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Abstract

Given a finite additive abelian group G and an integer k, with 3 ≤ k ≤
|G|, denote by Dk(G) the simple incidence structure whose point-set is G
and whose blocks are the k-subsets C = {c1, c2, . . . , ck} of G such that
c1 + c2 + · · ·+ ck = 0. It is known (see [2]) that Dk(G) is a 2-design, if G
is an elementary abelian p-group with p a prime divisor of k. From [3] we
know that D3(G) is a 2-design if and only if G is an elementary abelian
3-group. It is also known (see [4]) that G is necessarily an elementary
abelian 2-group, if D4(G) is a 2-design. Here we shall prove that D5(G)
is a 2-design if and only if G is an elementary abelian 5-group.

Key words: Conformal mapping, geodesic mapping, conformal-
geodesic mapping, initial conditions, (pseudo-) Riemannian space.
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1 Introduction and preliminary results

Let v, k, t, λ be positive integers with v > k > t. By a t−design with parameters
v, k, λ (or shortly: a t − (v, k, λ) design) one understands a pair D = (P,B)
where P is a finite set with v elements (called points) and B is a set of subsets
of P called blocks such that each block contains k points and any t distinct
points are contained in exactly λ common blocks (cf. [1], [5]). We say that a
t− (v, k, λ) design D = (P,B) is an additive design, if there are a finite abelian
group G, written additively, and an injective mapping χ : P → G with the
property that χ(c1)+χ(c2)+ · · ·+χ(ck) = 0 whenever C = {c1, c2, . . . , ck} ∈ B
is a block of D = (P,B) (cf. [2]). For every finite additive abelian group G and
for any integer k ∈ {3, 4, . . . , |G| − 1} we denote by Dk(G) the simple incidence
structure the point-set of which is G and the blocks of which are the k-subsets
C = {c1, c2, . . . , ck} of G such that c1+c2+· · ·+ck = 0. Note that each 2-design
of the form Dk(G) is an additive 2-design.
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Throughout this paper we shall be concerned only with finite abelian groups,
written additively. If G is such a group, the notation that follows will remain
fixed: |G| is the order of G; 〈a〉 is the subgroup of G generated by a ∈ G; if
m is a positive integer, mG and Gm are the subgroups of G given by mG =
{mg | g ∈ G} and Gm = {g ∈ G | mg = 0}; if |G| > 4 and if x, y are distinct
elements of G, Nx,y denotes the number of pairs {c, C} where c ∈ G\{x, y} and
C is a block of D5(G) through {x, y, c}.
We state now some preliminary results.

Lemma 1 If D5(G) is a 2−(|G|, 5, λ) design for some λ, then Nx,y is a constant
(equal to 3λ).

Proof Suppose D5(G) is a 2− (|G|, 5, λ) design for some λ. Then there are λ
blocks of D5(G) through any given two distinct elements x, y ∈ G; on the other
hand, each block of D5(G) through {x, y} contains exactly 3 points distinct from
x, y. Therefore Nx,y = 3λ and the Lemma 1 is proved. �

Proposition 1 D5(G) is not a 2-design if one of the statements below is true:

1) G is an elementary abelian 2-group;

2) G is direct sum of cyclic groups of order 4;

3) G is direct sum of groups of order 2 and cyclic groups of order 4;

4) G contains just one involution and 2G is an elementary abelian 3-group.

Proof We may assume that G has order greater than 4.
1) Suppose G is an elementary abelian 2-group of order n = 2ν ≥ 8. Let

g ∈ G, g 	= 0 ∈ G and let x ∈ G \ {0, g}. We show that N0,g 	= Nx,g and hence,
by Lemma 1, D5(G) is not a 2-design. There are no blocks of D5(G) through
{0, g, x, g+x}, however {0, g, x} may be extended to a block {0, g, x, y, g+x+y}
for every y ∈ G \ {0, g, x, g + x}. Therefore

N0,g = (n− 2)
n− 4

2
.

There are no blocks of D5(G) through {g, x, g + x}, however there are n−4
2

blocks through {0, g, x} and n−6
2 blocks through {x, g, z} for any given z ∈

G \ {0, g, x, g + x}. Therefore

Nx,g =
n− 4

2
+ (n− 4)

n− 6

2
.

