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Abstract
In this paper we improve, generalize and extend a number of recent

results related to a problem of meromorphic function sharing a small func-
tion with its differential polynomial which are the continuation of a result
earlier obtained by R. Brück.
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1 Introduction definitions and results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f − a and g − a have the same set
of zeros with the same multiplicities, we say that f and g share the value a CM
(counting multiplicities), and if we do not consider the multiplicities then f and
g are said to share the value a IM (ignoring multiplicities).
A meromorphic function a is said to be a small function of f provided that

T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r → ∞, outside of a possible
exceptional set of finite linear measure.
We use I to denote any set of infinite linear measure of 0 < r <∞.
In 1979, Mues and Steinmetz [15] proved the following theorem.
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Theorem A [15] Let f be a non-constant entire function. If f and f ′ share
two distinct values a, b IM, then f ′ ≡ f .

In 1996, for one CM shared values of entire function with its first derivative
Brück proposed the following famous conjecture [3]:

Conjecture Let f be a non-constant entire function such that the hyper order
ρ2(f) of f is not a positive integer or infinite. If f and f ′ share a finite value
a CM, then f ′−a

f−a = c, where c is a nonzero constant.

Brück himself proved the conjecture for a = 0. For a 	= 0 following result
was obtained in [3].

Theorem B [3] Let f be a non-constant entire function. If f and f ′ share the
value 1 CM and if N(r, 0; f ′) = S(r, f) then f ′−1

f−1 is a nonzero constant.

Now it would be interesting to know whether the value 1 of Theorem B can
be simply replaced by a small function a( 	≡ 0,∞). From the following example
we see that it is not possible.

Example 1.1 Let f = 1 + ee
z

and a(z) =
1

1− e−z
.

By [6, Lemma 2.6, p. 50] we know that a is a small function of f . Also it can be
easily seen that f and f ′ share a CM and N(r, 0; f ′) = 0 but f − a 	= c (f ′ − a)
for every nonzero constant c. We note that f − a = e−z(f ′ − a). So in order to
replace the value 1 by a small function some extra conditions are required.

For entire function of finite order Yang [16] removed the conditionN(r, 0; f ′)=
S(r, f) in Theorem B and improved the same in the following way.

Theorem C [16] Let f be a non-constant entire function of finite order and

let a( 	= 0) be a finite constant. If f , f (k) share the value a CM, then f(k)−a
f−a is

a nonzero constant, where k (≥ 1) is an integer.

Next we consider the following examples which show that in Theorem B
one can not simultaneously replace “CM” by “IM” and “entire function” by
“meromorphic function”.

Example 1.2 f(z) = 1 + tan z.

Since f(z) − 1 = tan z and f ′(z) − 1 = tan2 z share 1 IM and N(r, 0; f ′) = 0.
But the conclusion of Theorem B ceases to hold.

Example 1.3 f(z) =
2

1− e−2z
.

Clearly

f ′(z) = − 4e−2z

(1− e−2z)2
.

Here

f − 1 =
1 + e−2z

1− e−2z
and f ′ − 1 = − (1 + e−2z)2

(1− e−2z)2
.

Here N(r, 0; f ′) = 0 but the conclusion of Theorem B does not hold.
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Zhang [18] extended Theorem B to meromorphic function and also studied
the value sharing of a meromorphic function with its k-th derivative counterpart.
In the mean time a new notion of scalings between CM and IM known as

weighted sharing, appeared in the uniqueness literature. Below we are giving
the definition.

Definition 1.1 [7, 8] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and
only if it is an a-point of g with multiplicity n (> k), where m is not necessarily
equal to n.
We write f , g share (a, k) to mean that f , g share the value a with weight

k. Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.
If a is a small function we define that f and g share a IM or a CM or with

weight l according as f − a and g− a share (0, 0) or (0,∞) or (0, l) respectively.
Though we use the standard notations and definitions of the value distribu-

tion theory available in [6], we explain some definitions and notations which are
used in the paper.

Definition 1.2 [11] Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 1.3 {6, cf. [17]} For a ∈ C∪{∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f)+N(r, a; f |≥ 2)+ . . .+N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 1.4 [9] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g 	= b)
the counting function of those a-points of f , counted according to multiplicity,
which are not the b-points of g.

