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A subclass of strongly clean rings

Orhan Gurgun, Sait Halicioglu and Burcu Ungor

Abstract. In this paper, we introduce a subclass of strongly clean rings. Let
R be a ring with identity, J be the Jacobson radical of R, and let J# denote
the set of all elements of R which are nilpotent in R/J . An element a ∈ R
is called very J#-clean provided that there exists an idempotent e ∈ R such
that ae = ea and a − e or a + e is an element of J#. A ring R is said to
be very J#-clean in case every element in R is very J#-clean. We prove
that every very J#-clean ring is strongly π-rad clean and has stable range
one. It is shown that for a commutative local ring R, A(x) ∈ M2

(
R[[x]]

)
is very J#-clean if and only if A(0) ∈ M2(R) is very J#-clean. Various
basic characterizations and properties of these rings are proved. We obtain
a partial answer to the open question whether strongly clean rings have
stable range one.

This paper is dedicated to Professor Abdullah Harmanci on his 70th birthday

1 Introduction
Throughout this paper, all rings are associative with identity unless otherwise
stated. Nicholson in [16] defined clean elements and clean rings, also in [17] Nichol-
son and Zhou introduced strongly clean rings and Chen continued studying strongly
clean rings and introduced strongly J-clean rings in [5]. Other generalizations of
clean notion of rings are investigated by many authors ([4], [6], [10], [12]). Let U
denote the set of all invertible elements and J be the Jacobson radical of R. In
this paper, the set of all elements of R which are nilpotent in R/J will be denoted
by J#. Clearly, J ⊆ J#. Let a be an element of R. The element a is called clean
provided that there exist e2 = e ∈ R and u ∈ U such that a = e+ u. The element
a is strongly clean if there exist e2 = e ∈ R and u ∈ U such that a = e + u and
eu = ue. An element a is called very clean if there exists e2 = e ∈ R and u ∈ U
such that a = e + u or a = −e + u and eu = ue. In general, a ∈ R is (strongly or
very) T -clean if and only if there exists an idempotent e ∈ R such that (ae = ea
and) a− e (or potentially a+ e for very cleanness) is in the set related to T . Here,
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T ∈ {Nil, J, J#}, and the corresponding sets are Nil(R) (the set of all nilpotent
elements of R), J and J#, respectively. A ring R is said to have stable range one
if given a, b ∈ R for which aR + bR = R, there exists y ∈ R such that a+ by ∈ U .
One of the most important features of stable range one is the cancellation of re-
lated modules from direct sums. We know that stable range one in endomorphism
rings implies cancellation in direct sums, that is, if A, B, C are modules such that
A ⊕ B ∼= A ⊕ C, and End(A) has stable range one, then B ∼= C [11, Theorem 2].
Further, if R is directly finite, i.e., any x, y ∈ R satisfying xy = 1 also satisfy
yx = 1, then so is Mn(R) (for details one can see [6]). But so far it is unknown
whether strongly clean rings have stable range one (see [17]). This motivates us to
construct a natural subclass of strongly clean rings, namely, very J#-clean rings,
which have stable range one.

Clearly, every commutative or Artinian strongly nil clean ring is strongly J-
clean. But the converse is not true in general (see [5] or Example 2). Since Nil(R) ⊆
J# and J ⊆ J#, we know that strongly J-clean rings and strongly nil-clean rings
are strongly J#-clean, and every very nil-clean ring is very J#-clean. Example 2
is a very J#-clean ring, which is not very nil-clean. Every strongly J#-clean ring
is very J#-clean but Example 3 is very J#-clean, which is not strongly J#-clean.
Any very J#-clean ring is strongly clean (see Theorem 1) but there exists a strongly
clean ring which is not very J#-clean (e.g. Z5). Every strongly clean ring is very
clean. Example 4 is a very clean ring, which is not strongly clean. Now we illustrate
relations between these classes of rings in the following:

Strongly J-clean // Strongly J#-clean // Very J#-clean

��
Strongly nil-clean

55

// Very nil-clean

55

Strongly clean

��
Very clean

None of the implications in the diagram are reversible.
The paper is organized as follows: in Section 2, basic properties of very J#-

clean rings are given. We give some examples concerning their relations with clean
rings, strongly clean rings, strongly J#-clean rings. Further, we prove that if R is
very J#-clean, then R has stable range one. In Section 3, we construct several
examples of very J#-clean rings. For instance, if R is an abelian very J#-clean
ring, then the ring R[[x]] of power series over R is very J#-clean. In Section 4,
we characterize the very J#-cleanness of matrices over commutative local rings.
Further, we consider very J#-clean power series rings over such matrix rings.

In what follows, for a positive integer n, Zn and N denote the ring of integers
modulo n and the natural numbers, while for a prime integer p, Z(p) denotes the
ring of integers localized at the prime ideal (p), and we write Mn(R) for the rings
of all n×n matrices over a ring R. We write R[[x]] and Nil(R) for the ring of power
series over R and the set of all nilpotent elements of R, respectively. Let R̄ denote
the quotient ring R/J .
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2 Elementary results
Recall that a ring R is called local if it has only one maximal left ideal (equivalently,
maximal right ideal). It is well known that a ring R is local if and only if a+ b = 1
in R implies that either a or b is invertible if and only if R̄ is a division ring. A
ring R is said to be reduced if it has no non-zero nilpotent elements. Now we begin
with the simple result.