From n 	= 4 it follows N0,g 	= Nx,g and hence D5(G) is not a 2-design.
2) Suppose G is direct sum of ν ≥ 2 cyclic groups of order 4. So G is a

finite abelian group of order n = 4ν ≥ 16 and 2G = G2 is an elementary abelian
2-group of order 2ν ≥ 4.
Let a ∈ G2, a 	= 0 and let b ∈ G4 \G2. We show that N0,a 	= N0,b and hence,

by Lemma 1, D5(G) is not a 2-design.
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If x ∈ G2 \ 〈a〉, there are no blocks of D5(G) through {0, a, x, a + x}; if
y ∈ G \G2 with 2y 	= a, any block of D5(G) through {0, a, y} does not intersect
{a− y,−y, a+ 2y}. These facts imply:
if g ∈ G with 2g = a, then (g ∈ G \ G2 and) there are n−4

2 blocks of D5(G)
through {0, a, g};
if g ∈ G \G2 with 2g 	= a, there are n−6

2 blocks of D5(G) through {0, a, g};
if g ∈ G2 \ 〈a〉, there are n−4−|G2|

2 blocks of D5(G) through {0, a, g}.
Therefore

N0,a = |G2| · n− 4

2
+ (n− 2 |G2|) · n− 6

2
+ (|G2| − 2) · n− 4− |G2|

2

can be written as

N0,a = 3 |G2| − 1

2
|G2|2 + n2 − 8n+ 8

2
. (1.1)

There are no blocks of D5(G) containing the group 〈b〉 = {0, b, 2b,−b};
if g ∈ b + G2 with b 	= g 	= −b, there are no blocks of D5(G) through {0, b, g,
−b− g};
if 2b 	= g ∈ G \ b + G2, any block of D5(G) through {0, b, g} does not meet
{3b− g, 2b− g, 2g − b}.
These facts guarantee that:

n−2−|G2|
2 is the number of blocks of D5(G) through {0, b,−b};

there are n−4
2 blocks of D5(G) through {0, b, 2b};

if g ∈ b + G2 with b 	= g 	= −b, there are n−4−|G2|
2 blocks of D5(G) through

{0, b, g};
if g ∈ G with g 	= 2b 	= 2g, there are n−6

2 blocks of D5(G) through {0, b, g}.
Therefore

N0,b =
n− 2− |G2|

2
+
n− 4

2
+ (|G2| − 2) · n− 4− |G2|

2
+ (n− |G2| − 2) · n− 6

2

can be written as

N0,b =
3

2
· |G2| − 1

2
· |G2|2 + n2 − 8n+ 14

2
(1.2)

Since |G2| 	= 2, (1.1) and (1.2) yield N0,a 	= N0,b and hence D5(G) is not a
2-design.
3) Suppose G is direct sum of h ≥ 1 groups of order 2 and ν ≥ 1 cyclic

groups of order 4. So G is a finite abelian group of order n = |G| = 2h · 4ν ≥ 8;
2G is an elementary abelian 2-group of order 2ν ; G2 is an elementary abelian
2-group of order 2h+ν ≥ 4 which admits 2G as a proper subgroup.
Let a ∈ G2 \ 2G and let b ∈ 2G, b 	= 0. We show now that N0,a 	= N0,b and

hence, by Lemma 1, D5(G) is not a 2-design.
If a 	= g ∈ a + 2G, then a + g ∈ 2G and there are no blocks of D5(G) through
{0, a, g, a+ g};



68 Andrea CAGGEGI

if 0 	= g ∈ G2 \ a + 2G, then a + g /∈ 2G and there are no blocks of D5(G)
through {0, a, g, a+ g};
if g ∈ G \ G2, then a + g /∈ 2G and any block of D5(G) through {0, a, g} does
not intersect {a− g,−g, a+ 2g}.
From these facts we deduce that:

if a 	= g ∈ a + 2G, then n−4−|G2|
2 is the number of blocks of D5(G) through

{0, a, g};
if g ∈ G2 with 0 	= g /∈ a+2G, there are n−4

2 blocks of D5(G) through {0, a, g};
if g ∈ G \G2, there are n−6

2 blocks of D5(G) through {0, a, g}.
Therefore

N0,a = (|2G| − 1) · n− 4− |G2|
2

+ (|G2| − |2G| − 1) · n− 4

2
+ (n− |G2|) · n− 6

2

which, since |2G| · |G2| = |G| = n, simplifies to

N0,a =
3

2
· |G2|+ n2 − 9n+ 8

2
. (1.3)

If b = 2g with g ∈ G, then b+ g /∈ 2G and there are no blocks of D5(G) through
{0, b, g,−g};
if g ∈ 2G \ {0, b}, then b + g ∈ 2G and there are no blocks of D5(G) through
{0, b, g, b+ g};
if g ∈ G2 \ 2G, then b + g /∈ 2G and there are no blocks of D5(G) through
{0, b, g, b+ g};
if g ∈ G \ G2 and 2g 	= b, then b + g /∈ 2G and any block of D5(G) through
{0, b, g} does not meet {b− g,−g, b+ 2g}.
These facts enable us to conclude that:

if g ∈ G has the property that 2g = b, there are n−4
2 blocks of D5(G) through

{0, b, g};
if g ∈ 2G \ {0, b}, then n−4−|G2|

2 is the number of blocks of D5(G) through
{0, b, g};
if g ∈ G2 \ 2G, there are n−4

