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K Y B E R N E T I K A — V O L U M E 5 1 ( 2 0 1 5 ) , N U M B E R 3 , P A G E S 4 5 7 – 4 6 8

ON DECISION-MAKING IN POSSIBILITY THEORY

Jiřina Vejnarová

We present an alternative approach to decision-making in the framework of possibility theory,
based on the idea of decision-making under uncertainty. We utilize the fact, that any possibility
distribution can be viewed as an upper envelope of a set of probability distributions to which
well-known minimax principle is applicable. Finally, we recall also an alternative to the minimax
rule, so-called local minimax principle. Local minimax principle not only allows sequential
construction of decision function, but also appears to play an important role exactly in the
framework of possibility theory due to its sensitivity. Furthermore, the optimality of a decision
function is easily verifiable.

Keywords: possibility measures and distributions, upper envelopes of probability distri-
butions, decision functions, minimax principle

Classification: 91B06,62C20

1. INTRODUCTION

The problem of decision-making arising from everyday practice belongs to the oldest
problem types studied by mathematicians from 17th century. Three types of decision-
making are recognized: under certainty, under risk and under uncertainty. While the
first type is rather simple and (from the mathematical viewpoint) uninteresting, the
remaining two have been studied from different points of view. During this period
several optimality principles were adopted, as e. g. Bayesian, maximum-likelihood or
minimax principles.

However, the emergence of new mathematical tools as alternatives to probability
theory during the last fifty years opened a lot of new problems. Probability theory,
nevertheless, has often served as a source of inspiration for the development of these
calculi. Paper [5] by Ivan Kramosil belongs to works of this kind. He presented a formal
possibilistic analogy of both Bayesian optimal and minimax decision functions in a highly
abstract framework of lattice-valued possibility measures.

In this paper, we will also deal with decision-making in possibility theory, however we
adopt totally different approach. We will utilize the fact that any possibility distribution
can be associated with a set of probability distributions dominated by it and find an
optimal decision function in possibility theory using results from probabilistic framework.
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The paper is organized as follows: after a brief overview of basic concepts from
possibility theory (Section 2) and decision-making in probabilistic framework (Section 3)
in Section 4 we will introduce possibilistically optimal decision function and in Section 5
locally possibilistically optimal decision function and study their relationship.

2. BASIC CONCEPTS

The purpose of this section is to give an overview of basic concepts and notation con-
cerning possibility measures and distributions and credal sets dominated by them.

2.1. Possibility measures and distributions

Let X be a finite set called universe of discourse which is supposed to contain at least
two elements. A possibility measure1 Π is a mapping from the power set P(X) of X to
the real unit interval [0, 1] satisfying the following requirements:

(i) Π(∅) = 0

(ii) for any family {Aj , j ∈ J} of elements of P(X)

Π

⋃
j∈J

Aj

 = max
j∈J

Π(Aj).

Π is called normal if Π(X) = 1. Within this paper we will always assume that Π is
normal. Normality is not only a pleasant technical property, but it also allows a sensible
probabilistic interpretation of possibility measures, as we shall see in the next paragraph.

For any Π there exists a mapping

π : X −→ [0, 1],

called a distribution of Π, such that for any A ∈ P(X),

Π(A) = max
x∈A

π(x).

This function is a possibilistic counterpart of a density function in probability theory.
Considering an arbitrary possibility distribution π defined on a product universe of

discourse X×Y, its marginal possibility distribution on X is defined by the equality

πX(x) = max
y∈Y

π(x, y)

for any x ∈ X.

1In [5] possibility measures are defined in a more general way: instead of the power set P(X) a
complete field is considered and unit interval [0, 1] is substituted by a complete lattice.
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2.2. Upper envelopes of sets of probability distributions

With any possibility measure Π on X, one can associate a class of probability measures
M(Π) on X dominated by it, i. e.

M(Π) = {P : P (A) ≤ Π(A) ∀A ∈ P(X)},

called a credal set [1].
As proven in [3], the normality of Π is equivalent not only to the fact thatM(Π) 6= ∅,

but also that Π is an upper envelope, i. e. that for any A ∈ P(X) there exists P ∈M(Π)
such that P (A) = Π(A).

