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Abstract. The paper is concerned with the analysis of the space-time discontinuous
Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear
convection-diffusion initial-boundary value problem in a time-dependent domain formulated
with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of
the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the
space discretization of diffusion terms and interior and boundary penalty. The nonlinear
convection terms are discretized with the aid of a numerical flux. The space discretization
uses piecewise polynomial approximations of degree not greater than p with an integer
p > 1. In the theoretical analysis, the piecewise linear time discretization is used. The
main attention is paid to the investigation of unconditional stability of the method.

Keywords: nonstationary nonlinear convection-diffusion equations; time-dependent do-
main; ALE method; space-time discontinuous Galerkin method; unconditional stability
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1. INTRODUCTION

Most of works on the theory and numerical solution of nonstationary partial differ-
ential equations are considered and analyzed in space domains independent of time.
However, problems described by partial differential equations in deformable domains
2, which change their shape in dependence on time ¢ € [0, T, play an important role
in various fields of science and technology. Particularly, we can mention problems of
fluid-structure interaction, when the boundary of the domain occupied by the moving
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fluid is deformed in dependence on time according to the deformation of an elastic
body adjacent to the fluid. There are several techniques how to solve numerically
initial-boundary value problems in time-dependent domains. We can mention, e.g.,
the immersed boundary method or fictitious domain method ([7], [33]). Another,
rather popular technique is the arbitrary Lagrangian-Eulerian (ALE) method ([18]),
which will be applied in this paper to the numerical solution of nonstationary non-
linear convection-diffusion problems in a time-dependent domain. In several works
([11], [12], [24], [25], [27], [30]) we used the ALE method with success for numerical
solving compressible Navier-Stokes equations in the framework of fluid-structure in-
teraction problems. The space discretization was carried out by the discontinuous
Galerkin method (DGM). For the time discretization we used either the backward
difference formula (BDF) method or the DGM in time. In the latter case, we get the
space-time discontinuous Galerkin method (STDGM).

There is a number of works devoted to the theory and applications of the DGM.
Let us mention, e.g., [2], [3], [5], [6], [9], [14], [15], [16], [17], [22], [23], [31], [32], [34].
The numerical simulation of strongly nonstationary transient problems requires the
application of numerical schemes of high order of accuracy both in space and in time.
It appears suitable to use the discontinuous Galerkin discretization with respect to
space as well as time for the construction of numerical schemes with high accuracy
in space and time for the solution of nonlinear nonstationary problems.

The discontinuous Galerkin time discretization was introduced and analyzed, e.g.,
in [19] for the solution of ordinary differential equations. In [1], [13], [20], [21], [35]
and [36] the solution of parabolic problems is carried out with the aid of conform-
ing finite elements in space combined with the DG time discretization. See also
the monograph [37]. In [23], the STDGM was analyzed for a linear nonstation-
ary convection-diffusion-reaction problem. The paper [26] is devoted to the theory
of error estimates for the STDGM applied to a nonstationary convection-diffusion
problem with a nonlinear convection and linear diffusion. In paper [10], the theory
of the STDGM was developed for the case with nonlinear convection as well as dif-
fusion. The paper [4] is a continuation of the works [26] and [10] devoted to proving
unconditional stability of the STDGM. In all the above mentioned theoretical papers,
the space domain is independent of time.

There are several papers devoted to the analysis of linear convection-diffusion
problems in time-dependent domains, formulated with the aid of the ALE method.
We can mention [28], [29] and [8]. The last paper is concerned with the stability
analysis of the time DGM without space discretization.

The presented paper represents the generalization of results from [4] to the
STDGM for the numerical solution of a nonstationary nonlinear convection-diffusion
problem in a time-dependent domain, formulated with the aid of the ALE method.
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In Section 2 we formulate the continuous problem. Section 3 is devoted to the
description of the space semidiscretization. Section 4 is concerned with the complete
space-time DG discretization. The main results are contained in Section 5, where
the stability of the STDGM is proved.

2. FORMULATION OF THE CONTINUOUS PROBLEM

In what follows, we shall use the standard notation L?(w) for the Lebesgue space,
H*(w), WkP(w) for the Hilbert and Sobolev spaces over a bounded domain w C
R?, and C1([0,T]; W1>(€);)) for the Bochner space of continuously differentiable
functions in [0, T'] with values in W1°°(€2;). We shall be concerned with an initial-
boundary value nonlinear convection-diffusion problem in a time-dependent bounded
polyhedral domain Q; C R?, where t € [0,7], T > 0: Find a function u = u(z,t)
with z € 4, t € (0,T) such that

o~ Of, . :
(2.1) 8—1; + g %z‘) —div(B(u)Vu) =g in Q, t € (0,T),
(2.2) u=up ond, te (0,T),
(2.3) u(z,0) =u’(z), =€ Q.