2 blocks of D5(G) through {0, b, g};
if g ∈ G \G2 with 2g 	= b, then n−6

2 is the number of blocks of D5(G) through
{0, b, g}.
Therefore

N0,b =

= |G2|· n− 4

2
+(|2G|−2)· n− 4− |G2|

2
+(|G2|−|2G|)· n− 4

2
+(n−2|G2|)· n− 6

2

which, since |2G| · |G2| = |G| = n, can be rewritten as

N0,b = 3 |G2|+ n2 − 9n+ 8

2
. (1.4)

Since |G2| 	= 0, (1.3) and (1.4) give N0,a 	= N0,b and hence D5(G) is not a
2-design.
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4) In this case G2 = {0, a} is a group of order two and a is the unique
involution of G; G can be written as direct sum G = G2 ⊕ 2G and 2G = G3 is
an elementary abelian 3-group. If 2G = G3 has order 3, then G is cyclic of order
6 and clearly D5(G) is not a 2-design. Thus we may assume that |2G| = 3m for
some integer m > 1. Then G has order n = |G| = 2|2G| ≥ 18 and we have:
if a 	= g ∈ G \ 2G and x ∈ {2g,−g}, there are no blocks of D5(G) through
{0, a, g, x};
if 0 	= g ∈ 2G, any block of D5(G) through {0, a, g} does not intersect {a − g,
−g, a− 2g}.
These facts imply:

if g ∈ G \ 2G with g 	= a, there are n−4−|G2|
2 = n−6

2 blocks of D5(G) through
{0, a, g};
if g ∈ 2G is not equal to 0 ∈ G, there are n−6

2 blocks of D5(G) through {0, a, g}.
Therefore

N0,a = (|2G| − 1) · n− 6

2
+ (|2G| − 1) · n− 6

2
. (1.5)

Let b ∈ G3, b 	= 0. Clearly (b 	= a and) we have:
there are no blocks of D5(G) containing {0, b,−b};
if g ∈ G\2G, any block of D5(G) through {0, b, g} does not intersect {2b−g, b−g,
2b− 2g};
if g ∈ 2G \ 〈b〉, then b + g ∈ 2G and any block of D5(G) through {0, b, g} does
not intersect {2b− g, b− g, 2b− 2g}.
These facts imply:

if g ∈ G \ 2G, there are n−6
2 blocks of D5(G) through {0, b, g};

if g ∈ 2G \ 〈b〉, there are n−6−|G2|
2 = n−8

2 blocks of D5(G) through {0, b, g}.
Therefore

N0,b = (n− |2G|) · n− 6

2
+ (|2G| − 3) · n− 8

2

which, since 2|2G| = |G| = n, simplifies to

N0,b = |2G| · (n− 6) + 12− 2n. (1.6)

Since n 	= 6, (1.5) and (1.6) yield N0,a 	= N0,b and hence D5(G) is not a
2-design. This last result completes the proof. �

Lemma 2 Let G be a finite additive abelian group of even order n > 4. If there
is a ∈ G such that a /∈ 2G and 2a 	= 0, then

Na,−a = |G3|+ n2 − 9n+ 18

2
.

Proof We first note that there are n−2−|G2|
2 blocks ofD5(G) through {a,−a, 0}.

We now discuss five cases.

Case (L. 1. 1): 4a = 0 and |G3| = 1. In this case we have:
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n−2−|G2|
2 is the number of blocks of D5(G) through {a,−a, 2a};

if g ∈ 2G with 0 	= g 	= 2a, there are n−6−|G2|
2 blocks of D5(G) through

{a,−a, g};
if g ∈ G − 2G with a 	= g 	= −a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a = 2 · n− 2− |G2|
2

+ (|2G| − 2) · n− 6− |G2|
2

+ (n− |2G| − 2) · n− 6

2

which, since |2G| · |G2| = |G| = n and |G3| = 1, can be written as

Na,−a = |G3|+ n2 − 9n+ 18

2
.

Case (L. 1. 2): 4a = 0 and |G3| 	= 1. In this case we get:
n−2−|G2|

2 is the number of blocks of D5(G) through {a,−a, 2a};
if g ∈ G3 is distinct from 0, there are n−4−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ 2G \ G3 with g 	= 2a, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G\2G with a 	= g 	= −a, there are n−6

2 blocks of D5(G) through {a,−a, g}.
Therefore

Na,−a = 2 · n− 2− |G2|
2

+ (|G3| − 1) · n− 4− |G2|
2

+ (|2G| − |G3| − 1) · n−6−|G2|
2 + (n− |2G| − 2) · n−6

2

which, since |2G| · |G2| = |G| = n, simplifies to

Na,−a = |G3|+ n2 − 9n+ 18

2
.

