , Txnk) = η(xnk , xnk+1) ≤ α(xnk , x)
and from (1.2), we deduce that

G
(
d(xnk , Txnk), d(x, Tx), d(xnk , Tx), d(x, Txnk)

)
+ F

(
d(Txnk , Tx)

)
≤ F

(
κd(xnk , x) + βd(xnk , Txnk) + γd(x, Tx) + δd(xnk , Tx) + Ld(x, Txnk)

)
.

This implies

(2.14) F
(
d(Txnk , Tx)

)
≤ F

(
κd (xnk , x) + βd (xnk , xnk+1) + γd (x, Tx) + δd (xnk , Tx) +Ld(x, xnk+1)

)
.

From (F1) we have

(2.15) d(xnk+1, Tx)
< κd (xnk , x) + βd (xnk , xnk+1) + γd (x, Tx) + δd (xnk , Tx) + Ld(x, xnk+1) .
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By taking the limit as k →∞ in (2.15), we obtain
(2.16) d(x, Tx) < (γ + δ) d(x, Tx) < d(x, Tx) .
Which is implies that d(x, Tx) = 0, implies x is a fixed point of T . Uniqueness
follows similarly as in Theorem 17. �

Theorem 19. Let T be a continuous selfmapping on a complete metric space X.
If for x, y ∈ X with d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0, we have

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
κd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx)

)
,

where G ∈ ∆G, F ∈ ∆F , κ, β, γ, δ, L ≥ 0, κ+ β + γ + 2δ = 1 and γ 6= 1. Then T
has a fixed point in X.

Proof. Let us define α, η : X ×X → [0,+∞) by
α(x, y) = d(x, y) and η(x, y) = d(x, y) for all x, y ∈ X .

Now, d(x, y) ≤ d(x, y) for all x, y ∈ X, so α(x, y) ≥ η(x, y) for all x, y ∈ X. That
is, conditions (i) and (iii) of Theorem 17 hold true. Since T is continuous, so T
is α-η-continuous. Let η(x, Tx) ≤ α(x, y) and d(Tx, Ty) > 0, we have d(x, Tx) ≤
d(x, y) with d(Tx, Ty) > 0, then

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
κd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld(y, Tx)

)
.

That is, T is an α-η-GF -contraction mapping of Hardy-Rogers-type. Hence, all
conditions of Theorem 17 satisfied and T has a fixed point. �

Corollary 20. Let T be a continuous selfmapping on a complete metric space X.
If for x, y ∈ X with d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0, we have
τ+F

(
d(Tx, Ty)

)
≤ F

(
κd (x, y)+βd (x, Tx)+γd (y, Ty)+δd (x, Ty)+Ld(y, Tx)

)
,

where τ > 0, κ, β, γ, δ, L ≥ 0, κ+ β + γ + 2δ = 1 and γ 6= 1 and F ∈ ∆F . Then
T has a fixed point in X.

Corollary 21. Let T be a continuous selfmapping on a complete metric space X.
If for x, y ∈ X with d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0, we have

τevmin{d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)} + F
(
d(Tx, Ty)

)
≤ F

(
(κd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld(y, Tx)

)
,

where τ > 0, κ, β, γ, δ, L, v ≥ 0, κ+ β + γ + 2δ = 1, γ 6= 1 and F ∈ ∆F . Then T
has a fixed point in X.

Example 22. Let Sn = n(n+1)(n+2)
3 , n ∈ N, X = {Sn : n ∈ N} and d (x, y) =

|x− y|. Then (X, d) is a complete metric space. Define the mapping T : X −→
X, by T (S1) = S1 and T (Sn) = Sn−1, for all n > 1 and α (x, y) = 1 for all
x ∈ X, η (x, Tx) = 1

2 for all x ∈ X, G (t1, t2, t3, t4) = τ where τ = 7
2 > 0.