We assume that fs € C1(R), fs(0) =0,
(2.4) Ifil< Ly s=1,...,d,
and the function £ is bounded and Lipschitz-continuous:

(25) ﬂ: R—)[Bo,ﬂl], 0<50<61<OO,
(2.6) |,6(U1) — B(U2)| < Lﬁ|u1 — U2| V’U,l,U,Q c R.

Problem (2.1)—(2.3) will be reformulated with the aid of the arbitrary Lagrangian-
Eulerian (ALE) method. It is based on a regular one-to-one ALE mapping of the
reference configuration {2y onto the current configuration 2;:

Ay ﬁo—)ﬁt, XEQ()—)‘CC:‘CC(X,t):At(X)éﬁt, tE[O,T]
We assume that A € C1([0,T]; W1°(€2;)). We define the ALE velocity by

2(X,t) = %At(X), 2(w,t) = 2(A;7 N (2),1), te0,T), X €Qp, z €9y
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Let
(2.7) |z(z,t)|, |divz(z,t)] <c, forxzeQy, t€(0,T).

Further, we define the ALE derivative D;f = D f/Dt of a function f = f(z,t) for
x€Qand t €[0,7T] as

of

= E(Xfﬁ)a

D
Dy f(x,t) = Ef(wat)
where f(X,t) = f(A«(X),t), X € Q, and z = A;(X) € Q;. The use of the chain
rule yields the relation

Dr_or

(2:8) Dt ot

+z-V/f,

which allows us to reformulate problem (2.1)—(2.3) in the ALE form: Find u = u(z,t)
with € Q4, t € (0,T), such that

d
Ofs(u) : :
(2.9) Diu+ ; 0. z-Vu—div(f(u)Vu) =g in Q, t € (0,7T),
(2.10) u=up on 0,
(2.11) u(z,0) =u’(z), =€ Q.

3. SPACE SEMIDISCRETIZATION

For any t € [0,7] we denote by Tj,; a partition of the closure ; into a finite
number of closed simplexes with disjoint interiors. Over a triangulation 7y ¢, for
each positive integer k& we define the broken Sobolev space

H*(Q4, Tht) = {030k € HYK) VK € Tha},

equipped with the seminorm
1/2
2
|U|Hk(Qt,Th,,,) Z( Z |U|H1«(K)> )
KeTh,t

where |-| () denotes the seminorm in the space H*(K).
By F}+ we denote the system of all faces of all elements K € 7}, ;. It consists of the
set of all inner faces f}{’t and the set of all boundary faces f,ft: Fht = ]:,{’t U f,ft.
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Each I' € Fj,,, will be associated with a unit normal vector nr. By KéL) and
KlgR) € Th,t we denote the elements adjacent to the face I' € Fj ;. Moreover, for
I'eF ,f”t the element adjacent to this face will be denoted by K ISL). We shall use the
convention that nr is the outer normal to 0K, (L),

If v e H (Q, Tnt) and T € Fy 4, then v|F ,v|1(~R) will denote the traces of v on T’

from the side of elements KlgL), KISR) adjacent to I'. For I € ]-'}IL’lt we set

L R L R
(3.1) (0)r = Ft” + o), ol = ot — ol
by + hpm . 5
(3.2) An@)= % forI'e Fpy, h(T)=h,a forT e Fy,.
r

Now we introduce the space semidiscretization of problem (2.9)—-(2.11). We assume
that u is a sufficiently smooth solution of our problem. If we choose an arbitrary but
fixed ¢ € [0, 7], multiply equation (2.9) by a test function ¢ € H?(Q, Ty +), integrate
over any element K and finally sum over all elements K € 7}, ;, then we get

(33) > /Dtugodx—l- > /Zafg

KeTh KeTh
Z /Zzsa pdr — /le u)Vu)pdr = Z /ggoda?
KeTh,t

KeTh ¢ KeTh,

The individual terms in the above identity will be approximated with the aid of
the following forms. If u, € H?(Qy, Th.t), 6 € R and ¢y > 0, we set

(34) ap(u,p,t) Z /6 Wu - Vede

KeETh,t

-z / neli] + 0(3(u) V) - nrlul) S

Z / u)Vu - nrep

rerf,

+ 0B(u)Ve -nru — 08(u)Ve - nrup) dS,
(35) Ju(wot) =ew Y h(r)*l/r[u]pp]dmcw 3 h(F)*l/FmpdS,

Fe}'#t Fe}‘,ﬁt

(3.6) JB(wot) =cw 3 h(T)! /F wpds,

rerp,
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(3.7) Ap(u,o,t) = apt(u, o, t) + Bodn,t(u, o, t),

(3.8) balwpt)= — 3 /ng 1o da

KeETh,t

+ 2 [ A a0l as

rer},

+ > /H ), uf nr)pds,

rerp,

(3.9) dp(u,e,t) = Z /Zzsa pdr = — Z / z - Vu)pder,

KeETh, ¢ KeETh, ¢

(3.10) In( Z / gpdr + Bocw Z h(T /uDgodS.