Definition 1.5 {cf. [1], 2} Let f and g be two non-constant meromorphic func-
tions such that f and g share the value 1 IM. Let z0 be a 1-point of f with
multiplicity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the

counting function of those 1-points of f and g where p > q, by N1)
E (r, 1; f)
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the counting function of those 1-points of f and g where p = q = 1 and by

N
(2

E (r, 1; f) the counting function of those 1-points of f and g where p = q ≥ 2,
each point in these counting functions is counted only once. In the same way

we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.6 [7, 8] Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.
Clearly

N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

With the notion of weighted sharing of values the results of Zhang [18] was
improved by Lahiri–Sarkar [11]. In 2005, Zhang [19] further extended the result
of Lahiri–Sarkar to a small function and proved the following.

Theorem D [19] Let f be a non-constant meromorphic function and k(≥ 1),
l(≥ 0) be integers. Also let a ≡ a(z) ( 	≡ 0,∞) be a meromorphic small function.
Suppose that f − a and f (k) − a share (0, l). If l ≥ 2 and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N2 (r, 0; (f/a)

′) < (λ+ o(1)) T
(
r, f (k)

)
(1.1)

or l = 1 and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+ 2N (r, 0; (f/a)′) < (λ+ o(1)) T

(
r, f (k)

)
(1.2)

or l = 0 and

4N(r,∞; f) + 3N2

(
r, 0; f (k)

)
+2N (r, 0; (f/a)′) < (λ+ o(1)) T

(
r, f (k)

)
(1.3)

for r ∈ I, where 0 < λ < 1, then f(k)−a
f−a = c for some constant c ∈ C/{0}.

In 2008, in connection with the results of Lahiri–Sarkar [11] and Zhang
[19], Zhang and Lü [20] further investigated the analogous problem of Brück
conjecture for the n-th power of a meromorphic function sharing a small function
with its k-th derivative. Zhang and Lü [20] obtained the following theorem.

Theorem E [20] Let f be a non-constant meromorphic function and k (≥ 1),
n (≥ 1) and l (≥ 0) be integers. Also let a ≡ a(z) ( 	≡ 0,∞) be a meromorphic
small function. Suppose that fn − a and f (k) − a share (0, l). If l = ∞ and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N

(
r, 0; (fn/a)′

)
< (λ+ o(1))T

(
r, f (k)

)
(1.4)

or l = 0 and

4N(r,∞; f) +N
(
r, 0; f (k)

)
+ 2N2

(
r, 0; f (k)

)
+ 2N

(
r, 0; (fn/a)′

)
< (λ+ o(1))T

(
r, f (k)

)
(1.5)

for r ∈ I, where 0 < λ < 1, then f(k)−a
fn−a = c for some constant c ∈ C/{0}.
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At the end of [20] the following question was raised by Zhang and Lü [20].
What will happen if fn and [f (k)]m share a small function?
Liu [12] investigated the possible answer of the above question and obtained

the following result.

Theorem F [12] Let f be a non-constant meromorphic function and k (≥ 1),
n (≥ 1), m (≥ 2) and l (≥ 0) be integers. Also let a ≡ a(z) ( 	≡ 0,∞) be a
meromorphic small function. Suppose that fn − a and (f (k))m − a share (0, l).
If l = ∞ and
2

m
N(r,∞; f)+

2

m
N
(
r, 0; f (k)

)
+

1

m
N
(
r, 0; (fn/a)′

)
< (λ+o(1))T

(
r, f (k)

)
(1.6)

or l = 0 and

4

m
N(r,∞; f)+

5

m
N
(
r, 0; f (k)

)
+

2

m
N
(
r, 0; (fn/a)′

)
< (λ+o(1))T

(
r, f (k)

)
(1.7)

for r ∈ I, where 0 < λ < 1, then (f(k))m−a
fn−a = c for some constant c ∈ C/{0}.

So we see that the Brück result and the research thereafter has a long history.
Several special forms on the Brück conjecture such as Nevanlinna deficiency,
small functions, power functions etc. were meticulously investigated by many
authors.
Next we recall the following definition.