Nevertheless, within this contribution we will deal with possibility distributions rather
than with measures and therefore also with credal sets of probability distributions

M(π) = {p : p(x) ≤ π(x) ∀x ∈ X}.

The following example illustrates how M(π) looks like in the most simple, one-
dimensional case.

Example 2.1. Let X be a binary variable with values in X = {x, x̄} and π(x) =
1, π(x̄) = 0.6 its possibility distribution. Then

M(π) = {p : p(x) = α ∈ [0.4, 1], p(x̄) = 1− p(x)}

is a credal set of probability distributions dominated by π. As π is normal, it is also the
upper envelope of M(π).

3. DECISION-MAKING IN PROBABILITY THEORY

This section is devoted to basic concepts from decision-making in probabilistic frame-
work.

3.1. Decision functions and their optimality

Let X1, . . . , Xn be a set of random variables with values in X1, . . . ,Xn (|Xi| < ∞,
i = 1, . . . , n), respectively. A decision function is defined as a mapping

d :×n

i=1 Xi −→ A,

where A is a finite set of possible alternatives (decisions). Let us assume, at this moment,
that we know2 the probability distribution p defined on the Cartesian product

×n

i=1 Xi ×A.

To simplify the notation we will denote

X =×n

i=1Xi.

2Decision-making under such considerations is usually called under risk [4].
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Let D(X,A) denote the set of all decision functions on X with values in A. If there is
no doubt about X and A, we will simply write D instead of D(X,A).

Let us define an error of decision d(x) (for any x ∈ X) by the equality

ep(d(x);x) =
∑

a∈A:a6=d(x)

p(x, a),

and an expected error of decision function d as

ep(d) =
∑
x∈X

ep(d(x);x) =
∑

(x,a)∈X×A

p(x, a)(1− δ(d(x), a)),

where δ(u, v) = 1 if u = v and δ(u, v) = 0 otherwise.
Our aim is to provide such decisions, which minimize the expected error. Knowing

the distribution p we choose a decision function dp satisfying the inequality

ep(dp) ≤ ep(d)

for every decision function d ∈ D(X,A). Function dp is decision function optimal with
respect to p.

3.2. Decision-making under uncertainty

Situations when the precise probability distribution is known are very rare. Usually we
only know that the correct distribution p belongs to some class of distributions P. In
these situations different principles (e. g. maximum entropy principle, minimax principle
etc.) are applied. In this paper we will deal with minimax principle described bellow.

If we choose decision function d ∈ D(X,A), its expected error can be as large as

max
p∈P

ep(d). (1)

If we wish this maximum expected error to be the least possible, we have to choose such
d that minimizes this expression. Then, we get so-called minimax rule

min
d∈D

max
p∈P

ep(d).

The decision function optimal with respect to minimax rule3 will be denoted

d∗ ∈ arg min
d∈D

max
p∈P

ep(d).

In the next part of this paper we will call (1) potential error of decision function d
with respect to P and denote poterror(d; P).

3Let us note that this decision function need not be unique.
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4. POSSIBILITY DISTRIBUTIONS AND DECISION FUNCTIONS

As discussed already in Section 2.2, any possibility distribution π can be associated with
a set of probability distributions M(π) dominated by it. Therefore, minimax principle
can be applied to M(π).

4.1. Possibilistically optimal decision function

Let us illustrate the application of minimax rule to a credal set M(π) on a simple
example.

Example 4.1. Let X = {x1, x2}, A = {a1, a2} and the possibility distribution on X×A
be defined by Table 1.

π(x, a) a1 a2 π(x)
x1 1 .2 1
x2 .5 .8 .8

π(a) 1 .8

Tab. 1. Possibility distribution on X×A.