Lemma 1. For a ring R we have that R̄ is reduced if and only if J# = J . In
particular, J# = J if R is commutative or local or R̄ is the direct sum of division
rings.

It is clear from Lemma 1 that if R is a commutative or local ring, then a ∈ R
is strongly J#-clean if and only if a ∈ R is strongly J-clean. Recall that a ring R
is called uniquely clean if every element can be written uniquely as the sum of an
idempotent and a unit (see [18]).

Lemma 2. Let R̄ be a direct sum of division rings. Then the following are equiv-
alent.

(1) R is strongly J#-clean.

(2) R̄ is a direct sum of two-element fields.

Proof. Note that if R̄ is a direct sum of division rings (every local ring or commu-
tative Artinian ring has this property), then R is (strongly, very) J#-clean if and
only if R is (strongly, very, respectively) J-clean, because, by Lemma 1, we have
J# = J . Let Fn denote the field with n elements.

(1) ⇒ (2) Since R is strongly J-clean, we have R̄ is Boolean, and so R̄ ∼= ⊕F2

because R̄ is a direct sum of division rings.
(2) ⇒ (1) Assume that R̄ is a direct sum of two-element fields. Then R is

uniquely clean by [18, Corollary 16]. This implies that R is abelian (that is, all
idempotents in R are central) and for all a ∈ R there exists a unique idempotent
e ∈ R such that e− a ∈ J by [18, Theorem 20]. Thus R is strongly J-clean. �

One may suspect that if R̄ is a direct sum of two- or three-element fields, then
R is very J#-clean. The following example shows that this is not true in general.

Example 1. Let R denote the ring Z9 ⊕ Z9. Then we have R̄ = Z3 ⊕ Z3 and the
only idempotents of the ring R are (0, 0), (1, 0), (0, 1), (1, 1). Further, note that
J# = J . Hence (2, 4) ∈ R is not (strongly) very J#-clean.

(Strongly) Nil-clean elements (rings) are introduced by Diesl in [9], [10]. Clearly,
every strongly nil-clean element (ring) is a strongly J#-clean element (ring). But
there exists a strongly J#-clean element (ring) which is not strongly nil-clean ele-
ment (ring) as the following example shows (see [5]).

Example 2. Let R =
∞∏

n=1
Z2n . For each n ∈ N, Z2n is a local ring with the

maximal ideal 2Z2n . Then Z2n/2Z2n
∼= Z2. Hence R is strongly J-clean, and so R
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is strongly J#-clean (and very J#-clean). Since the element r = (0, 2, 2, . . .) ∈ R
is not strongly nil-clean (and not very nil-clean), R is not strongly nil-clean (and
not very nil-clean).

Every strongly J#-clean (strongly J-clean) ring is very J#-clean (very J-clean)
but there exists a very J#-clean (very J-clean) ring which is not strongly J#-clean
(strongly J-clean) as the following example shows.

Example 3. The ring Z3 is very J#-clean which is not strongly J#-clean.

Proof. Let R = Z3. Note that R is strongly (or very) J#-clean if and only if R
is strongly (or very) J-clean because R is commutative, and we have J = J# = 0
by Lemma 1. Since R̄ is not Boolean, R is not strongly J#-clean, but R is very
J#-clean. �

Very clean elements (rings) are introduced by Chen et al. in [8]. Thus any very
J#-clean ring is very clean. But the converse need not be true in general as shown
below.

Example 4. Z(3) ∩ Z(5) is a very clean ring which is not very J#-clean.

Proof. Set R = Z(3)∩Z(5). If R is very J#-clean, then, by Theorem 1, it is strongly
clean, but it is not strongly clean by [8, Theorem 3.5] or by [2, Example 17]. �

The next result shows that for an element of a ring, being very J#-clean and
strongly J#-clean coincide under some conditions.

Proposition 1. Let R be a ring, 2 ∈ J , and a ∈ R. Then a is very J#-clean if and
only if it is strongly J#-clean.

Proof. If a ∈ R is strongly J#-clean, then it is very J#-clean. Conversely, assume
that a ∈ R is very J#-clean. Then there exist an idempotent e ∈ R and v ∈ J#

such that ae = ea and a = e+v or a = −e+v. If a = −e+v, then a = e+(v−2e).
As 2 ∈ J , it easy to verify that v − 2e ∈ J#, hence a ∈ R is strongly J#-clean.
This completes the proof. �

Remark 1. If u is invertible, v ∈ J# and uv = vu, then we have that u + v and
u− v is invertible.

Proof. Since v ∈ J# if and only if −v ∈ J#, we only need to prove one of u+v ∈ U
and u−v ∈ U . We prove that u−v ∈ U . Now, we have vn ∈ J , thus 1−u−nvn ∈ U .
Now

1− u−nvn = 1− (u−1v)n = (1− u−1v)
(
1 + u−1v + · · ·+ (u−1v)n−1

)
.