Since lim
n→∞

d(T (Sn),T (S1))
d(Sn,S1) = lim

n→∞
Sn−1−2
Sn−2 = (n−1)n(n+1)−6

n(n+1)(n+2)−6 = 1, T is not Banach
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contraction. On the other hand taking F (r) = −1
r + r ∈ ∆F , we obtain the result

that T is an α-η-GF -contraction of Hardy-Rogers-type with κ = β = 1
3 , γ = 1

6 ,
δ = 1

12 and L = 7
12 . To see this, let us consider the following calculation. We

conclude the following three cases:

Case 1: For every m ∈ N, m > n = 1, then α(Sm, Sn) ≥ η(Sm, T (Sm)), we have

|T (Sm)−T (S1)| = |S1− T (Sm)| = |Sm−1− S1| = 2× 3 + 3× 4 + · · ·+ (m−1)m,

|Sm − S1| = 2× 3 + 3× 4 + · · ·+m (m+ 1) ,
|Sm − T (Sm)| = |Sm − Sm−1| = m (m+ 1) ,
|S1 − T (S1)| = |S1 − S1| = 0 .

Since m > 1 and
−1

2× 3 + · · ·+ (m− 1)m

<
−1[ 1

3 (2× 3 + · · ·+m (m+ 1)) + 1
3m (m+ 1)

+ 1
12 (2× 3 + · · ·+m (m+ 1)) + 7

12 (2× 3 + · · ·+ (m− 1)m)

] .
We have

7
2 −

1
2× 3 + 3× 4 + · · ·+ (m− 1)m + [2× 3 + 3× 4 + · · ·+ (m− 1)m]

<
7
2 −

1[ 1
3 (2× 3 + · · ·+m(m+ 1)) + 1

3m(m+ 1)
+ 1

12 (2× 3 + · · ·+m(m+ 1)) + 7
12 (2× 3 + · · ·+ (m− 1)m)

]
+ [2× 3 + 3× 4 + · · ·+ (m− 1)m]

≤ − 1[ 1
3 (2× 3 + · · ·+m(m+ 1)) + 1

3m(m+ 1)
+ 1

12 (2× 3 + · · ·+m(m+ 1)) + 7
12 (2× 3 + · · ·+ (m− 1)m)

]

+
[ 1

3 (2× 3 + · · ·+m (m+ 1)) + 1
3m (m+ 1)

+ 1
12 (2× 3 + · · ·+m (m+ 1)) + 7

12 (2× 3 + · · ·+ (m− 1)m)

]
.

So, we get
7
2 −

1
|T (Sm)− T (S1)| +

∣∣T (Sm)− T (S1)
∣∣

<− 1
1
3 |Sm−S1|+1

3 |Sm−T (Sm)|+1
6 |S1−T (S1)|+ 1

12 |Sm−T (S1)|+ 7
12 |S1−T (Sm)|

+
[1

3 |Sm−S1|+
1
3 |Sm−T (Sm)|+1

6 |S1−T (S1)|+ 1
12 |Sm−T (S1)|+ 7

12 |S1−T (Sm)|
]
.
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Case 2: For 1 ≤ m < n, similar to Case 1.

Case 3: For m > n > 1, then α(Sm, Sn) ≥ η(Sm, T (Sm)), we have

|T (Sm)− T (Sn)| = n× (n+ 1) + (n+ 1) (n+ 2) + · · ·+ (m− 1)m,

|Sm − Sn| = (n+ 1) (n+ 2) + (n+ 2) (n+ 3) + · · ·+m (m+ 1) ,

|Sm − T (Sm)| = |Sm − Sm−1| = m (m+ 1) ,

|Sn − T (Sn)| = |Sn − Sn−1| = n (n+ 1) ,

|Sm − T (Sn)| = |Sm − Sn−1| = n (n+ 1) + · · ·+m (m+ 1) ,

|Sn − T (Sm)| = |Sn − Sm−1| = (n+ 1) (n+ 2) + · · ·+ (m− 1)m.

