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The gap theorems for some extremal submanifolds in
a unit sphere

Xi Guo and Lan Wu

Abstract. Let M be an n-dimensional submanifold in the unit sphere S™*7,
we call M a k-extremal submanifold if it is a critical point of the functional
[ M p** dv. In this paper, we can study gap phenomenon for these sub-
manifolds.

1 Introduction and theorems

Let x: M™ — S™"P(1) be an n-dimensional compact submanifold in a unit sphere,
and let

® ¢1,...,¢e, be alocal orthonormal frame of tangent vector field on M,
® €,41,.-.,€ntp be alocal orthonormal frame of normal vector field on M,
® Wi,...,Wn, Wntl,--.,Wnip be its dual coframe field.

Then the second fundamental form and the mean curvature vector of M are
1
A:th‘jwi@)wj@ea, H:ZHO‘ea:ﬁthQea. (1)
4,5,00 « 7,0
We can define trace-free linear maps ¢ : ToM — T, M by
(p*X,Y) = (A°X)Y) — (X, Y)(H, e,),
where ¢ € M, A® is the shape operator of e,,
A%(e;) = — Z(ﬁeiea,eﬁej = th‘jej ,
J J
and we define a bilinear map ¢: T,M x T,M — T,M~* by
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n+p

PX,Y)= Y (97X, Y)eq. (2)

a=n+1

It’s easy to check that |¢|? = |A]* — nH?, where H?> = H|> = Y _(H*)?, and we
denote p = |¢|. For any fixed number & Wlth k > 1, we can define the following
functional

Fr(x) = /M p*k do. (3)

When k = Z, it is the Willmore functional. We say z: M — S™*? is a k-extremal
submamfold 1f it is a critical point of the functional Fy(z).

It seems very interesting to study the gap phenomenon for submanifolds, and
there are some results about compact minimal submanifolds in S"*?(1), such as in
[7]. For Willmore submanifolds, H. Li proved:

Theorem 1. @ Let M be an n-dimensional compact Willmore submanifold in S™1?,

then
/M[n—<2—ll)>p2}pndv<0. (4)

Z—q/p’ then either p = 0 and M is a totally umbilical sub-

In particular, if p? <

manifold, or p? = 51 75 In the latter case, either p = 1 and M is a Willmore torus

Winn—m = Sm(./—) x Sn— m(\/;); orn =2, p=2 and M is the Veronese

surface.
And for k-extremal submanifolds, Z. Guo and H. Li, the second author proved:

Theorem 2. , @ Let M be an n-dimensional compact k-extremal submanifold
in S"*P 1<k <%, then

/M [n - (2 - ;)p2:| p** dv < 0. (5)

In partmu]ar 1fp < 5= 1/ , then either p = 0 and M is a totally umbilical subman-

ifold, or p? = / In the latter case, either p = 1,n = 2m and M is a Clifford
torus Cpy . = Sm( %) X Sm( %), orn =2, p =2 and M is the Veronese

surface.

In 2011, H. Xu and D. Yang proved the following pinching theorem for sub-
manifold which is a critical point of the functional F}(z).

Theorem 3. @ Let M be an n-dimensional compact 1-extremal submanifold in S™1?,
then there exists an explicit positive constant A,, depending only on n such that if

2

(/M p" dv) T < An, (6)
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(n - 2)(3 —n)
A5 —m)(n— 17+ (n—2)

2 min n(n —2)°
3 dn(n —1)> + (n - 2)*’
(n—2)%(5 —n) } 2
C(n > 2),
4(5 —n)(n—1)2+ (n —2)? (n) (p22)
then M is a totally umbilical submanifold, where C(n) is a positive constant de-
pending on n which satisfies:

/fn 1dv - SC(n)/ (IVfl+ @1+ H?)f)dv (7)
M
holds for any f € C*(M).

In this paper, we prove the following theorems for the k-extremal submanifold
when 1 < k < %:

Theorem 4. Let M be an n-dimensional compact k-extremal submanifold in S™*P
(n>3),1 <k < %, then there exists an explicit positive constant A, ; depending
only on n and k such that if

2

(/Mp dv) <Ak, (8)

where
o n(n —2)*(2k - 1)
C(n) 2 mm{ dn(n —1)2k2 4+ (2k — 1)(n — 2)2’
(2k—1)(n — 2)*(% —n)
2 - 1 7
Ao = 45 —m)(n — 1)°k% + (2k — 1><”2)2} v

2 o . n(n —2)%(2k — 1)
307 mm{ dn(n —1)%k% + (2k — 1)(n — 2)2’
(2k — 1)(n — 2)*(2% —n) } (032

A(2 —n)(n — 1)2k2 + (2k — 1)(n — 2)2

then M is a totally umbilical submanifold, where C(n) is the same constant as
above.