KeTh,t Fe]_—B

Further, if w C R? is a measurable set and ¢, € L?(w), we shall denote

(3.11) () = / eV dz, ol = ( / lezdw>1/2-

Let us note that in integrals over faces we omit the subscript I'. We consider 6 = 1,

6 =0 and § = —1 and get the symmetric (SIPG), incomplete (IIPG) and nonsym-

metric (NIPG) variants of the approximation of the diffusion terms, respectively.

In (3.8), H is a numerical flux with the following properties:

(H1) H(u,v,n) is defined in R? x By, where B; = {n € R?; |n| = 1}, and is
Lipschitz-continuous with respect to w,v: there exists Ly > 0 such that
|H(u,v,n) — H(u*,v*,n)| < Ly(Ju —u*| + |v —v*|) for all u,v,u*,v* € R,

(H2) H(u,v,n) is consistent: H(u,v,n) = zd: fs(u)ns, u e R, n € By,

=1

(H3) H(u,v,n) is conservative: H(u,v,n) ;—H(v,u, —n), u,v € R, n € By.

4. SPACE-TIME DISCRETIZATION

In the time interval [0, 7] we construct a partition formed by time instants 0 = o <
t1 < ...<ty =Tandset I, = (tm—1,tm), Im = [tm—1,tm] and T, =ty — tm_1
form=1,..., M. Then we have

M
[O,T]:Ufm and I,,NI,=0 form#n.
m=
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M
Further, we set 7 = max 7,. For a function ¢ defined in |J I,, we denote

m=1,..., m=1

ot = p(tmt) = lim o(t), {¢}m =@tm+) — @(tm—).

t—t,,

Let p,q > 1 be integers. For any ¢ € [0,T] we define the finite-dimensional space
(4.1) Sy, ={ve L*(Q); vlx € PP(K), K € Thy, t €[0,T]}.

The approximate solution is sought in the space of piecewise polynomial functions
in time and space
(4.2)
SP1={ve L*Qr); v=rv(z,t), for each X € Qp and each m=1,..., M
the function t € I,,, — v(A¢(X),t) is a polynomial of degree < ¢ in ¢,
v(t) € Sy, for all t € I, },

where Qr = {(z,t); t € (0,T), z € }.
A function U is an approximate solution of problem (2.9)-(2.11), if U € S}’ and

(4.3) / (DU, 9)ar + An(U,0,8) + (U 0, 1) + di (U, . ) dt

m—1

(Ul an | = / (. t)dt Ype 8P m=1,.. M,
I,

(4.4) U%€ Sy, (U°—u’on) =0 Yo, €Sy,

In what follows we are concerned with the case ¢ = 1. This means that in the
time discretization by the discontinuous Galerkin method we use piecewise linear
approximations. We shall use properties (H1) and (H2) of the numerical flux H.
(Assumption (H3) is important for proving the consistency of the method, but here
it is not necessary.)

5. ANALYSIS OF THE STABILITY

In our further considerations for each ¢ € [0,T] we introduce a system of triangu-
lations {7h,¢}he(0,he), Where hg > 0. We assume that it is shape regular and locally
quasiuniform. This means that there exist positive constants cr and cg, independent
of K,T',¢ and h such that for all ¢ € [0,7]

h
(51) _K < CR for all K € 77L,t;
0K
(5.2) hKlgL) < CQhKlgR), hK1(“R) < CQhKIEL) forall T € }—f{,t.
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Under these assumptions, by [16] the multiplicative trace inequality and the inverse
inequality hold: There exist constants cps,c; > 0 independent of v, h,t and K such
that

(5.3) 0112 205) < enr(vllagoy vl ey + Rt 10122k )
ve HYK), K € Thy, t€[0,T], h € (0,h),

and

(5.4)  |vlm(x) < crhg vl rery, v € PP(K), K € Ty, t €[0,T], h € (0, ho).
Moreover, we assume that

(5.5) Tnie ={K: = A(Ko); Ko € Thol-

This assumption is usually satisfied in practical computations, when the ALE map-
ping A; is a continuous, piecewise affine mapping in Qg for each ¢ € [0, T].
In the space H(€2, 7} ;) we define the norm

1/2
(5.6) ||so||Dc,t—( T |so|%p<K>+Jh<so,sa7t>> .
KeTh:

Moreover, on 052 we define the norm

1/2
(57) HUD”DGB,t = <CW Z h_l(l“)/ |uD|2dS) = (Jf(uD,uD,t))l/Q.
r

rerF?,

If we use ¢ := U as a test function in (4.3), we get the basic identity

(5.8) /1 (DU, U)q, + Ap(U, U, t) + by (U, U, t) + dp (U, U, t)) dt

(U UE Do, = / (U )t

Im

An important step is the proof of the coercivity of the diffusion and penalty terms.