Hence 1− u−1v is invertible, and so u− v = u(1− u−1v) ∈ U , because u ∈ U . �

By the following result, we determine the set of all invertible elements of a very
J#-clean ring.
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Proposition 2. If R is a very J#-clean ring, then

U = {u ∈ R | u− 1 ∈ J# or u+ 1 ∈ J#} .

Proof. Let u ∈ U . Since R is very J#-clean, there exist an idempotent e ∈ R and
v ∈ J# such that ue = eu and u = e + v or u = −e + v. Assume that u = e + v.
Then u− v = e ∈ U implies that e = 1 and so u = v+ 1. Assume that u = −e+ v.
Then v − u = e ∈ U implies that e = 1 and so u = v − 1.

On the other hand, suppose that u = v − 1 where v ∈ J#. Then we can find
some n ∈ N such that vn ∈ J . Hence 1 − avn ∈ U for any a ∈ R. If 1 − vn ∈ U ,
then 1− v ∈ U because

1− vn = (1− v)(1 + v + · · ·+ vn−1),

and so u ∈ U . Suppose that u = v+1 where v ∈ J#. Then we can find some n ∈ N
such that vn ∈ J . Therefore 1 − avn ∈ U for any a ∈ R. If 1 + (−1)n−1vn ∈ U ,
then 1 + v ∈ U because

1 + (−1)n−1vn = (1 + v)(1− v + · · ·+ (−1)n−1vn−1),

and so u ∈ U . Hence

U = {u ∈ R | u− 1 ∈ J# or u+ 1 ∈ J#},

as required. �

Every very nil-clean ring is very J#-clean, but there exists a very J#-clean ring
which is not very nil-clean (see Example 2). Clearly, if J is nil, then a ∈ R is very
J#-clean if and only if a ∈ R is very nil-clean.

Now we give the relations among strongly cleanness, very nil-cleanness and very
J#-cleanness for the rings.

Theorem 1. Let R be a ring. If R is very J#-clean, then R is strongly clean and
R̄ is very nil-clean. If R is strongly clean, R̄ is very nil-clean and 2 ∈ J#, then R is
very J#-clean.

Proof. Suppose that R is very J#-clean, and let a ∈ R. Then there exist an
idempotent e ∈ R and v ∈ J# such that ae = ea and a = e + v or a = −e + v.
This implies that a = (1 − e) + (2e − 1 + v) or a = 1 − e + v − 1. As ev = ve
and (2e − 1)−1 = 2e − 1, we get 2e − 1 + v ∈ U or v − 1 ∈ U by Remark 1 and
Proposition 2. Hence a ∈ R is strongly clean because 1− e is an idempotent. Thus
R is strongly clean. Further, ā = ē+ v̄ or ā = −ē+ v̄ where v̄n = 0̄ for some n ∈ N.
Therefore R̄ is very nil-clean.

Assume that R is strongly clean, R̄ is very nil-clean, 2 ∈ J# and let a ∈ R.
Then there exists an idempotent e ∈ R such that a = e + u and ea = ae where
u ∈ U . As R̄ is very nil-clean, we can find an idempotent f̄ ∈ R̄ such that ūf̄ = f̄ ū
and ū = f̄+w̄ or ū = −f̄+w̄ where w̄ ∈ R̄ is nilpotent. Further, f̄ = ū−w̄ ∈ U

(
R̄
)
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or f̄ = w̄− ū ∈ U
(
R̄
)
, and then f̄ = 1̄. Hence u = 1 +w+ r or u = −1 +w+ r for

some r ∈ J . Therefore

a = e+ u = e+ 1 + w + r = (1− e) + (2e+ w + r)

or
a = e+ u = e− 1 + w + r = −(1− e) + (w + r).

Obviously, (w+ r)m ∈ J or (2e+w+ r)m ∈ J for some m ∈ N. Consequently, R is
very J#-clean. �

Recall that an element a ∈ R is called strongly π-rad clean provided that there
exists an idempotent e ∈ R such that ae = ea and a− e ∈ U and (eae)n = eane ∈
J(eRe) for some integer n ≥ 1. A ring R is said to be strongly π-rad clean in case
every element in R is strongly π-rad clean (see [9]). For instance, if R is local, then
it is strongly π-rad clean. It is well known that eJe = J(eRe) for any e2 = e ∈ R
(see [13, Theorem 1.3.3]).

Theorem 2. If a ring R is very J#-clean, then it is strongly π-rad clean.