Case (L. 1. 3): a has order 6. In this case we have:
if g ∈ {−2a, 2a}, then n−2−|G2|

2 is the number of blocks of D5(G) through
{a,−a, g};
if g ∈ G3 \ {0,−2a, 2a}, there are n−4−|G2|

2 blocks of D5(G) through {a,−a, g};
if g ∈ 2G \ G3, then

n−6−|G2|
2 is the number of blocks of D5(G) containing

{a,−a, g};
if g ∈ G\2G with a 	= g 	= −a, there are n−6

2 blocks D5(G) including {a,−a, g}.
Therefore

Na,−a = 3 · n− 2− |G2|
2

+ (|G3| − 3) · n− 4− |G2|
2

+ (|2G| − |G3|) · n− 6− |G2|
2

+ (n− |2G| − 2) · n− 6

2
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which, since |2G| · |G2| = |G| = n, gives

Na,−a = |G3|+ n2 − 9n+ 18

2
.

Case (L. 1. 4): 4a 	= 0 	= 6a and |G3| = 1. In this case we get:

if g ∈ {−2a, 2a}, there are n−4−|G2|
2 blocks of D5(G) through {a,−a, g};

if g ∈ 2G \ {0,−2a, 2a}, n−6−|G2|
2 is the number of blocks of D5(G) including

{a,−a, g};
if g ∈ G \ 2G with a 	= g 	= −a, n−6

2 is the number of blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ 2 · n− 4− |G2|

2

+ (|2G| − 3) · n− 6− |G2|
2

+ (n− |2G| − 2) · n− 6

2

which, since |2G| · |G2| = |G| = n and |G3| = 1, can be rewritten as

Na,−a = |G3|+ n2 − 9n+ 18

2
.

Case (L. 1. 5): 4a 	= 0 	= 6a and |G3| 	= 1. In this case we obtain:

there are n−4−|G2|
2 blocks of D5(G) through {a,−a, g} if g ∈ {−2a, 2a} or

0 	= g ∈ G3;
if g ∈ 2G \G3 with 2a 	= g 	= −2a, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G \ 2G with a 	= g 	= −a, n−6

2 is the number of blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ (|G3|+ 1) · n− 4− |G2|

2

+ (|2G| − |G3| − 2) · n− 6− |G2|
2

+ (n− |2G| − 2) · n− 6

2

which, since |2G| · |G2| = |G| = n, simplifies to

Na,−a = |G3|+ n2 − 9n+ 18

2
.

The Lemma 2 is proved. �

Proposition 2 D5(G) is not a 2−design if G is a finite abelian group of even
order n > 4 with the property that 2G = 4G.



72 Andrea CAGGEGI

Proof From 2G = 4G it follows G2 = G4 and this requires that the Sylow
2-subgroup of G is an elementary abelian 2-group. Therefore G can be written
as direct sum G = G2 ⊕ 2G and, by Proposition 1, we may assume that 2G
is a finite abelian group of odd order |2G| > 1. Then any z ∈ G of the form
z = x+ y, with x ∈ G2 and y ∈ 2G both distinct from 0, is not equal to −z and
does not belong to 2G. Thus, using Lemma 2 we see that

Nz,−z = |G3|+ n2 − 9n+ 18

2
. (1.7)

Choose a ∈ 2G, a 	= 0 and let α be the unique element in 2G such that
a = 2α. We shall prove that Na,−a 	= Nz,−z and hence, by Lemma 1, D5(G) is

not a 2-design. We first note that n−2−|G2|
2 is the number of blocks of D5(G)

through {a,−a, 0}. We now discuss five cases.
Case (P. 2. 1): |G3| = 1 and 5a 	= 0. In this case we have:

if g ∈ {−2a, 2a,−α, α}, there are n−4−|G2|
2 blocks of D5(G) through {a,−a, g};

if −α 	= g ∈ G with 2g = −a, then (g ∈ −α +G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
if α 	= g ∈ G with 2g = a, then (g ∈ α + G2 hence) g /∈ 2G and there are n−4

2
blocks of D5(G) through {a,−a, g};
if g ∈ 2G\{a,−a, 0, α,−α, 2a,−2a}, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ 4 · n− 4− |G2|

2
+ 2(|G2| − 1) · n− 4

2

+ (|2G| − 7) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|+ 2) · n− 6

2

which, since |2G| · |G2| = |G| = n and |G3| = 1, can be rewritten as

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2

Because |G2| 	= 0, this equality together with (1.7) gives Na,−a 	= Nz,−z and
hence D5(G) is not a 2-design.