Definition 1.7 Let n0j , n1j , . . . , nkj be non negative integers.

• The expression Mj [f ] = (f)n0j (f ′)n1j . . . (f (k))nkj is called a differential
monomial generated by f of degree d(Mj) =

∑k
i=0 nij and weight ΓMj

=∑k
i=0(i+ 1)nij .

• The sum P [f ] =
∑t
j=1 bjMj [f ] is called a differential polynomial gener-

ated by f of degree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP =
max{ΓMj

: 1 ≤ j ≤ t}, where T (r, bj) = S(r, f) for j = 1, 2, . . . , t.

• The numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and k the highest order of the
derivative of f in P [f ] are called respectively the lower degree and order of
P [f ].

• P [f ] is said to be homogeneous if d(P ) = d(P ).

• P [f ] is called a linear differential polynomial generated by f if d(P ) = 1.
Otherwise P [f ] is called non-linear differential polynomial. We denote by
Q = max{ΓMj

−d(Mj) : 1 ≤ j ≤ t} = max{n1j+2n2j+. . .+knkj : 1 ≤ j ≤ t}.

Since (f (k))m is nothing but a differential monomial generated by f , it will
be interesting to know whether Theorems D–F can be extended up to differential
polynomial generated by f . In this direction recently Li and Yang [13] improved
Theorem D in the following manner.
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Theorem G [13] Let f be a non-constant meromorphic function P [f ] be a
differential polynomial generated by f . Also let a ≡ a(z) ( 	≡ 0,∞) be a small
meromorphic function. Suppose that f − a and P [f ]− a share (0, l) and

(t− 1) d(P ) ≤
t∑

j=1

d(Mj).

If l ≥ 2 and

2N(r,∞; f) +N2(r, 0;P [f ]) +N2(r, 0; (f/a)
′) < (λ+ o(1))T (r, P [f ]) (1.8)

or l = 1 and

2N(r,∞; f) +N2(r, 0;P [f ]) + 2N(r, 0; (f/a)′) < (λ+ o(1))T (r, P [f ]) (1.9)

or l = 0 and

4N(r,∞; f) + 3N2(r, 0;P [f ]) + 2N(r, 0; (f/a)′) < (λ+ o(1))T (r, P [f ]) (1.10)

for r ∈ I, where 0 < λ < 1, then P [f ]−a
f−a = c for some constant c ∈ C/{0}.

Since for a differential monomial t = 1, it follows that Theorem G always
holds without any supposition on the degree of the monomial. But according
to the statement of Theorem G for general differential polynomial, in order to
obtain the conclusion, the supposition (t − 1)d(P ) ≤ ∑t

j=1 d(Mj) is required.
So it would be quite natural to investigate whether in Theorem G, the condition
over the degree can be removed and at the same time (1.8), (1.9) and (1.10) can
further be relaxed so that it will improve Theorems E and F to a large extent.
In this paper we shall tackle this situation by improving, unifying, generaliz-

ing and extending all the Theorems D–G. Following theorem is the main result
of the paper.

Theorem 1.1 Let f be a non-constant meromorphic function, and n (≥ 1),
l (≥ 0) be integers. Let a ≡ a(z) ( 	≡ 0,∞) be a small meromorphic function.
Suppose further that P [f ] be a differential polynomial generated by f such that
P [f ] contains at least one derivative. Suppose that fn − a and P [f ] − a share
(0, l). If l = ∞ and
2N(r,∞; f) +N2 (r, 0;P [f ]) +N (r, 0; (fn/a)′) < (λ+ o(1)) T (r, P [f ]) (1.11)

or l ≥ 2 and

2N(r,∞; f) +N2(r, 0;P [f ]) +N2(r, 0; (f
n/a)′) < (λ+ o(1))T (r, P [f ]) (1.12)

or l = 1 and

2N(r,∞; f) +N2(r, 0;P [f ]) +N(r, 0; (fn/a)′) +N(r, 0; (fn/a)′ | (fn/a) 	= 0)

< (λ+ o(1))T (r, P [f ]) (1.13)
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or l = 0 and

4N(r,∞; f) +N2(r, 0;P [f ]) + 2N(r, 0;P [f ]) +N(r, 0; (fn/a)′)
+N(r, 0; (fn/a)′ | (fn/a) 	= 0) < (λ+ o(1))T (r, P [f ]) (1.14)

for r ∈ I, where 0 < λ < 1, then P [f ]−a
fn−a = c for some constant c ∈ C/{0}.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote
by H the following function.