Theorem 5. Let M be an n-dimensional (n > 3) compact k-extremal submanifold
with flat normal bundle in S"™P, 1 < k < % If p2 < n, then either p = 0 and
M is a totally umbilical submanifold, or p = 1,n = 2m and M is a Clifford torus

o =57{3) <57,

Remark 1. If k = 5, then A, = 0, so our Theorem (4] is trivial when k = %

2 If
2
k=1, A,1 = A, our Theorem [4 reduces to Xu-Yang’s Theorem
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2 Preliminaries and lemmas

We shall make use of the following convention on the range of indices:

1<AB,C<n+p, 1<ij,k<n, n+l1<aB,vy<n+p.

We choose a local orthonormal frame field {e1,...,en, ent1,...€n4p} along M,
with {e;}i=1,2,...» tangent to M and {eq}a=n+1,n+2, . ntp normal to M. Let {wa}
be the corresponding dual coframe, and {wap} be the connection 1-form on S™*7.
Restricted on M, the curvature tensor, the normal curvature tensor can be given by

.....

1
dwz‘j - Zwik N wgj = —5 Z Rijklwk A wy, (9)
% Tl
1
dwap — Zwav N Wya = -3 Z Ri_ﬁklwk A wy. (10)
Y k,l

and the mean curvature H =Y H%e,, where H* = 1 3 h2.
The covariant derivative of the second fundamental form is given by

D Wiawn = ARG + 3 b + Y hiwni+ D hwsa, (11)
k k k B
S hg gwn = ARG+ > hfs wi+ > RS wi+ Y G gwi + > wea. (12)
1 l l 1 B

In Eﬂ, the second author calculated the Euler-Lagrangian equation of Fj(x):

Lemma 1. [J If x: M — R"*P(c) be an n-dimensional submanifold in an
(n + p)-dimensional space form R"*P(c). Then for k > 1, M is an extremal sub-
manifold of Fy(x) if and only if forn+1 < a <n+p,

0=—A(P* ) H* +2(n—1)) (p**?)HS

+ Z 2k— 2 z]ha (n _ 1)p2k—2ALHoc

O( « n O(
P T G - Y gl - e,
i,9,k,8 i,5,8

Using the above lemma, we can get that:
Lemma 2. If M is an extremal submanifold of Fy(x), then

/ 2k— 2<AH2 QZh"H(X)dv
M

7,0

— 2/ PR 2| VEH? du + 2/ P2 Fdv, (14)
M M
where V* is the normal connection on M, and

apa B B arrBra 1.8 N 92
D HOhGHGRG = Y HOHPRG A — o p P

.5,k 8 Jrk,o,B
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Proof. Multiplying the equation by H* and integrating over M we obtain

0= AP H? dv 4 2(n — 1) / Z =2y HYH™ dv

M
/Z 2h=2) R H® dv + (n — 1) / Zp%—ZHgiHadv (15)

7,0

+ / ka—QF dU,
M

and integrating by parts, we can get

(p2k72),‘HOfHad’U:—/ p2£ 2H2d1}—/ p2k QHaHadU
[N DL B>

S0
2/ > (P HGH dv = —/ Ap*2H? dv = —/ PP 2AH? dv.  (16)
M5 ’ M M
Thus we have the following calculations:

/ Z 2k — 2 ”haHad’U_ / Z 2k — 2 Z”H’ldv—/ Z 2k — 2 hlo_;Hf;dU

i,7,0 i,7,0 i,7,0

:—n/ Z 2h=2) H“Hadv+/ Zp% thslHo‘dv
1,70
/ZW%WWU

i,5,0

:g/ P EAH? dv+n/ P2V HP do
M

/ > Phg HS; dv, (17)
M '

i,5,0

1
/ Zka_zH%iHa dv = = / p2k:—2AH2 dv — / ka—2|vLH|2 do. (18)
M~ ’ 2 /m M

Then becomes

1
0:—7/ pzk’QAHdeJr/ p?* 2| ViH? dv
2 M M

/ > PR HS; dv + / p*F 2 F dv,
M ’ M

i,7,0

(19)

SO holds. O



90 Xi Guo and Lan Wu

We also need the following inequalities:

Lemma 3. [§ Let M be an n-dimensional (n > 3) compact submanifold in the
unit sphere S™P . Then for any f € CY(M), f > 0,t > 0, f satisfies the following
inequality

/ |Vf2decl(n,t)</ fn21L2 dfu) " 702(n,t)/ (lJrHQ)fzdv7 (20)
M M M

n—2)>2 n—2)>2
Where Cl(n,t) = W, CQ(TL,t) = 4g(n_i)2 .