Case (P. 2. 2): |G3| = 1 and a has order 5. In this case we have (α = −2a
and):
if g ∈ {2a,−2a}, there are n−2−|G2|

2 blocks of D5(G) through {a,−a, g};
if 2a 	= g ∈ G with 2g = −a, then (g ∈ 2a + G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
if −2a 	= g ∈ G with 2g = a, then (g ∈ −2a+G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
if g ∈ 2G \ 〈a〉, there are n−6−|G2|

2 blocks of D5(G) through {a,−a, g};
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if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6
2 blocks of D5(G) through

{a,−a, g}.
Therefore

Na,−a = 3 · n− 2− |G2|
2

+ 2 · (|G2| − 1)
n− 4

2

+ (|2G| − 5) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|+ 2) · n− 6

2

which, since |2G| · |G2| = |G| = n and |G3| = 1, simplifies to

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2

Since |G2| 	= 0, this equality together with (1.7) gives Na,−a 	= Nz,−z and
hence D5(G) is not a 2-design.

Case (P. 2. 3): |G3| 	= 1 and a has order 5. In this case we have (α = −2a
and):
if g ∈ {2a,−2a}, there are n−2−|G2|

2 blocks of D5(G) through {a,−a, g};
if 2a 	= g ∈ G with 2g = −a, then (g ∈ 2a + G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
if −2a 	= g ∈ G with 2g = a, then (g ∈ −2a+G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
if 0 	= g ∈ G3, then

n−4−|G2|
2 is the number of blocks of D5(G) through

{a,−a, g};
if g ∈ 2G \G3 with 2a 	= g 	= −2a, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a = 3 · n− 2− |G2|
2

+ 2 · (|G2| − 1) · n− 4

2
+ (|G3| − 1) · n− 4− |G2|

2

+ (|2G| − |G3| − 2) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|) · n− 6

2

which, since |2G| · |G2| = |G| = n, simplifies to

Na,−a = 2|G2|+ |G3|+ n2 − 9n+ 18

2

Since |G2| 	= 0, this equality together with (1.7) gives Na,−a 	= Nz,−z and
hence D5(G) is not a 2-design.

Case (P. 2. 4): |G3| 	= 1 and 3a 	= 0 	= 5a. In this case we have:
if g ∈ {2a,−2a, α,−α}, there are n−4−|G2|

2 blocks of D5(G) through {a,−a, g};
if −α 	= g ∈ G with 2g = −a, then (g ∈ −α +G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
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if α 	= g ∈ G with 2g = a, then (g ∈ α + G2 hence) g /∈ 2G and there are n−4
2

blocks of D5(G) through {a,−a, g};
if 0 	= g ∈ G3, there are

n−4−|G2|
2 blocks of D5(G) through {a,−a, g};

if g ∈ 2G \ G3 and g /∈ {a,−a, α,−α, 2a,−2a}, there are n−6−|G2|
2 blocks of

D5(G) through {a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ 4 · n− 4− |G2|

2
+ 2 · (|G2| − 1) · n− 4

2

+ (|G3| − 1) · n− 4− |G2|
2

+ (|2G| − |G3| − 6) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|+ 2) · n− 6

2

which, since |2G| · |G2| = |G| = n, can be rewritten as

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2

Since |G2| 	= 0, this equality together with (1.7) gives Na,−a 	= Nz,−z and
hence D5(G) is not a 2-design.

Case (P. 2. 5): a ∈ G3. In this case we obtain (α = −a and):
if a 	= g ∈ G with 2g = −a, then (g ∈ a+G2 hence) g /∈ 2G and there are n−4

2
blocks of D5(G) through {a,−a, g};
if −a 	= g ∈ G with 2g = a, then (g ∈ −a + G2 hence) g /∈ 2G and there are
n−4
2 blocks of D5(G) through {a,−a, g};
if g ∈ G3 \ 〈a〉, then n−4−|G2|

2 is the number of blocks of D5(G) through
{a,−a, g};
if g ∈ 2G \ G3, then

n−6−|G2|
2 is the number of blocks of D5(G) through

{a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ 2(|G2| − 1) · n− 4

2
+ (|G3| − 3) · n− 4− |G2|

2

+ (|2G| − |G3|) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|+ 2) · n− 6

2

which, since |2G| · |G2| = |G| = n, can be rewritten as

Na,−a = 3|G2| − 6 + |G3|+ n2 − 9n+ 18

2

This equality together with (1.7) yields |G2| = 2. Such a result and those
obtained from the above cases allow as to conclude that: G has just one invo-
lution and 2G must be an elementary abelian 3-group. Now using Proposition
1 we see that D5(G) is not a 2-design, the Proposition is proved. �
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Lemma 3 Suppose G is a finite abelian group of even order n > 4 in which
G4 	= G 	= G2 +2G and choose α ∈ G in such a way that α /∈ G2 +2G, 4α 	= 0.
Then a = 2α and −a are distinct elements of G and

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
.