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
. (2.1)

Lemma 2.1 [19] Let f be a non-constant meromorphic function and k be a
positive integer. Then

Np(r, 0; f
(k)) ≤ Np+k(r, 0; f) + kN (r,∞; f) + S(r, f).

Lemma 2.2 [10] If N(r, 0; f (k) | f 	= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted
according to its multiplicity, then

N(r, 0; f (k) | f 	= 0) ≤ kN(r,∞; f)+N(r, 0; f |< k)+ kN(r, 0; f |≥ k)+S(r, f).

Lemma 2.3 [14] Let f be a non-constant meromorphic function and let

R(f) =

∑n
k=0 akf

k∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ak} and {bj}
where an 	= 0 and bm 	= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.
Lemma 2.4 [4] Let f be a meromorphic function and P [f ] be a differential
polynomial. Then

m

(
r,
P [f ]

fd(P )

)
≤ (d(P )− d(P ))m

(
r,

1

f

)
+ S(r, f).

Lemma 2.5 Let f be a meromorphic function and P [f ] be a differential poly-
nomial. Then we have

N

(
r,∞;

P [f ]

fd(P )

)
≤ (ΓP − d(P ))N(r,∞; f) + (d(P )− d(P ))N(r, 0; f |≥ k + 1)

+QN(r, 0; f |≥ k + 1) + d(P )N(r, 0; f |≤ k) + S(r, f).
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Proof Let z0 be a pole of f of order r, such that bj(z0) 	= 0,∞; 1 ≤ j ≤ t.
Then it would be a pole of P [f ] of order at most rd(P ) + ΓP − d(P ). Since z0
is a pole of fd(P ) of order rd(P ), it follows that z0 would be a pole of

P [f ]

fd(P )
of

order at most ΓP − d(P ). Next suppose z1 is a zero of f of order s (> k), such
that bj(z1) 	= 0,∞; 1 ≤ j ≤ t. Clearly it would be a zero of Mj(f) of order

s · n0j + (s− 1)n1j + . . .+ (s− k)nkj = s · d(Mj)− (ΓMj
− d(Mj)).

Hence z1 be a pole of
Mj [f ]

fd(P )
of order

s · d(P )− s · d(Mj) + (ΓMj
− d(Mj)) = s(d(P )− d(Mj)) + (ΓMj

− d(Mj)).

So z1 would be a pole of
P [f ]

fd(P )
of order at most

max{s(d(P )− d(Mj)) + (ΓMj
− d(Mj)) : 1 ≤ j ≤ t)} = s(d(P )− d(P )) +Q.

If z1 is a zero of f of order s ≤ k, such that bj(z1) 	= 0,∞ : 1 ≤ j ≤ t then it

would be a pole of P [f ]

fd(P )
of order at most sd(P ). Since the poles of P [f ]

fd(P )
comes

from the poles or zeros of f and poles or zeros of bj(z)’s only, it follows that

N

(
r,∞;

P [f ]

fd(P )

)
≤ (ΓP − d(P ))N(r,∞; f) + (d(P )− d(P ))N(r, 0; f |≥ k + 1)

+QN(r, 0; f |≥ k + 1) + d(P )N(r, 0; f |≤ k) + S(r, f).
�

Lemma 2.6 [5] Let P [f ] be a differential polynomial. Then

T (r, P [f ]) ≤ ΓPT (r, f) + S(r, f).

Lemma 2.7 Let f be a non-constant meromorphic function and P [f ] be a dif-
ferential polynomial. Then S(r, P [f ]) can be replaced by S(r, f).

Proof From Lemma 2.6 it is clear that T (r, P [f ]) = O(T (r, f)) and so the
lemma follows. �

3 Proof of Theorem 1.1

Let F = fn

a and G = P [f ]
a . Then

F − 1 =
fn − a

a
G− 1 =

P [f ]− a

a
.