508



Theorem 1. Let

2
(5.9) cw = %CM(C] +1) for § =—1 (NIPG),
B
2
(5.10) cw = %CM(C] +1)(cg +1) for 6§ =0 (IIPG),
B
2
(5.11) cw = 12_51 emler +1)(cqg +1) for 6 =1 (SIPG).
0
Then
(5.12) / (an(U,U,t) + BoJn(U, U, t)) dt
Im

Bo Bo
> ’ 1UDe At — 5 lup|pep., dt.

m Im

Proof. 1)Letf = —1. Using assumption (2.5) and the definition of the ||-|| pg ¢+
norm, we have

(513)  an(U,U,8) + Bodn(U,U,t) > BollUl B — 3 /B(U)VU-npuDdS.
N
Fe]—‘,ﬁt

Now we have to estimate the last term on the right-hand side of (5.13). Using the
properties of the function 8 and Young’s inequality, for each k1,6 > 0 we get

> /FIB(U)VU'nrumdS@l > /F|VU||uD|dS

Fe}‘,ﬁt Fe}‘,ﬁt

Bik1 / 1 2 B10 / 2
< E — E L .
S 5 FhKIEL>|uD| ds + % FhKf“ )|VU| ds
rerp, rerp,

If we set & := By/f1 and use the definition of the form JZ, we obtain

> /F|,6(U)VU -nrup|ds

TeFp,

2% 8
11 0 2
< up, )+ 225 h ) |VU[?dS.
2ocy Tt (PP F g /aK;m K VOIS

rerF?,

Now, we express the first term on the right-hand side with the aid of the defini-
tion of the ||-|| pgp+-norm and to the second term we apply the multiplicative trace
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inequality (5.3) and the inverse inequality (5.4). We get

> /F|B(U)VU -nrup|ds

rerp,

_ Bk

2 Bo vU|2
2Boc ||UDHDGB,t + em(er +1) E | HLZ(K)

2k1
KeTh,t

If we use the inequality > HVU||2L2(K) < Ul ¢.4» which obviously follows from
KeTh

the definition of the ||-|| pg +-norm, we get

Biky
2Bpcw

Bo
lunlben.: + ok, cmler+ DU,

> /F|6(U)VU-npuD|dS<

TeFp,

Substituting back to (5.13) and integrating over the interval I,,,, we obtain

/ (ah(Ua Ua t) +ﬂ0Jh(Ua Ua t)) dt

I
Btk
2Bocw

1
> 60(1 - gealer + 1)) [ [U1pg [ Munlbes, .
2k, Ln Ln

If we set k1 = cpr(cr + 1) and use assumption (5.9), we finally get inequality (5.12),
which we wanted to prove.

2) Let 6 = 0. From assumption (2.5) and the definition of the ||-|| pg -norm, we get

an(U, U, t) + BoJn(U, U, t)
> BollUllpe,e — B Y /F|<VU>-H1“[U]|dS—51 > /F|VU-npU|dS

rerf, LeFp,
VU |+ VU]
> nlUlbe, - o X [ FEE R pjas+ Y [vuiolas).
reri b rerp, b

Now applying Young’s inequality with & > 0 separately to the first and the second
term above in round brackets and using the inequality (a + b)? < 2(a? + b?) valid for
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a,b € R, we obtain

VU + |vul?)
(5.14) /' '2 wlds+ 3 /|VU||U|dS
Fe]—" Fe]—‘B
) (IVUE | + [vu )2 dew
Y / . : as+5 Y / U] ds
2 ]-',{t ow 28 el
5
2/5 VU 12ds + = Z/ CW|U|2dS
FE]—'ft F J:ft
Z/ K@ T hm |VU(L)|2+|VU(R)|2
FE]—'I 2§CW 4

5
+ 2/25 VOIS + LU, U, 1),
FE]:B

Using the quasiuniformity of the system of triangulations, we get

615) o S / B + hyew) (VU2 + VUL 2) ds
w T'e .7-'1
1 (L))2 J
+ 350 > hK<L>|VUF [?dS + 50, U;1)

FE]—'B

CQ+1 (R) 2
< Shom szj/ K(L)|VU |2 + Dy VU %) dS

1 5
+ > /hK<L>|VU§L>|2dS+ In(U, Ut
20w rerp,
cQ +1 2
<2 ¥ hK|VU| ds + = Jh(U U,t).
26CW KeTh:

In the last inequality we have used that cg > 0 and

CQ+1<CQ+1 1 cg+1
856W = 25CW ’ 25CW = 25CW '

The multiplicative trace inequality and the inverse inequality imply that
6.16) [ el VUPAS = b VU o
oK
<em(1+ el VU2 k) = e (14 en)|U 3 -
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Now, summarizing (5.14)—(5.16) yields

(6.17) an(U,U,t) + BoJn(U, U, 1)