Proof. Let R be a very J#-clean ring and a ∈ R. Then there exist an idempotent
e ∈ R and v ∈ J# such that ae = ea and a = e + v or a = −e + v. Assume that
a = e+v where vn ∈ J for some n ∈ N. This implies that a = (1−e)+(2e−1+v).
As ev = ve and (2e − 1)−1 = 2e − 1, it is easy to verify that 2e − 1 + v ∈ U by
Remark 1. Hence a(1− e) = (1− e)a and a− (1− e) ∈ U and

[(1− e)a(1− e)]n = [(1− e)v(1− e)]n = (1− e)vn(1− e) ∈ (1− e)J(1− e)

for some n ∈ N. Assume that a = −e + v where vm ∈ J for some m ∈ N.
This implies that a = (1 − e) + (v − 1). By Proposition 2, v − 1 ∈ U . Thus
a(1− e) = (1− e)a and a− (1− e) ∈ U and

[(1− e)a(1− e)]m = [(1− e)v(1− e)]m = (1− e)vm(1− e) ∈ (1− e)J(1− e)

for some m ∈ N. Therefore R is strongly π-rad clean, as asserted. �

The converse of Theorem 2 need not be true as the following example shows.

Example 5. Since Z5 is a local ring, it is strongly π-rad clean, but not very J#-
clean. Because 2̄ ∈ Z5 is not very J#-clean as J#(Z5) = J(Z5) = 0.

It is an open question that whether strongly clean rings have stable range one
(see [17, Question 1]). In the next result, we obtain that very J#-clean rings have
this property. So by Theorem 3, we can give a partial answer to the open question.
We know from [19] that a ring R has stable range one if and only if R̄ has stable
range one. Recall that an element a of a ring R is called strongly π-regular if there
exist a positive integer n and x ∈ R such that an = an+1x. A ring R is said to be
strongly π-regular if every element of R is strongly π-regular. Ara showed that if
R is strongly π-regular, then R has stable range one (see [3, Theorem 4]).
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Theorem 3. Let R be a very J#-clean ring. Then R̄ is strongly π-regular, hence
R has stable range one.

Proof. Let R be a very J#-clean ring and a ∈ R. Then there exist an idempotent
e ∈ R and v ∈ J# such that ae = ea and a = e + v or a = −e + v. Assume that
a = e+v where vn ∈ J for some n ∈ N. This implies that an(1−e) = vn(1−e) ∈ J
and a = (1 − e) + (2e − 1 + v). As ev = ve and (2e − 1)−1 = 2e − 1, we get
u := 2e−1+v ∈ U by Remark 1. Hence ān = ānē = ūnē and ān+1 = ān+1ē = ūn+1ē
in R̄. This gives ān = ān+1(ū)−1 = (ū)−1ān+1, that is, ā ∈ R̄ is strongly π-regular.
Suppose that a = −e+v where vm ∈ J for some m ∈ N. Write a = (1−e)+(v−1).
This implies that am(1− e) = vm(1− e) ∈ J and

ame = (ae)m =
(
(v − 1)e

)m
= (v − 1)me.

Since vm ∈ J , we have v − 1 ∈ U . Hence ām = āmē = v − 1
m
ē and

ām+1 = ām+1ē = ¯v − 1
n+1

ē

in R̄. This gives
ām = ām+1(v − 1)−1 = (v − 1)−1ām+1,

that is, ā ∈ R̄ is strongly π-regular, and so R̄ is strongly π-regular. Thus R̄ has
stable range one from [3, Theorem 4]. By the remark above, R has stable range
one. �

Let R be a ring and a ∈ R. Set

annl(a) = {r ∈ R | ra = 0}

and
annr(a) = {r ∈ R | ar = 0}.

Then we have the following lemma.

Lemma 3. Let R be a ring and a = e+v or a = −e+v very J#-clean decomposition
of a in R. Then annl(a) ⊆ annl(e) and annr(a) ⊆ annr(e).

Proof. Let r ∈ annl(a). Then ra = 0. Since ev = ve, we have re = rv or re = −rv,
and so re = rve = rev or re = −rve = −rev. It follows that re(1 − v) = 0 or
re(1 + v) = 0, and so re = 0 because 1 + v, 1 − v ∈ U . That is, r ∈ annl(e).
Therefore annl(a) ⊆ annl(e). Similarly, we can prove that annr(a) ⊆ annr(e). �

Theorem 4. Let R be a ring and f ∈ R be an idempotent. Then a ∈ fRf is very
J#-clean in R if and only if a is very J#-clean in fRf .

Proof. Suppose a = e + v, e2 = e ∈ fRf , v ∈ J#(fRf), and ev = ve. Obviously,
v ∈ J# because vn ∈ J(fRf) = fJf ⊆ J for some n ∈ N. Hence a ∈ fRf is
very J#-clean in R. Similarly, one can show that if a = −e + v, e2 = e ∈ fRf ,
v ∈ J#(fRf), and ev = ve, then a ∈ fRf is very J#-clean in R.
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Conversely, suppose that a = −e + v, e2 = e ∈ R, v ∈ J#, and ev = ve. As
a ∈ fRf , we see that

1− f ∈ annl(a) ∩ annr(a) ⊆ annl(e) ∩ annr(e).

Hence (1− f)v = 0 = v(1− f) and fv = vf = v. We observe that a = fef + fvf ,
(fef)2 = fef , and

(fvf)m = vm ∈ fJf = J(fRf) ⊆ J#(fRf)

for some m ∈ N. Furthermore,

(fef)(fvf) = fevf = fvef = (fvf)(fef).