Lemma 4. E] Let B',B?,...,B™ be symmetric (n X n)-matrices, Set S,5 =
tr(B®B?), So = Saa, S = Y o Sa, then

3 2
Z|BaBB_BBBa|2+Zs§ﬁg2(2@:5*&) , (21)

a,f a,B
where |B|? = tr B!B.

3 Proof of the theorems
We also need a Simons’ type formula, which can be found in @:

Lemma 5. If x: M — S™™™ be an n-dimensional submanifold, then

]. « (03
iApz = |VA? - n?|VIH|? + Z (hi5hitk.) .

i,7,k,a
+n Y HPeLo% e + np® + n’Hp? (22)
a,B,1,5,k
1
=D oas— D, (Ragy)’ — FAMH?),
a,f a,B,1,j
where ¢ is the trace-free tensor which defined above, 0,5 = Ei’ j %(ﬁfj
From
0= [ Ap*Fdv= 2/ Ap?p?* 2 dv + 2/ (Vp%, Vp*h=2) do, (23)
M M M

and , we get that

1 1
7/ Ap?p* =2 v = / |VA]2p* =2 dv + n/ (Z hiHSG; — —AH?)p* 2 dv
2 /u M M . ' 2

a,t,j
+ / Ep**~2dv, (24)
M
where

E=n Y HYOL 6005 +np? + 0t H2 =Y 02— 3 (Riyy).

a,B,i,5,k a,B a,B,i,j
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Using and ,
0 :/ (VA2 = n|VEH2) 022 do
" (25)
+ / (E —nF)p*~2dv+ (2k — 2)/ IVp|2p?* =2 dv,
M M
from Lemma 2.1 in 8] we know that
VAP —n|VEHP = Y (65)° > [Vol*. (26)

a,i,j,k

By a direct computation, we have that

E —nF =np? +2kp Z_n Z HH ¢, flfj Zgaﬁ Z a,ﬁij)27 (27)

a,B,i,j a,B,4,3
for
Z HQHBQZ/) (bf] — Z(ZHa(b%)Q < (Z(Z¢%)2> ((ZHQ>2> _ p2H2
«a,B,i,7 7 « 1,7 a « (28)
then
2 2 Rt 2| 2k—2 (29)
—i—/M {n,o + (% —n)H - Zaaﬁ Z Rasij) }p 2 dw.
a,B3,i,j
Proof. (Theorem [)) From Lemma [4]
E—nF > np2+(% —n)p?H? — np*, (30)

where n = mln( 2— 5)
From (25, (26) and (30), we know that the following inequality holds,

2k —1 k|2 n? 2 2k
A — <
12 /M|Vp | dv+/M {n+ (% n)H 2 p?* dv <0, (31)
and with Lemma and , we can get:
n—2
2k—1 n e 2k —1
0> c1(n, t) / pﬁk dv +(n———ca(n,t) / p*F dv
k2 M k2 M (32)
+ lnj*n*%;lCQ(n t) / H2p2kd’u 77]/ p2k:+2dv
2k k2 ’ M M '
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Using the Holder’s inequality, we have

OZ[ 2 cl(n,t)—n(/Mp dv) }</Mp dv>
+ n—2k_162(n,t) /p%dv
k2 M

n? 2k -1 9 ok
+ [%—n—]@cQ(n,t)] (/MH p dv),

let t = (n;(z)_zgfl;l) max (22— 1) then Theorem {4 follows. O

n2—2kn’ n

Proof. (Theorem [5)) If M has normal flat bundle, then become

2% — 1
0> = /IW’“Ide
M

2

n _
+/M{np2+(2k—n>H2 Q—Zaiﬁ}p% 2 dv
a,p

2
> / [an n (TL _ n)H2p2 _ p4:|p2k—2 do

> [ 0= (33)

So if p < m, then either p = 0 and M is a totally umbilical submanifold, or p? = n,
for k < %, from , we know that H = 0, with the Theorem 3 in , we know
that M lies in a (n + 1)-dimensional unit sphere, so the Theorem [5| follows from
the Theorem Pl
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