Bremr (T +cr)(eg +1 510
> follUpe, ~ 2@t D S e, - B0, w0,
w KeTh:

If we set 6 = %, we find that

(5.18) an(U,U,t) + BoJn (U, U, t) = BollU | Dgm

2 2 1 ].
~ 2Bfem(I+er)(cg +1) Z |U|%{1(K)—@Jh(U7U7t)'
2Boew KETh ., 2

Using assumption (5.10) for the constant ¢y and the definition of the ||-|| pg -norm,
we have

(5.19) an(U.U.0) + B n(U,U.1) > LU b,

Integrating both sides over the interval I,,,, we finally get
6200 [ @@+ s A [ UG, e
I, Im

3) Let § = 1. From assumption (2.5) and the definition of the ||-|| pg,;-norm, we get

(521) ah(U, Ua t)—’_BOJh(Uv Uv t) P> BO“UHQDG,t
25 3 [ 190 -nrlv)as

rer},

-2 Y /|VU-npU|dS—61 > /|VU-npuD|dS
rerp, 't rerp,’t
> BollUlba s

VU] + v
—251( Z/F| L |2| L ||[U]|dS+ Z/F|VU||U|dS)

FE]:}{,{, Fe}‘,ﬁt

=5 ZL|VU| lup|dsS.

rerp,
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The expression in the round brackets has already been estimated in the proof of the
previous part, see estimates (5.14)—(5.16). We have

(L) (R)
(5.22) 3 /'VUF VU e+ 3 /|VU||U|dS
T T

2

rer, Lery,

CQ—l-l 2 1)
< _
<2y /8KhK|VU| dr 4+ S (U, U,1)

KeTht
co+1 )
gCM(l‘f'C[) Q Z |U|%11(K)+—Jh(U,U,t)
2(50W KeT, 2
h,t

It follows from (5.21)—(5.22) that

(6.23)  an(U,U,t) 4 BoJn(U,U,t)
Brem(1+cr)(eq + 1)

> BollUlIDe,: — 5e Z U % (x) — B10Jn(U, U, t)
w KT
-B Y /|VU||uD|dS.
rerp, b

hot

The last term on the right-hand side can be estimated similarly to the proof of
part 1). For each k1 > 0 we get

(520) 5 Y /F|VU||uD|dS

rerp,

-1 2 B 2
<Pkt Y /FhKéL)|uD| ds+ - > /FhK§L>|VU| ds

FE]—',ft Fe}‘,ﬁt

ﬂlkl B 51 / 2
< )+ 2 S by d
p— Ji (up,up )+k1 g @ [VU|7dS

rerp,

Biky B4
< . lupllban.: + k_ch(CI +1) Z VU122 k)

KeTp,

Biky 51
luplbes,: + Tocem(er + DIUDe.q-
cw 1

Substituting back to (5.23), we obtain

<

(5.25)  an(U,U,t)+ BoJn(U,U,t)
Bieam(cr +1)(ecg +1)

>/BOHUH2DG¢_ Sc Z |U|?'-11(K) _/Blécjh(U, U,t)
w KeTh,t
Bk b1
- C—HUDH2DGB,t - kj_16M(CI + DU Be e
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If we set 0 := p/401 and kq := 46160_101\4(01 + 1), we find that
(526) ah(Uv Ua t) + ﬂOJh(Uv Uv t)

4B2cpr(cr + D(co +1 B
> BOHUH2DG,1§_ ! M( Iﬁ c )( < ) E |U|H1(K) OJ (U, U,t)
oFw K€Th,t

432 o
— —cum(er + Vllunlbap: — 5 I1UDe,s-
Bocw 4

Using assumption (5.11) for the constant cy implies that

(5.27) an(U, U, t) + BoJn(U, U, t)
Bo Bo
> BollUlpa,: — 7 > UL — — U U)
KeTh,t
Bo 0

- mHUDHQDGB,t - Z”UHQDG,t

Bo Bo
= ?”UHQDG,t HUD”DGB tr

Finally, using the definition of the ||-|| pg,+-norm and integrating over the interval I,
we get (5.12). O

Estimating the convective terms:

Theorem 2. For each ko > 0 there exists a constant ¢, > 0 such that for the
approximate solution U of problem (2.9)—(2.11) we have the inequality

628) [ mwuola <2 [ Wikt [ U1,

m m m

(The constant ¢, depends on ko, namely, c, = c2ka/ By, where ¢ > 0 is independent
of kg)

Proof. By (3.8),

(5.29) bu(UUt)=— > /ng —dx

KeTh,t s=1

=01

+Z/H dS+Z/H nr)U ds.