Similarly, one can prove that a ∈ fRf is very J#-clean in fRf where a = e + v,
e2 = e ∈ R, v ∈ J#, and ev = ve. Therefore the proof is completed. �

Corollary 1. A ring R is very J#-clean if and only if eRe is very J#-clean for any
idempotent e ∈ R.

Proof. Let a ∈ eRe. Since R is very J#-clean, we see that a ∈ eRe is very J#-clean
in R. According to Theorem 4, a ∈ eRe is very J#-clean in eRe. The converse is
clear by using e = 1. �

As is well known, every homomorphic image of a (strongly) clean ring is
(strongly) clean (see [12], [16], [17]). Analogously, we can give the following re-
sult.

Proposition 3. Every homomorphic image of very J#-clean rings is very J#-clean.

Proof. Let R be a very J#-clean ring and ϕ : R → S a surjective ring homomor-
phism. Then for any b ∈ S, there exists a ∈ R such that ϕ(a) = b. Since R is very
J#-clean, we can find an idempotent e ∈ R and v ∈ J# such that ae = ea and
a = e+v or a = −e+v. Assume that a = −e+v and vn ∈ J for some n ∈ N. Then
ϕ(a) = −ϕ(e) + ϕ(v) and ϕ(a)ϕ(e) = ϕ(e)ϕ(a). Obviously, (ϕ(e))2 = ϕ(e) ∈ S.
Since ϕ(J) ⊆ J(S), we have ϕ(vn) = ϕ(v)n ∈ J(S) and so ϕ(v) ∈ J#(S). Similarly,
one can show that ϕ(a) = ϕ(e) + ϕ(v) ∈ S is very J#-clean in S where a = e + v
and v ∈ J#. �

If I is a left ideal of a ring R, idempotents lift modulo I if, given a ∈ R with
a2 − a ∈ I, there exists e2 = e ∈ R such that a − e ∈ I (see [16]). Note that R is
a clean ring if and only if R/J is a clean ring and idempotents lift modulo J (see
[12, Proposition 6]). Recall that a ring R is called abelian if every idempotent is
central.

Theorem 5. Let I be an ideal of an abelian ring R with I ⊆ J . Then R is very
J#-clean if and only if R/I is very J#-clean and idempotents lift modulo I.
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Proof. Assume that R is very J#-clean. Then R/I is very J#-clean by Propo-
sition 3. Further, by Theorem 1, R is strongly clean, and so idempotents lift
modulo I by [12, Proposition 6].

Conversely, suppose that R/I is very J#-clean and idempotents lift modulo I
and let a ∈ R. By assumption, for ā ∈ R/I, there exists an idempotent ē ∈ R/I
such that āē = ēā and ā − ē or ā + ē is an element of J#(R/I). Assume that
ā = −ē + v̄ where v̄ ∈ J#(R/I). Then we can find some t ∈ N such that v̄t ∈
J(R/I) = J/I and so v ∈ J#. Since idempotents lift modulo I, we may assume
that e2 = e. Hence a+ e− v ∈ I ⊆ J and so a is a very J#-clean element because
e is central. Similarly, one can prove that if ā = ē+ v̄ and v̄ ∈ J#(R/I), then a is
a very J#-clean element. �

3 Examples
The purpose of this section is to construct several examples for very J#-clean rings.

Let R be a ring and σ be an endomorphism of R. Let R[[x, σ]] be the set of all

power series over the ring R. For any
∞∑
i=0

aix
i,
∞∑
i=0

bix
i ∈ R[[x, σ]], we define

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)x
i,

and ( ∞∑
i=0

aix
i
)( ∞∑

i=0

bix
i
)

=

∞∑
i=0

cix
i

where ci =
i∑

k=0

akσ
k
(
bi−k

)
. Then R[[x, σ]] is a ring under the preceding addition

and multiplication. Clearly, R[[x, σ]] is R[[x]] only when σ is the identity morphism.
Furthermore, J

(
R[[x, σ]]

)
= J + xR[[x, σ]] (see [14, Ex. 5.6]).

Lemma 4. If R[[x, σ]] is abelian, then σ(e) = e for every idempotent e ∈ R.

Proof. Since R[[x, σ]] is abelian, we have xe = ex for every idempotent e ∈ R.
Hence we get xe = ex = σ(e)x, and so σ(e) = e, as asserted. �

Proposition 4. Let R[[x, σ]] be an abelian ring. Then the following are equivalent.

(1) R is very J#-clean.

(2) R[[x, σ]] is very J#-clean.

Proof. (1)⇒ (2) Let a(x) ∈ R[[x, σ]]. Then we can find an idempotent e ∈ R and
v ∈ J# such that a(0) = e+ v or a(0) = −e+ v. Assume that a(0) = e+ v. Then
a(x) = e + v(x) where v(x) = a(x) − e = v + a1x + a2x

2 + · · · . Since σ(e) = e
for any idempotent e ∈ R by Lemma 4, we see that ev(x) = v(x)e. Further, we
conclude that v(x) ∈ J#

(
R[[x, σ]]

)
because v ∈ J# and

J
(
R[[x, σ]]

)
= J + xR[[x, σ]].
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This implies that a(x) ∈ R[[x, σ]] is very J#-clean. Assume that a(0) = −e + v.
Similarly, we can show that a(x) ∈ R[[x, σ]] is very J#-clean. Thus R[[x, σ]] is very
J#-clean.