Proof Clearly, from a = 2α it follows a ∈ 2G, 2a 	= 0, a /∈ 4G, 3a 	= 0,
5a 	= 0. We first note that: n−2−|G2|

2 is the number of blocks of D5(G) through
{a,−a, 0}; if g ∈ G \ {a,−a, 0}, any block of D5(G) through {a,−a, g} does not
intersect {−a− g, a− g,−2g}. We now discuss five cases.
Case (L. 2. 1): 4a = 0 and |G3| = 1. In this case we have:

n−2−|G2|
2 is the number of blocks of D5(G) through {a,−a, 2a};

if g ∈ G and 2g ∈ {a,−a}, then g /∈ 2G and there are n−4
2 blocks of D5(G)

through {a,−a, g};
if g ∈ 2G \ 〈a〉, there are n−6−|G2|

2 blocks of D5(G) through {a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a = 2 · n− 2− |G2|
2

+ 2 · |G2| · n− 4

2

+ (|2G| − 4) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|) · n− 6

2

which, since |2G| · |G2| = |G| = n and |G3| = 1, yields

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
.

Case (L. 2. 2): 4a = 0 and |G3| 	= 1. In this case we have:
n−2−|G2|

2 is the number of blocks of D5(G) through {a,−a, 2a};
if g ∈ G and 2g ∈ {a,−a}, then g /∈ 2G and there are n−4

2 blocks of D5(G)
through {a,−a, g};
if g ∈ G3 is distinct from 0, there are n−4−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ 2G\G3 does not belong to 〈a〉, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a; there are n−6

2 blocks of D5(G) through
{a,−a, g}.
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Therefore

Na,−a = 2 · n− 2− |G2|
2

+ 2 · |G2| · n− 4

2
+ (|G3| − 1) · n− 4− |G2|

2

+ (|2G| − |G3| − 3) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|) · n− 6

2

which, since |2G| · |G2| = |G| = n, simplifies to

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
.

Case (L. 2. 3): a has order 6. In this case we obtain:
if g ∈ {2a,−2a}, there are n−2−|G2|

2 blocks of D5(G) through {a,−a, g};
if g ∈ G and 2g ∈ {a,−a}, then g /∈ 2G and there are n−4

2 blocks of D5(G)
through {a,−a, g};
if g ∈ G3 \ {0, 2a,−2a}, there are n−4−|G2|

2 blocks of D5(G) through {a,−a, g};
if g ∈ 2G \ G3 with−a 	= g 	= a, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a = 3 · n− 2− |G2|
2

+ 2 · |G2| · n− 4

2
+ (|G3| − 3) · n− 4− |G2|

2

+ (|2G| − |G3| − 2) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|) · n− 6

2

which, since |2G| · |G2| = |G| = n, yields

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
.

Case (L. 2. 4): 4a 	= 0 	= 6a and |G3| = 1. In this case we get:
if g ∈ {2a,−2a}, there are n−4−|G2|

2 blocks of D5(G) through {a,−a, g};
if g ∈ G and 2g ∈ {−a, a}, then g /∈ 2G and there are n−4

2 blocks of D5(G)
through {a,−a, g};
if g ∈ 2G \ {a,−a, 0,−2a, 2a}, there are n−6−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ 2 · n− 4− |G2|

2
+ 2 · |G2| · n− 4

2

+ (|2G| − 5) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|) · n− 6

2
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which, since |2G| · |G2| = |G| = n and |G3| = 1, yields

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
.

Case (L. 2. 5): 4a 	= 0 	= 6a and |G3| 	= 1. In this case we deduce:

if g ∈ {2a,−2a}, there are n−4−|G2|
2 blocks of D5(G) through {a,−a, g};

if g ∈ G and 2g ∈ {a,−a}, then g /∈ 2G and there are n−4
2 blocks of D5(G)

through {a,−a, g};
if g ∈ G3 is distinct from 0, there are n−4−|G2|

2 blocks of D5(G) through
{a,−a, g};
if g ∈ 2G \ G3 and g /∈ {a,−a, 2a,−2a}, there are n−6−|G2|

2 blocks of D5(G)
through {a,−a, g};
if g ∈ G \ 2G with −a 	= 2g 	= a, there are n−6

2 blocks of D5(G) through
{a,−a, g}.
Therefore

Na,−a =
n− 2− |G2|

2
+ (|G3|+ 1) · n− 4− |G2|

2
+ 2 · |G2| · n− 4

2

+ (|2G| − |G3| − 4) · n− 6− |G2|
2

+ (n− 2 · |G2| − |2G|) · n− 6

2

which, since |2G| · |G2| = |G| = n, yields

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
.