1"6.7-'1 FE}'B

=09

Then from the Lipschitz-continuity of the functions fs, s = 1,...,d, with the modul
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Ly > 0, the assumption that f;(0) = 0 and the Cauchy inequality, we obtain

oU
(5.30) o< > /Z|fs £l |‘ ——|ax
KeTht s
<r; ¥ / ZIUI\ |4 < LeVaU Lo Ul 7
KeTh:

Now we shall estimate o2. From the relation fs(0) = 0, s = 1,...,d, and the
consistency of property (H2) of the numerical flux H we have H(0,0,nr) = 0. Then
we can use the Lipschitz-continuity of H and get

L R L L L
ool <L 3 [P+ 0 DI01as + 2 3 [ (0871 + 0 DI as.
rer! rerp,

Using that U( ) = U(L) forT' € fh ;» the Cauchy inequality, and the relation h(T") <
2(cq +1)hk if I C 9K, we obtain

(5:31) loal <Ly 3 / U]+ UPu®)as
Fe}',{t

Ly Y [ W+ o P as
TeFp,
rerp

LH < /| (L)|2
C
h.t h,t
I R 1/2
(Z ) [ (0] + 0 >|>2ds)
TeFn,+

/2
LH (L))2 (R))2 '
2h(F)/|U 2+ u®Ras
v F;}—h,t r ' '

o

Jh(U U, t)l/Q(

CQ-l-l
cw

( S oh m/ |U§L>|2ds+hK<R)/ |U§R>|2ds>
TEFn., B r Jok{(®nr
T 1/2
ety W 1/2< 3 / hK|U|2dS)
KeT,. " oK

cw
1/2
co+1
=Ly |~ J(UUt“Q(Z hK||U||L2<aK) :
w KETht

Jh(Ua Ua t)1/2

<Ly

1/2

<Ly
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Substituting (5.30) and (5.31) into (5.29), using the Cauchy inequality and the defi-
nition of the ||| pg+-norm, we find that

|bh(U7 U, t)| < Lf\/E”U”Qt |U|H1(Qta7_h,t)

1/2
cg+1
L[ = J(UUt1/2< > hK||U||L2(aK)

KETht

cqt1 1/2
<L2d||U||Q,+L2 3 hK|U|%2(aK>>
Cw
KeTh:

X (|U|%{1(Qt,Th,,,) + Jn(U, U, t))*/?

1/2
<c||U||Da,t<|U|m+< 3 hKnUn%z(aK)) )

KeTht

where ¢ = (max{Lfc d, L% (cq + 1)/Cw})1/2. Furthermore, the multiplicative trace
inequality and the inverse inequality imply that

> hklUlGe@ry <enr Y, hx(lUl2ao Ul o) + B U7 20)
KeTh: KeTh:

Semler+1) Y U2y = emler + DU,
KeTh

Hence, from this relation and Young’s inequality we get

1/2
b (U, U, 8)| < c|U|Dc,t<|U|m n ( 3 hK|U|%z<aK>) )

KeTh:

Bo ko Bo
< allUlpe.dUlle, < =Ulbe,: + G NUNE, = =IUlbg.: + collUI3,
ko Bo ko

where ¢; = c(l + Vem(er + 1)), ko > 0 and ¢, = c3ko/Bo. Integrating over the
interval I,,,, we finally have (5.28). O

Theorem 3. There exists a constant c¢q > 0 such that for the approximate
solution U of problem (2.9)—(2.11) we have the inequality

(5.32) | v o< fo / 1010+ 5 O,

Im
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Proof. By (3.9), (2.7) and the Cauchy and Young’s inequalities,

| @ uaa<e [ ¥ /Z|U|‘a—‘dxdt

m 7n KeT

<e / Ul |U 1 627yl
I,
2

50 c
<c /IIUIIQfIIUIIDtht 1UDa, dt + 5= U I3, dt,
2 /., 2fo

Im

which is (5.32) with ¢4 = 2. O
Estimating the right-hand side form:

Theorem 4. For the approximate solution U of problem (2.9)—(2.11) and any
ks > 0 we have

1
639 [ @<y [ ol + 10 @

m m

5o
+huks [ lunlbescdt+ 22 [ U1t

Im

Proof. Tt follows from (3.10) that

lIn (U, )| = '(Q,U)Qt-FﬂoCW Z h(F)l/FuDUdS'.

reF?,

After using the Cauchy inequality for the first term on the right-hand side and
applying Young’s inequality with k3 > 0 to the second term, we find that

(9,U)aq, + Bocw Z h(T)l/FuDUdS‘

rerp,

1 _
< Ul + NUIR) + Boksew S bk / fup ? dS
FE]—'B

=llup HZDGB,t

+—cW > h‘(L)/F|U|2dS.

FE]—'B

§J;L(U7U7t)<”U”2DG,t
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Hence,

Bo

1
18] < 5(lgllé, +1T1&,) + Boksllunlbas, + 7 HU”DG >

from which we get (5.33) by integrating both sides over the interval I,,,. O
In what follows, we are concerned with the derivation of inequalities based on

estimating the expression [, (D,U,U)q, dt.