(2) ⇒ (1) Let a ∈ R. Then we can find an idempotent e(x) ∈ R[[x, σ]] and
v(x) ∈ J#

(
R[[x, σ]]

)
such that ae(x) = e(x)a and a = e(x) + v(x) or a = −e(x) +

v(x). Obviously, e(0) ∈ R is an idempotent and v(0) ∈ J#. Since a = e(0) + v(0)
or a = −e(0) + v(0) and ae(0) = e(0)a, we obtain that a ∈ R is very J#-clean, and
therefore R is very J#-clean. �

Remark 2. As in the proof of [1, Lemma 2.18], we can show that the idempotents
of R[[x, σ]] belong to R. Hence if R is abelian, then so is R[[x, σ]].

The next result is a characterization of being very J#-clean for abelian rings.

Theorem 6. Let R be an abelian ring. Then the following conditions are equiva-
lent.

(1) R is very J#-clean.

(2) R[[x]]/〈xn〉 is very J#-clean for all n ≥ 2.

(3) R[[x]]/〈x2〉 is very J#-clean.

(4) R[x]/〈x2〉 is very J#-clean.

Proof. (1)⇒ (2) IfR is very J#-clean, thenR[[x]] is very J#-clean by Proposition 4
and so R[[x]]/〈xn〉 is very J#-clean by Proposition 3 for all n ≥ 2.

(2)⇒ (3) It is clear.
(3) ⇒ (1) Since R is abelian, so is R[[x]] by Remark 2. Note that J(R[[x]]) =

J + xR[[x]]. Then 〈x2〉 ⊆ J(R[[x]]), and so R is very J#-clean by Theorem 5.
(3)⇔ (4) Since R[x]/〈x2〉 ∼= R[[x]]/〈x2〉, there is nothing to show. �

Let R be a ring and σ : R→ R be an endomorphism. Set

D2(R, σ) =

{(
a b
0 a

) ∣∣∣∣ a, b ∈ R} ,
addition and multiplication are defined as follows:(

a b
0 a

)
+

(
c d
0 c

)
=

(
a+ c b+ d

0 a+ c

)
;(

a b
0 a

)(
c d
0 c

)
=

(
ac ad+ bσ(c)
0 ac

)
.

Then D2(R, σ) is a ring with the identity

(
1 0
0 1

)
. Denote D2(R, 1R) by D2(R),

where 1R : R→ R, r 7→ r. Further, it can be verified that

J
(
D2(R, σ)

)
=

{(
a b
0 a

) ∣∣∣∣ a ∈ J, b ∈ R} .
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Proposition 5. Let R be an abelian ring and σ : R → R be an endomorphism.
Then the following are equivalent.

(1) R is very J#-clean.

(2) D2(R, σ) is very J#-clean.

Proof. Note that since R is abelian, σ(e) = e for every idempotent e ∈ R by
Lemma 4 and Remark 2.

(1) ⇒ (2) Let A :=

(
a b
0 a

)
∈ D2(R, σ). Then there exists an idempotent

e ∈ R such that ae = ea and v := a − e ∈ J# or v := a + e ∈ J#. Assume that

v := a−e ∈ J# and vn ∈ J for some n ∈ N. Since V n =

(
vn ∗
0 vn

)
∈ J

(
D2(R, σ)

)
where V =

(
v b
0 v

)
,

A−
(
e 0
0 e

)
= V ∈ J#

(
D2(R, σ)

)
.

As R is abelian and σ(e) = e, we see that EA = AE where E2 = E =

(
e 0
0 e

)
(because EA = AE if and only if eb = bσ(e) = be). Therefore A ∈ D2(R, σ) is very
J#-clean. Assume that v := a + e ∈ J#. Similar to the preceding discussion, it
can be shown that A ∈ D2(R, σ) is very J#-clean, as required.

(2) ⇒ (1) Let a ∈ R. Then A :=

(
a 0
0 a

)
∈ D2(R, σ). By hypothesis, there

exists an idempotent E :=

(
e b
0 e

)
∈ D2(R, σ) such that AE = EA and

A+ E ∈ J#
(
D2(R, σ)

)
or A − E ∈ J#

(
D2(R, σ)

)
. As E is an idempotent, we have e = e2. Further, we

get ea = ae, and that a− e ∈ J# or a+ e ∈ J#. Therefore R is very J#-clean. �

Let R be a ring and V an R-R-bimodule which is a general ring (possibly with
no unity) in which (vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw) hold for
all v, w ∈ V and r ∈ R. Then ideal-extension (it is also called Dorroh extension)
I(R;V ) of R by V is defined to be the additive abelian group I(R;V ) = R ⊕ V
with multiplication (r, v)(s, w) = (rs, rw + vs+ vw).