Since fn−a and P [f ]−a share (0, l) it follows that F , G share (1, l) except the
zeros and poles of a(z).
Now we consider the following cases.

Case 1. Suppose H 	≡ 0.
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Subcase 1.1. Let l ≥ 1.
From (2.1) we get

N(r,∞;H) ≤ N(r,∞;F ) +N∗(r, 1;F,G) +N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2)

+N0(r, 0;F
′) +N0(r, 0;G

′) +N(r, 0; a) +N(r,∞; a)

+
t∑

j=1

N(r, 0; bj) +
t∑

j=1

N(r,∞; bj), (3.1)

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which

are not the zeros of F (F − 1) and N0(r, 0;G
′) is similarly defined.

Let z0 be a simple zero of F − 1. Then by a simple calculation we see that
z0 is a zero of H and hence

N
1)
E (r, 1;F ) = N(r, 1;F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ). (3.2)

By the second fundamental theorem, Lemma 2.7, (3.1) and noting that
N(r,∞;F ) = N(r,∞;G) + S(r, f), we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N(r, 1;G)−N0(r, 0;G
′) + S(r,G)

≤ 2N(r,∞;F ) +N(r, 0;G) +N(r, 0;G |≥ 2) +N(r, 0;F |≥ 2)

+N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′) + S(r, f). (3.3)

While l = ∞, N∗(r, 1;F,G) = 0. So

N(r, 0;F |≥ 2) +N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′ ) ≤ N(r, 0;F ′).

(3.4)
So

T (r,G) ≤ 2N(r,∞;F ) +N2(r, 0;G) +N(r, 0;F ′) + S(r, f)

that is

T (r, P [f ]) ≤ 2N(r,∞; f) +N2(r, 0;P [f ]) +N(r, 0; (fn/a)′) + S(r, f),

which contradicts (1.11).
While l ≥ 2, (3.4) changes to

N(r, 0;F |≥ 2) +N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′)

≤ N(r, 0;F |≥ 2) +N(r, 1;F |≥ l + 1) +N(r, 1;F |≥ 2) +N0(r, 0;F
′)

≤ N2(r, 0;F
′). (3.5)

Hence

T (r,G) ≤ 2N(r,∞;F ) +N2(r, 0;G) +N2(r, 0;F
′) + S(r, f).

i.e.,

T (r, P [f ]) ≤ 2N(r,∞; f) +N2(r, 0;P [f ]) +N2(r, 0; (f
n/a)′) + S(r, f),
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which contradicts (1.12).
While l = 1 (3.4) changes to

N(r, 0;F |≥ 2) + 2N(r, 1;F |≥ 2) +N0(r, 0;F
′)

≤ N(r, 0;F ′) +N(r, 0;F ′ | F 	= 0).

Similarly as above we have

T (r, P [f ]) ≤ 2N(r,∞; f) +N2(r, 0;P [f ]) +N(r, 0; (fn/a)′)

+N
(
r, 0; (fn/a)′ | (fn/a) 	= 0

)
+ S(r, f),

which contradicts (1.13).

Subcase 1.2. l = 0.
In this case F and G share (1, 0) except the zeros and poles of a(z). Also

we have

N(r,∞;H) ≤ N(r,∞;F ) +N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +NL(r, 1;F )

+NL(r, 1;G) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f). (3.6)

Let z0 be a zero of F −1 with multiplicity p and a zero of G−1 with multiplicity
q. It is easy to see that

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) + S(r, f),

N
(2

E (r, 1;F ) = N
(2

E (r, 1;G) + S(r, f)

and
N

1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, f). (3.7)

By the second fundamental theorem we get using (3.6) and (3.7) that

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N
1)
E (r, 1;F ) +NL(r, 1;F ) +N

(2

E (r, 1;F )

+NL(r, 1;G)−N0(r, 0;F
′) + S(r, f)

≤ 2N(r,∞;F ) +N(r, 0;G) +N(r, 0;F |≥ 2) +NL(r, 1;F ) +N(r, 0;G |≥ 2)

+NL(r, 1;G) +N0(r, 0;G
′) +NL(r, 1;F ) +NL(r, 1;G) + S(r, f)

≤ 2N(r,∞;F ) +N(r, 0;G) +N(r, 0;G |≥ 2) + 2N(r, 1;G |≥ 2) +N0(r, 0;G
′)

+N(r, 0;F |≥ 2) + 2N(r, 1;F |≥ 2) + S(r, f)

≤ 2N(r,∞;F ) +N(r, 0;G) +N(r, 0;G′) +N(r, 0;G′ | G 	= 0)

+N(r, 0;F ′) +N(r, 0;F ′ | F 	= 0) + S(r, f).