Lemma 1. There exist constants c1,cy > 0 independent of h, 7, m, M and U
such that

_ _ Bo
(5.34) U8, = 1Umill,  + {Umalld, |+ 2/, 1UDe At

<m(Zumaw+z|uﬂamﬂ0+@[|v%ﬂt

m m

Moreover, for any d; > 0 we have

+ BO 2
635 UL, + 1V, + 5 [ IUIbe.a

<q(ﬂumam+z mm%mmw)+@[|U%ﬂt

m m

1 _
+ Vil + LR,
: |

Proof. We have

(5.36) / (DU, U)g, dt = > / (DU, U) g dt.
I, I

m KeTh:

By virtue of assumption (5.5), the Reynolds transport theorem (see, e.g., [22] or [1])
and relation (2.8), we get

T Uz(x t)dx

2(x
_ /K (# + z(z,t) - V(U?(2,t)) + U%(x,t) div z(x,t)) dx

B Ul(z,t) 9 .
= /K (2U(x,t)( 5t + z(z,t) - VU(x,t)) + U*(z,t)div z(x,t)) dz
=2(DU,U)k + (U?,div 2)k
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Integration over I,,, and summing over K € 7T, together with assumption (2.7)
imply that

1 d 1
(5.37) /(DtU,U)Qtdtz—/ —/ U?dx dt——/ (U?,div 2)q, dt
Inm 2 Jr,, \dt Jo, 21,

1. 1 1 .
= 510l = 500l — 5 [ (WP dive)a,

m

1, 1 1
> G Wall, — SIUS R, ges [ WU, d

By a simple manipulation we find that

{UYm-1, U5 1,

‘m—1

1
=50, + T malls, )-

Now we have already estimated all terms in our basic identity (5.8). Using all

Ul

m—1 —1 1

these estimates above, after some manipulation we get (5.34).
Another useful relation reads

-1

(538)(/‘chzchtdt+({U}mflﬁzz,nawm
I,

1

1, 1 .
5u%%w—5uq1%%4—5AfWAw@mm

HUni M8, = U U Z)e,

‘m—1

1 _ 1 _ 1
(10, + 510503, ) = Uaen U a,, = 50 | 101, d.
2 92 m—1 27 ).

WV

Then, analogously as above, using (5.38) and Young’s inequality for the expression
w._ Ut

m—1"Ym-—1

)o,. ., we get estimate (5.35). O
As we see, it is necessary to estimate the term [, [|U||§, dt. We start with proving

some useful inequalities. As was mentioned above, we consider the case ¢ = 1.

Lemma 2. There exist constants L1 and M such that

L,

(5.39) Vsl + 1003, = 2 [,
M,
(5.40) U3 allE,, < — | U, dt.
m—1 Tm I

m

Proof. Let ¢ € P1(0,1) be a polynomial depending on ¥ € (0,1) of degree at
most one. Since the expressions

1 1/2 1 1/2
(;«f(l)) , (/0 ¢2d¢)
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are equivalent norms in the finite dimensional space P1(0, 1), there exist constants
L1, My > 0 such that

1

! !
L1/0 ¢2dz9<l§_;¢2<l><Ml/o ¢ do.

Putting ¥ = (t — t;,—1)/7m for t € I, and using the substitution theorem, we find
that

L
(5.41) P (tme1) + P (tm) = —1/ p*dt,
Tm J1,,
M,
(5.42) pmwnsé/p%t
Tm I

m

for all p € P(I,,). We set

l~]m_1 = U;g_l oA, ,: Qo — R,

Um = U;L o Atm: Q0 — Ra
U(t) :=U(t) o Az Qo — R.

Then U,y = U(tm-1), Um = Ul(tym) and U(X,-) € PY(I,,) for X € Q.
For all X € Qq, using (5.41), we get

- - i -
(5.43) U(X, t—1))? + [UX )2 = =2 [ |U(X, 8)] dt.
Tm JI,,
Let us use the notation DAX)
X, t) = det =222
J(X,1) = det =22

for the Jacobian determinant of the mapping A;. Then, by virtue of the regularity
of the mapping 4;, we have

(5.44) 0<C; <|J(X, )| <CF VX €Qo, tel,, m=1,...,M,

where C'7, C’j are constants independent of X, ¢, and m.
Now, using (5.43) and (5.44), we get

U(X, b)) P1T (X )]+ U (X )P T (X )|
> C}(|U(X, tm—1)|2 + |U(X, tM)|2)

> c;—/ |U(X, 1) dt

Tm I

P et U(X,t)[2|J(X, )| dt.
e T E ]
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Integrating over the domain g, setting L, = El% and using the Fubini theorem,
J
we find that

/(Iﬁ(X,tmfl)IQIJ(thmA)l+|(7(X7tm)l2|J(X7tm)l)dX

> D (/ U(X, )T (X, t)|dt) dx
Tm JQq I
— Ll

Tm

I (/QO (X, )17 (X, 1)| dX) dt.