Proposition 6. An ideal-extension S = I(R;V ) is very J#-clean if the following
conditions are satisfied.

(1) R is very J#-clean;

(2) If e2 = e ∈ R, then ev = ve for all v ∈ V ;

(3) If v ∈ V , then v + w + vw = 0 for some w ∈ V .

Furthermore, if S is very J#-clean, then R is very J#-clean.
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Proof. Suppose that (1), (2) and (3) are satisfied. Let s = (r, w) ∈ S and (by (1))
write r = e+v or r = −e+v, e2 = e, v ∈ J# and re = er. Assume that r = −e+v
and vn ∈ J for some n ∈ N. Then s = −(e, 0) + (v, w) and (e, 0)2 = (e, 0) ∈ S.
Note that (0, V ) ⊆ J(S) if and only if (3) holds (see [15]). Since (v, w)n = (vn, ∗),
it suffices to show that (vn, 0) ∈ J(S). For any (p, q) ∈ S,

(1, 0)− (vn, 0)(p, q) = (1− vnp,−vnq) ∈ U(S)

because
(1− vnp,−vnq) = (1− vnp, 0)(1, (1− vnp)−1(−vnq))

and
(1, (1− vnp)−1(−vnq)) = (1, 0) + (0, (1− vnp)−1(−vnq)) ∈ U(S)

by (0, V ) ⊆ J(S). Thus (vn, 0) ∈ J(S) and so (v, w) ∈ J#(S). By (2), (r, w)(e, 0) =
(e, 0)(r, w). The case where r = e+ v can be similarly handled.

On the other hand, suppose that S is very J#-clean and let a ∈ R. Then
(a, 0) = (e, t) + (v, w) or (a, 0) = −(e, t) + (v, w), (e, t)2 = (e, t), (v, w) ∈ J#(S)
and (a, 0)(e, t) = (e, t)(a, 0). Assume that (a, 0) = (e, t)+(v, w) and (v, w)m ∈ J(S)
for some m ∈ N. Since (v, w)m ∈ J(S), (e, t)2 = (e, t) and (a, 0)(e, t) = (e, t)(a, 0),
we get a = e+ v, vm ∈ J , e2 = e ∈ R, and ae = ea. Hence a is strongly J#-clean.
Suppose (a, 0) = −(e, t) + (v, w) and (v, w)n ∈ J(S) for some n ∈ N. Similarly, it
can be shown that −a is strongly J#-clean and so R is very J#-clean. �

Example 6. Let R be an abelian very J#-clean ring, n a positive integer and

S =




a a12 · · · a1n
0 a · · · a2n
...

...
. . .

...
0 0 · · · a


∣∣∣∣∣∣∣∣∣∣
a, aij ∈ R(i < j)

 .

Then S is very J#-clean and noncommutative if n ≥ 3.

Proof. Let

V =




0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0


∣∣∣∣∣∣∣∣∣∣
aij ∈ R(i < j)

 .

Then S ∼= I(R;V ). By applying Proposition 6, (1) is clear; (2) holds because R is
abelian and (3) follows because of V ⊆ J(S). �

4 Very J#-clean 2 × 2 matrices
Let f, g ∈ R[x] be polynomials over a commutative ring R and let (f, g) denote
the ideal generated by f, g. A polynomial f(x) ∈ R[x] is a monic polynomial of
degree n if f(x) = xn + an−1x

n−1 + · · · + a1x + a0 where an−1, . . . , a1, a0 ∈ R. If
ϕ ∈ Mn(R), we use χ(ϕ) to stand for the characteristic polynomial det(xIn − ϕ).
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The aim of this section is to characterize a single very J#-clean 2 × 2 matrix
over a commutative local ring by means of the factorization of its characteristic
polynomial.

We begin with the following result from [7], and give the proof of it for the sake
of completeness.

Lemma 5. Let R be a commutative ring and ϕ ∈ Mn(R). Then the following are
equivalent.

(1) ϕ ∈ J#
(
Mn(R)

)
.

(2) χ(ϕ) ≡ xn (mod J).

(3) There exists a monic polynomial h ∈ R[x] such that h ≡ xdeg h (mod J) for
which h(ϕ) = 0.

Proof. Note that J
(
Mn(R)

)
= Mn

(
J
)

and Mn(R)/J
(
Mn(R)

)
= Mn(R̄). Further-

more, since R is commutative, we have that Nil(R) ⊆ J .
(1) ⇒ (2) If ϕ ∈ J#

(
Mn(R)

)
, then ϕ̄ is nilpotent in Mn(R̄). According to

[4, Proposition 3.5.4], we get χ(ϕ) ≡ xn (mod Nil(R)). So χ(ϕ) ≡ xn (mod J)
because Nil(R) ⊆ J .

(2) ⇒ (3) Set h = χ(ϕ). Then h ≡ xdeg h (mod J). By Cayley-Hamilton
Theorem, h(ϕ) = 0.