This possibility distribution is upper envelope of the credal set contained in Table 2,
where α, β ∈ [0, 0.8], γ ∈ [max(0, α− 0.5, β − 0.2),min(β, α)].

p(x, a) a1 a2 p(x)

x1 1− α− β + γ β − γ 1 − α
x2 α− γ γ α

p(a) 1 − β β

Tab. 2. Probability distributions on X×A dominated by π.

On X we can define the following four decision functions:

d1(x1) = a1, d1(x2) = a1,

d2(x1) = a1, d2(x2) = a2,

d3(x1) = a2, d3(x2) = a1,

d4(x1) = a2, d4(x2) = a2.

The expected and potential errors of particular decision functions are contained in Ta-
ble 3. It is easy to realize that the maximum of d1 is reached for β = 0.8, while the
maximum of d4 for β = 0. Function d3 achieves its maximum value for α, β, γ = 0, there-
fore it remains to find maximum for d2. This function maximizes for any α ∈ [0.5, 0.8],
β = α− 0.3, γ = α− 0.5; in this interval it attains value 0.7.

Therefore, the optimal decision function with respect to the minimax principle is d2.
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Decision Exp. error Pot. error
d1 β .8
d2 α+ β − 2γ .7
d3 1− α− β + 2γ 1
d4 1− β 1

Tab. 3. Expected and potential errors of decision functions.

The above mentioned idea leads to the following definition of possibilistically optimal
decision function.

Definition 4.2. Let π be a possibility distribution and M(π) a credal set dominated
by π. We will call decision function dπ possibilistically optimal if

dπ ∈ arg min
d∈D

max
p∈M(π)

ep(d).

To find dπ means to find maximum of each decision function and then to choose
a function (it need not be unique) with the smallest maximum. The first part of this
task is rather difficult (as we have already seen even in Example 4.1), because usually
we have to find a constrained extreme of each decision function.

To simplify the procedure, let us utilize the fact that we are dealing with special type
of credal sets — sets, the upper envelope of which are possibility distributions.

4.2. Bounds of the error of a decision function

With any possibility distribution and any decision function we will associate two (gen-
erally different) errors: A minimal error of decision function d defined as

eπ(d) = max
x∈X

max
a∈A:a6=d(x)

π(x, a) = max
(x,a)∈X×A

π(x, a)(1− δ(d(x), a)), (2)

and a maximal error of decision function d defined by the formula

eπ(d) = min

 ∑
(x,a)∈X×A

π(x, a) (1− δ(d(x), a)) , 1

 .

The following theorem proves the adequacy of the names of these errors.

Theorem 4.3. Let π be a possibility distribution on X ×A and M(π) be the corre-
sponding credal set. Then:

(i) for any decision function d : X→ A

poterror(d;M(π)) ∈ [eπ(d), eπ(d)],
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(ii) if, furthermore, d ≡ ai then

poterror(d;M(π)) = max
a∈A:a6=ai

πA(a),

where πA is marginal distribution of π on A.

P r o o f .

(i) First, let us prove that poterror(d;M(π)) ≥ eπ(d). Since π is the upper envelope of
M(π), then for any value of π(x, a) there exists a probability distribution p′ such
that p′(x, a) = π(x, a). Particularly, it holds also for maximal π(x, a) such that
d(x) 6= a. Therefore,

eπ(d) = max
(x,a)∈X×A

π(x, a)(1− δ(d(x), a)) = max
(x,a)∈X×A

p′(x, a)(1− δ(d(x), a))

≤
∑

(x,a)∈X×A

p′(x, a)(1− δ(d(x), a)) ≤ poterror(d;M(π)).

Now, let us prove that ep(d) ≤ eπ(d) for any p ∈M(π). Any p(x, a) ≤ π(x, a) and
therefore also∑

(x,a)∈X×A

p(x, a)(1− δ(d(x), a)) ≤
∑

(x,a)∈X×A

π(x, a)(1− δ(d(x), a)).

The remaining inequality ∑
(x,a)∈X×A

p(x, a)(1− δ(d(x), a)) ≤ 1

is straightforward.

(ii) The expected error of a decision function d ≡ ai is

ep(d) =
∑

a∈A:a6=ai

p(a) = P (A \ {ai}).