Since m > n > 1, and

−1
n× (n+ 1) + (n+ 1) (n+ 2) + · · ·+ (m− 1)m

<
−1[ 1

3 ((n+ 1) (n+ 2) + ...+m (m+ 1)) + 1
3m (m+ 1) + 1

6n (n+ 1)
+ 1

12 (n (n+ 1) + · · ·+ (m− 1)m) + 7
12 ((n+ 1) (n+ 2) + · · ·+ (m− 1)m)

] .
Therefore

7
2 −

1
n× (n+ 1) + (n+ 1) (n+ 2) + · · ·+ (m− 1)m

+
[
n× (n+ 1) + (n+ 1) (n+ 2) + · · ·+ (m− 1)m

]
<

7
2 −

1[ 1
3 ((n+ 1) (n+ 2) + · · ·+m (m+ 1)) + 1

3m (m+ 1) + 1
6n (n+ 1)

+ 1
12 (n (n+1) + · · ·+ (m− 1)m)+ 7

12 ((n+1) (n+2) + · · ·+ (m−1)m)

]
+ [n× (n+ 1) + (n+ 1) (n+ 2) + · · ·+ (m− 1)m]

≤ − 1[ 1
3 ((n+ 1) (n+ 2) + · · ·+m (m+ 1)) + 1

3m (m+ 1) + 1
6n (n+ 1)

+ 1
12 (n (n+ 1) + · · ·+ (m− 1)m) + 7

12 ((n+ 1) (n+ 2) + · · ·+ (m− 1)m)

]
+
[ 1

3 ((n+ 1) (n+ 2) + · · ·+m (m+ 1)) + 1
3m (m+ 1) + 1

6n (n+ 1)
+ 1

12 (n (n+ 1) + · · ·+ (m− 1)m) + 7
12 ((n+ 1) (n+ 2) + · · ·+ (m− 1)m)

]
.

So, we get

7
2−

1
|T (Sm)− T (Sn)| + |T (Sm)− T (Sn)|

< − 1
1
3 |Sm−Sn|+

1
3 |Sm−T (Sm)|+ 1

6 |Sn−T (Sn)|+ 1
12 |Sm−T (Sn)|+ 7

12 |Sn−T (Sm)|



140 M. ARSHAD, E. AMEER AND A. HUSSAIN

+
[1

3 |Sm− Sn|+
1
3 |Sm− T (Sm)|+ 1

6 |Sn−T (Sn)|+ 1
12 |Sm− T (Sn)|

+ 7
12 |Sn− T (Sm)|

]
.

Therefore
7
2 + F

(
d (T (Sm) , T (Sn))

)
≤ F

(1
3 d (Sm, Sn) + 1

3 d
(
Sm, T (Sm)

)
+ 1

6 d
(
Sn, T (Sn)

)
+ 1

12 d
(
Sm, T (Sn)

)
+ 7

12 d
(
Sn, T (Sm)

))
.

for all m, n ∈ N. Hence all condition of theorems are satisfied, T has a fixed point.
Let (X, d,�) be a partially ordered metric space. Let T : X → X is such that

for x, y ∈ X, with x � y implies Tx � Ty, then the mapping T is said to be
non-decreasing. We derive following important result in partially ordered metric
spaces.

Theorem 23. Let (X, d,�) be a complete partially ordered metric space. Assume
that the following assertions hold true:

(i) T is nondecreasing and ordered GF -contraction of Hardy-Rogers-type;;

(ii) there exists x0 ∈ X such that x0 � Tx0;

(iii) either for a given x ∈ X and sequence {xn} in X such that xn → x as
n→∞ and xn � xn+1 for all n ∈ N we have Txn → Tx
or if {xn} is a sequence in X such that xn � xn+1 with xn → x as n → ∞ then
either

Txn � x or T 2xn � x
holds for all n ∈ N.

Then T has a fixed point in X.
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