Finally, the substitution theorem gives

L
/ Uz, )2 da +/ V(e )2 de > 22 ( |U(a:,t)|2dx) dt.
Q Q I Q

T
m—1 tm m

which is (5.39). Inequality (5.40) can be proved analogously with the aid of (5.42).
O

Now we can prove the theorem about estimation of the term [, [|U[|g, dt.

Theorem 5. Under the assumption ¢ = 1 there exists a constant ¢* (depending
on co and L) such that

2c; 8M; _
6:45) [ NIt < [ (ol + Nunlbos,) dt + 22t mnlUn B,
m m 1
holds, if
(5.46) 0<7m<ch.

Here ¢ and co are the constants from Lemma 1.

Proof. From (5.35), (5.39), and (5.40) we get
Ly 2 Bo 2
A7) (2 —ea) [ W a4 [ W

1, M,
<ar [ (ol + lenlibasdt+ 5105l +62 [ VIR, at

m

which can be written in the form

(5.48) (Ll — 51M1 — CQTm)/ HUH?‘Q dt + %/I HUHQDG,t dt

T _
<ermm / (g, + lulbn) dt + 10z 15, -
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Let L1 — 61 M7 = %Ll and co7y, < iLl. If we set 01 = L1/4M; and assume that

L
0<1y, <c:= —1,
4(32
using (5.48) we find that
Ly Bo
D i ar e 2 [ e
4 M,
<errn [ (gl + lunlben) dt + Sl Un ol
from which we immediately get (5.45). O

To prove our main theorem on the stability, we shall apply the discrete Gronwall
lemma.

Lemma 3 (Discrete Gronwall lemma). Let X, G, by and ¢, where m =
1,2,..., be non-negative sequences and let the sequence a,, be non-decreasing. If

To + ¢o < agp,
m—1

T + Cm < am—l—bej form > 1,
7=0

then we have

m—
T+ Cm < a H (1+b;) form > 0.

The proof can be carried out by induction.
Finally, we come to our main result on the unconditional stability of the STDGM.

Theorem 6. Let ¢ =1 and 0 < 7,,, < ¢*. Then there exists a constant ¢ > 0 such
that

m m
_ Bo
(5.49) UG+ H{Uj—l}H?ztj_l + 72 . 1UDe ;dt
= =i,

(UO [E Z/ Rjdt> m=1,...,M, he(0,hg),
j=171

J

where 5
c2
Ry =i (14 7)ol + lunlban..):
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Proof. Writing j instead of m in (5.34) and using (5.45), we obtain

_ _ Bo
(5:50) U7 I3, — U7, + KUYl + 5 [ U, dt

j i—1 j=1 2 I;
262 8M1 —

<er(1+72mm) [ (gl + luplbas.) dt + e HlIU 13,
Ll Ij Ll i—1

8My
= [ Rydt+co—mgri|U |3, -
/Ij J L% Y =1l

Let m > 1. Summing (5.50) over all j =1,...,m, we get
-2 - 2 Bo - 2
ORI + S MO -1l + 25 [ 101, at
j=1 j=1 J
m—1 m
_ 8M; _
<105 I+ gt Y Uy I, + 3 [ Rt
Lj=o0 B

Using the discrete Gronwall inequality setting

w0 = ao = |Uy [I3,,, <0 =0,

om = 1Ug 2.,

em =D U=, +5 >0 ’ 1UlIDe s dt,
j=1 j=1"1

am = U5 I3, + Z/j R;dt,
j=1"71m

8M
bj:CQL—QlTj+1, ij,l,...,m,
1
yields
m 6 m
_ 0
(5.51) U7+ > U -1} Ig,,, + > Z/J IUlDe,; dt
j=1 j=1"14i

u s 8M
_ 1

< (|Uo I+ /1 R; dt) I1 (14—0277”1).
j=171i j=0 1

Finally, (5.51) and the inequality 1 + o < exp(o) valid for any o > 0 immediately
yield (5.49) with the constant ¢ := exp(cy - 8M; L] *T). O
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6. CONCLUSION

The subject of the paper is the stability analysis of the space-time discontinuous
Galerkin method for the numerical solution of an initial-boundary value problem
in a time-dependent domain. A parabolic equation with nonlinear convection and
diffusion, equipped with initial and Dirichlet boundary conditions, is formulated by
the ALE method. The space discretization is carried out by the SIPG, IIPG, and
NIPG versions of the discontinuous Galerkin method using piecewise polynomial
approximations of degree p > 1. In time the discontinuous Galerkin piecewise linear
discretization is used. The main result is the proof of unconditional stability of the
method.

The subject of a further research will be the stability analysis for higher-order
time discontinuous Galerkin discretization and the derivation of error estimates.
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