Its maximum is (since π is the upper envelope of M(π)) equal to

Π(A \ {ai}) = max
a∈A:a6=ai

π(a)

by definition.

�

From this proposition we immediately get the following corollary.

Corollary 4.4. Let π be a possibility distribution on X × A and M(π) be the cor-
responding credal set. If, furthermore, there exists (x, a) such that π(x, a) = 1 and
d(x) 6= a, then

poterror(d,M(π)) = 1.
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P r o o f . The result follows directly from the application of (i) of Theorem 4.3 to π
(since from (2) we have that eπ(d) = 1). �

Although both the proposition and its corollary are rather simple, they are quite
helpful, as they allow us to obtain maxima of expected errors of a number of particular
decision functions and at least an estimate of the rest of them, which can help us to find
the optimal decision function, as can be seen from the following simple example.

Example 4.5. (Example 4.1 continued) Using (ii) of Theorem 4.3, we get

poterror(d1;M(π)) = π(a2) = 0.8

and
poterror(d4;M(π)) = π(a1) = 1

(to the same conclusion we would come if we used Corollary 4.4 instead of (ii)). Using
Corollary 4.4 of Theorem 4.3 one gets

poterror(d3;M(π)) = 1.

For decision function d2 we can use neither (ii) of Theorem 4.3 nor Corollary 4.4, but
from (i) we get

poterror(d2;M(π)) ∈ [max(π(x1, a2), π(x2, a1)),min(π(x1, a2) + π(x2, a1), 1)],

i. e. poterror(d2;M(π)) ∈ [0.5, 0.7]. Comparing all potential errors (or their bounds),
we immediately see that dπ = d2 is the possibilistically optimal decision function (as
expected). Therefore, it is not necessary to look for maxima of particular decision
functions.

4.3. Insensitivity of minimax rule in possibilistic framework

Unfortunately, one substantial problem appears when for one x ∈ X there exist two
alternatives ai, aj , such that ai 6= aj and π(x, ai) = π(x, aj) = 1, as demonstrated by
the following simple example.

Example 4.6. Let X = {x1, x2}, A = {a1, a2} and the possibility distribution on X×A
be defined by Table 4.

π(x, a) a1 a2 π(x)
x1 1 1 1
x2 .5 .8 .8

π(a) 1 1

Tab. 4. Possibility distribution on X×A.
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This possibility distribution is the upper envelope of the set of probability distribu-
tions contained again in Table 2, but in this case α ∈ [0, 0.8], β ∈ [0, 1],
γ ∈ [max(0, α− 0.5, α+ β − 1), α].

Let di, i = 1, . . . , 4 be defined as in previous examples. The expected and potential
errors of decision functions are contained in Table 5.

Decision Exp. error Pot. error
d1 β 1
d2 α+ β − 2γ 1
d3 1− α− β + 2γ 1
d4 1− β 1

Tab. 5. Expected and potential errors of decision functions.

Therefore it is evident that we cannot distinguish among these four decision functions.

5. LOCALLY OPTIMAL DECISION FUNCTIONS

To solve the above-mentioned problem, let us recall so-called local minimax principle,
already defined in [6].

5.1. Local minimax principle

Let us again assume that we only know that the correct distribution belongs to some
class of distributions P. If we make a decision d(x) = a, the value of the corresponding
error can be as large as

max
p∈P

ep(a;x). (3)

If we wish this maximum error to be the least possible one, we have to choose such
a that minimizes this expression. Then we get a local minimax rule

min
a∈A

max
p∈P

ep(a;x).

Any optimal decision function (again, it need not be unique) with respect to this rule
will be denoted d∗ and called local minimax decision function.

Analogous to Subsection 3.2 we call (3) potential error of decision a in x with respect
to P and denote poterror(a;x; P).

It is evident that this approach has one big advantage — we need not to compare
the maxima of all decision functions, since we construct the optimal decision function
step-by-step for each value of x ∈ X.