From Lemma 2.1 for p = 1, k = 1 and Lemma 2.2 we get

T (r,G) ≤ 2N(r, 0;G) +N2(r, 0;G) +N(r, 0;F ′)

+N(r, 0;F ′ | F 	= 0) + 4N(r,∞;F ) + S(r, f),
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that is,

T (r, P [f ]) ≤ 4N(r,∞; f) + 2N(r, 0;P [f ]) +N2(r, 0;P [f ]) +N(r, 0; (fn/a)′)

+N(r, 0; (fn/a)′ | (fn/a) 	= 0) + S(r, f).

This contradicts (1.14).

Case 2. Let H ≡ 0.
On integration we get from (2.1)

1

F − 1
≡ C

G− 1
+D, (3.8)

where C, D are constants and C 	= 0. From (3.8) it is clear that F and G share
1 CM. We claim that D = 0. If N(r,∞; f) 	= S(r, f), then by (3.8) we get
D = 0.
So we assume that

N(r,∞; f) = S(r, f) (3.9)

and D 	= 0. Clearly

N(r,∞;G) = N(r,∞; f) + S(r, f).

From (3.8) we get
1

F − 1
=
D
(
G− 1 + C

D

)
G− 1

. (3.10)

Clearly from (3.10) we have

N

(
r, 1− C

D
;G

)
= N(r,∞;F ) = N(r,∞;G) = S(r, f). (3.11)

If CD 	= 1, by the second fundamental theorem, Lemma 2.7 and (3.11) we
have

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N
(
r, 1− C

D
;G
)
+ S(r,G)

≤ N(r, 0;G) + S(r, f) ≤ N2(r, 0;G) + S(r, f) ≤ T (r,G) + S(r, f).

So,
T (r,G) = N2(r, 0;G) + S(r, f).

i.e.,
T (r, P [f ]) = N2(r, 0;P [f ]) + S(r, f),

which contradicts (1.11).
If CD = 1 we get from (3.8)

(
F − 1− 1

C

)
G ≡ − 1

C
. (3.12)
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From (3.12) it follows that

N(r, 0; f |≥ k + 1) ≤ N(r, 0;P [f ]) ≤ N(r, 0;G) = S(r, f). (3.13)

Again from (3.12) we see that

1

fd(P ) (fn − (1 + 1/C)a)
≡ − C

a2
P [f ]

fd(P )

Hence by the first fundamental theorem, (3.9), (3.13), Lemmas 2.3, 2.4 and 2.5
we get that

(n+ d(P ))T (r, f) =

= T

(
r, fd(P )

(
fn −

(
1 +

1

C

)
a
))

+ S(r, f)

= T

(
r,

1

fd(P )(fn − (1 + 1
C )a)

)
+ S(r, f)

= T

(
r,
P [f ]

fd(P )

)
+ S(r, f) ≤ m

(
r,
P [f ]

fd(P )

)
+N

(
r,
P [f ]

fd(P )

)
+ S(r, f)

≤ (d(P )− d(P )) [T (r, f)− {N(r, 0; f |≤ k) +N(r, 0; f |≥ k + 1)}]
+ (d(P )− d(P ))N(r, 0; f |≥ k + 1) +Q N(r, 0; f |≥ k + 1)

+ d(P )N(r, 0; f |≤ k) + S(r, f)

≤ (d(P )− d(P ))T (r, f) + d(P )N(r, 0; f |≤ k) + S(r, f). (3.14)

From (3.14) it follows that

nT (r, f) ≤ S(r, f),

which is absurd. Hence D = 0 and so

G− 1

F − 1
= C or

P [f ]− a

fn − a
= C.

This proves the theorem.
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