The Lemma 3 is proved. �

Theorem 1 If D5(G) is a 2-design, then n = |G| must be odd integer.

Proof We may assume that G is a finite additive abelian group of order
n = |G| > 4. Suppose n is an even integer: so we must show that D5(G) is not
a 2-design. We discuss five cases.

Case (T. 1): 2g = 0 whenever g ∈ G \ 2G. In this case G must be an
elementary abelian 2-group and hence, by Proposition 1, D5(G) is not a 2-
design.

Case (T. 2): G is an abelian group of exponent 4. In this case either G is
direct sum of cyclic groups of order 4 or G is direct sum of groups of order 2
and cyclic groups of order 4. Then, by Proposition 1, D5(G) is not a 2-design.

Case (T. 3): 2G = 4G. Then Proposition 2 asserts that D5(G) is not a
2-design.

Case (T. 4): 2G 	= 4G and 4x = 0 for every x /∈ G2+2G. Then G must be an
abelian group of exponent 4 and hence, by statements 2) and 3) of Proposition 1,
D5(G) is not a 2-design.
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Case (T. 5): 2G 	= 4G and G 	= G4. Then G2 + 2G is a proper subgroup of
G and there is α ∈ G such that α /∈ G2 + 2G and 4α 	= 0. Thus a = 2α 	= −a
and, by Lemma 3, we obtain

Na,−a = 3|G2|+ |G3|+ n2 − 9n+ 18

2
. (1.8)

On the other hand, since 2G 	= 4G implies that G is not an elementary abelian
2-group, there is z ∈ G such that z /∈ 2G and 2z 	= 0. Then using Lemma 2 we
deduce that

Nz,−z = |G3|+ n2 − 9n+ 18

2
. (1.9)

Since |G2| 	= 0, combining (1.8) and (1.9) we deduce that Na,−a 	= Nz,−z and
hence, by Lemma 1, D5(G) is not a 2-design. Now the proof of the theorem is
complete. �

2 Main result

Proposition 3 D5(G) is not a 2-design if one of the statements below is true:

1. G is a finite abelian group of odd order n divisible by 3;

2. G is a finite abelian group of odd order n not divisible by 5.

Proof
1. Choose a ∈ G3, a 	= 0. Then clearly we have:

n−3
2 is the number of blocks of D5(G) through {a,−a, 0};
if g ∈ G3 \ 〈a〉, there are n−5

2 blocks of D5(G) through {a,−a, g};
if g ∈ G \G3, there are n−7

2 blocks of D5(G) through {a,−a, g}.
Therefore

Na,−a =
n− 3

2
+ (|G3| − 3) · n− 5

2
+ (n− |G3|) · n− 7

2
. (2.1)

Note that if G is an elementary abelian 3-group, then G = G3 and (2.1) can be
rewritten as

Na,−a =
n− 3

2
+ (n− 3) · n− 5

2
. (2.2)

Suppose |G5| 	= 1 and choose α ∈ G5, α 	= 0. Then we obtain:
if g ∈ {0, 2α,−2α}, there are n−3

2 blocks of D5(G) through {α,−α, g};
if 0 	= g ∈ G3, there are n−5

2 blocks of D5(G) through {α,−α, g};
if g ∈ G \G3 and g /∈ {α,−α,−2α, 2α}, there are n−7

2 blocks of D5(G) through
{α,−α, g}.
Therefore

Nα,−α = 3 · n− 3

2
+ (|G3| − 1) · n− 5

2
+ (n− 4− |G3|) · n− 7

2
. (2.3)

Combining (2.1) and (2.3) we deduce that Na,−a 	= Nα,−α and hence, by
Lemma 1, D5(G) is not a 2-design.
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Suppose |G5| = 1, G3 	= G and choose β ∈ G \G3. Then we find:
n−3
2 is the number of blocks of D5(G) through {β,−β, 0};
if 0 	= g ∈ {2β,−2β}, there are n−5

2 blocks of D5(G) through {β,−β, g};
if γ ∈ G with 2γ = −β, there are n−5

2 blocks of D5(G) through {β,−β, γ};
there are n−5

2 blocks of D5(G) through {β,−β,−γ};
if 0 	= g ∈ G3, there are n−5

2 blocks of D5(G) through {β,−β, g};
if g ∈ G \ G3 and g /∈ {β,−β, 2β,−2β, γ,−γ}, there are n−7