5.2. Error of locally optimal decision function in possibilistic framework

Let us apply the local minimax principle to situation described in Example 4.6.
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Example 5.1. (Example 4.6 continued) For x1 we can choose either a1 or a2 — in both
cases the error can be as large as 1. If we choose for x2 the alternative a1 the potential
error is 0.8, while for the alternative a2 only 0.5. Therefore, both d2 and d4 are locally
optimal decision functions with respect to M(π)(but d1 and d3 are not).

The following theorem will help us to find the optimal decision function with respect
to the local minimax principle.

Theorem 5.2. Let π be a possibility distribution on X ×A and M(π) be the corre-
sponding credal set. Then for any decision d(x) = a

poterror(a;x;M(π)) = max
ai∈A:ai 6=a

π(x, ai).

P r o o f . This proposition can be proved completely analogously to (ii) of Theorem 4.3.
The error of decision d(x) = a is

ep(a;x) =
∑

ai∈A:ai 6=a

p(ai, x) = P ({x} ×A \ {a}).

Its maximum is (since π is the upper envelope of M(π)) equal to

Π({x} ×A \ {a}) = max
ai∈A:ai 6=a

π(x, ai)

by definition. �

Thanks to Theorem 5.2 we are ready to define the locally optimal decision function
of possibility distribution as follows.

Definition 5.3. Let π be a possibility distribution and M(π) a credal set dominated
by π. We will call decision function dπ possibilistically locally optimal if for any x ∈ X

dπ(x) ∈ arg max
a∈A

π(x; a).

Therefore, it is extremely simple to find possibilistically locally optimal decision func-
tion: for each x we choose such a for which π(x, a) is maximal.

5.3. Relationship between dπ and dπ

Let us note, that there is no direct relationship between errors and expected errors
of “usual” and locally optimal minimax decision functions. It means that a function
optimal with respect to minimax rule need not be optimal with respect to local minimax
rule and vice versa as can be seen from the following simple example.

Example 5.4. Let X = {x1, x2}, A = {a1, a2} and the possibility distribution on X×A
be defined by Table 6.

This possibility distribution is the upper envelope of the set of probability distribu-
tions contained again in Table 2, in this case α, β ∈ [0, 0.8], γ ∈ [max(0, α− 0.5, α+ β −
1), α].
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π(x, a) a1 a2 π(x)
x1 1 .8 1
x2 .5 .8 .8

π(a) 1 .8

Tab. 6. Possibility distribution on X×A.

Decision Exp. error Pot. error
d1 β .8
d2 α+ β − 2γ 1
d3 1− α− β + 2γ 1
d4 1− β 1

Tab. 7. Expected and potential errors of decision functions.

On X we can define four decision functions with values in A as in previous exam-
ples. The expected and potential errors of particular decision functions are contained in
Table 7. It is easy to realize that possibilistically optimal decision function dπ is d1.

On the other hand, using local minimax principle, we get dπ(x1) = a1 (since by
Theorem 5.2

0.8 = poterror(a1;x1;M(π))
≤ poterror(a2;x1;M(π)) = 1)

and dπ(x2) = a2 (since

0.5 = poterror(a2;x2;M(π))
≤ poterror(a1;x2;M(π)) = 0.8

by the same theorem). Therefore, dπ = d2.

6. CONCLUSIONS

In this paper, we dealt with decision-making in possibility theory. We presented an
approach alternative to that introduced by Kramosil [5], based on a simple idea that any
possibility distribution can be associated with a credal set of probability distributions
dominated by it. To this credal set minimax principle can be applied and a decision
function optimal with respect to it is called possibilistically optimal decision function.

However, since minimax principle is not able to distinguish, in some cases, among
decision functions, in particular within the framework of possibility theory, we recalled
also local minimax principle introduced already in [6] and realized that it has three
advantages in comparison with “classical” minimax principle:
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• it is, in general, much simpler to construct the optimal decision function (step-by-
step for each value of domain);

• it is possible to better distinguish among decision functions, at least in possibility
theory;

• it is extremely simple to find possibilistically optimal decision function.
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