2 blocks D5(G)
through {β,−β, g}.
Therefore

Nβ,−β =
n− 3

2
+ (|G3|+ 3) · n− 5

2
+ (n− 6− |G3|) · n− 7

2
. (2.4)

Combining (2.1) and (2.4) we find Na,−a 	= Nβ,−β and hence, by Lemma 1,
D5(G) is not a 2-design.
We can now assume that G = G3. Then for any g ∈ G \ 〈a〉 there are n−7

2
blocks of D5(G) through {0, a, g}. Therefore

N0,a =
n− 3

2
+ (n− 3) · n− 7

2
. (2.5)

Combining (2.2) and (2.5) we find Na,−a 	= N0,a and hence, by Lemma 1,
D5(G) is not a 2-design.

2. By 1 we may assume that n and 15 are (odd integers) relatively prime.
Choose x ∈ G, x 	= 0 and let y, z be elements of G such that 2y = x, 2z = 7x.
Then clearly we have:
n−3
2 is the number of blocks of D5(G) through the 3-set {x,−x, 0};
if g ∈ {2x,−2x, y,−y}, there are n−5

2 blocks of D5(G) through {x,−x, g};
if 0 	= g ∈ G \ {x,−x, 2x,−2x, y,−y}, there are n−7

2 blocks of D5(G) through
{x,−x, g}.
Therefore

Nx,−x =
n− 3

2
+ 4 · n− 5

2
+ (n− 7) · n− 7

2
. (2.6)

On the other hand we have:
if g ∈ {6x, 11x, z}, there are n−5

2 blocks of D5(G) through the 3-set {x,−4x, g};
if g ∈ G\{x,−4x, 6x, 11x, z}, there are n−7

2 blocks ofD5(G) through {x,−4x, g}.
Therefore

Nx,−4x = 3 · n− 5

2
+ (n− 5) · n− 7

2
. (2.7)

Combining (2.6) and (2.7) we obtainNx,−x 	= Nx,−4x and hence, by Lemma 1,
D5(G) is not a 2-design. Now the Proposition 3 is proved. �

We can now state our main result.

Theorem 2 D5(G) is a 2-design if and only if G is an elementary abelian
5-group. When this is so, there are

λ =
|G| − 3

2
+

(|G| − 5) · (|G| − 7)

6

blocks of D5(G) through any given 2-set {x, y} ⊂ G.
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Proof Suppose D5(G) is a 2-design. By Theorem 1 and Proposition 3, n = |G|
must be an odd integer multiple of 5 not divisible by 3. Let a ∈ G5, a 	= 0.
Then we find: if g ∈ 〈a〉 with 0 	= g 	= a, then n−3

2 is the number of blocks of
D5(G) through {0, a, g}; if g ∈ G \ 〈a〉, there are n−7

2 blocks of D5(G) through
{0, a, g}.
Therefore

N0,a = 3 · n− 3

2
+ (n− 5) · n− 7

2
(2.8)

Assume that 5b 	= 0 for some b ∈ G and let β be the unique element in G such
that 2β = 7b. Then (β ∈ G \ {b,−4b, 6b, 11b} and) we obtain:
if g ∈ {6b, 11b, β}, then n−5

2 is the number of blocks ofD5(G) through {b,−4b, g};
if g ∈ G\{b,−4b, 6b, 11b, β}, then n−7

2 is the number of blocks of D5(G) through
{b,−4b, g}.
Therefore

Nb,−4b = 3 · n− 5

2
+ (n− 5) · n− 7

2

and thus, since D5(G) is a 2 design, we find (by Lemma 1)

3 · n− 3

2
+ (n− 5) · n− 7

2
= N0,a = Nb,−4b = 3 · n− 5

2
+ (n− 5) · n− 7

2

and this gives n − 3 = n − 5 a contradiction. Such a contradiction shows that
5g = 0 for all g ∈ G: in other words, G is an elementary abelian 5-group.
Furthermore, from Lemma 1 and equation (2.8) we know that

3 · n− 3

2
+ (n− 5) · n− 7

2
= N0,a = 3λ

from wich it follows that λ = |G|−3
2 + (|G| − 5) · |G|−7

6 is the number of blocks
of D5(G) through any given two distinct elements x, y ∈ G.
To finish, assume that G is an elementary abelian 5-group. If we regard G

as a vector space over the field with five elements, then we see that the affine
group Aff(G) acts 2-homogeneously on G and the block-set B of D5(G) may be
written as B = CAff(G) (i.e. B = {Cγ | γ ∈ Aff(G)} is the Aff(G)-orbit of a
fixed block C ∈ B). Hence, by [1, Proposition 4.6], D5(G) is a 2-design. The
Theorem is proved. �
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