(3) ⇒ (1) Assume that h = xn + an−1x
n−1 + · · · + a1x + a0 where

ai ∈ J for 0 ≤ i ≤ n − 1. Then h̄ ≡ xn (mod Nil(R̄)) and h̄(ϕ̄) = 0. Again,
by [4, Proposition 3.5.4], ϕ̄ is nilpotent in Mn(R̄). This gives ϕ ∈ J#

(
Mn(R)

)
. �

Definition 1. [7, Definition 2.4] For r ∈ R, define

Jr = {f ∈ R[x] | f is monic, and f ≡ (x− r)deg f (mod J#)}.

Remark 3. If R is commutative, then J# is simply the Jacobson radical. So we
get

Jr = {f ∈ R[x] | f is monic, and f ≡ (x− r)deg f (mod J)} .

By f ≡ (x − r)deg f (mod J), we mean f − (x − r)deg f ∈ J [x]. Furthermore, it is
well known that

χ(ϕ) = x2 − tr(ϕ)x+ det(ϕ) and χ(−ϕ) = x2 + tr(ϕ)x+ det(ϕ)

because tr(−ϕ) = − tr(ϕ) and det(ϕ) = det(−ϕ) for ϕ ∈ M2(R). In general, note
that

χ(−ϕ)(x) = det
(
xIn − (−ϕ)

)
= (−1)n det

(
(−x)In + ϕ

)
= (−1)nχ(ϕ)(−x)

and det(−ϕ) = (−1)n det(ϕ) for ϕ ∈Mn(R).

For an easy reference, we mention the following lemmas without proofs. Re-
call that a commutative ring R is called projective-free if every finitely generated
projective R-module is free. Any commutative local ring is projective-free.
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Lemma 6. [7, Lemma 2.5] Let R be a projective-free ring and h ∈ R[x] a monic
polynomial of degree n, let ϕ ∈Mn(R). If h(ϕ) = 0 and there exists a factorization
h = h0h1 such that h0 ∈ J0 and h1 ∈ J1, then ϕ is strongly J#-clean.

Lemma 7. [7, Theorem 2.6] Let R be a projective-free ring and h ∈ R[x] a monic
polynomial of degree n. Then the following are equivalent.

(1) Every ϕ ∈Mn(R) with χ(ϕ) = h is strongly J#-clean.

(2) There exists a factorization h = h0h1 such that h0 ∈ J0 and h1 ∈ J1.

In the proof of Lemma 8 and Theorem 7, we refer to Lemma 6 and Lemma 7.

Lemma 8. Let R be a commutative local ring and h ∈ R[x] a monic polynomial
of degree n, let ϕ ∈ Mn(R). If h(ϕ) = 0 and there exists a factorization h = h0h1
such that h0 ∈ J0 and h1 ∈ J1 ∪ J−1, then ϕ is very J#-clean.

Proof. By hypothesis, there exists a factorization h = h0h1 such that h0 ∈ J0 and
h1 ∈ J1 ∪ J−1. If h1 ∈ J1, then ϕ is strongly J#-clean by Lemma 6, and so ϕ is
very J#-clean. Hence we assume that h0 ∈ J0 and h1 ∈ J−1. Then

h0 ≡ xdeg(h0) (mod J) and h1 ≡ (x− (−1))deg(h1) (mod J) .

Set t := −x and g(t) := (−1)deg(h)h(−t). Then g(t) factors as g = g0g1, where

g0(t) = (−1)deg(h0)h0(−t) and g1(t) = (−1)deg(h1)h1(−t) .

Note that deg(g0) = deg(h0) and deg(g1) = deg(h1). Since h0 ≡ xdeg(h0) (mod J),
we see that

g0(t) = (−1)deg(h0)h0(−t) ≡ (−1)deg(h0)xdeg(h0) ≡ tdeg(g0) (mod J) ,

and so g0 ∈ J0. Further, as h1 ≡ (x− (−1))deg(h1) (mod J), we have

g1(t) = (−1)deg(h1)h1(−t) ≡ (−1)deg(h1)(−t− (−1))deg(h1)

≡ (t− 1)deg(g1) (mod J) ,

and so g1 ∈ J1. We observe that g(−ϕ) = 0 because h(ϕ) = 0. In view of
Lemma 6, −ϕ ∈ Mn(R) is strongly J#-clean. That is, ϕ is very J#-clean. The
proof is completed. �

Theorem 7. Let R be a commutative local ring and h ∈ R[x] a monic polynomial
of degree n. Then the following are equivalent.

(1) Every ϕ ∈Mn(R) with χ(ϕ) = h is very J#-clean.

(2) There exists a factorization h = h0h1 such that h0 ∈ J0 and h1 ∈ J1 ∪ J−1.
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Proof. (1) ⇒ (2) Since ϕ is very J#-clean, ϕ or −ϕ is strongly J#-clean. If ϕ is
strongly J#-clean, then there exists a factorization h = h0h1 such that h0 ∈ J0 and
h1 ∈ J1 by Lemma 7. Suppose −ϕ is strongly J#-clean. It follows by Lemma 7
that g(t) := χ(−ϕ) factors as g = g0g1 where g0 ∈ J0 and g1 ∈ J1. This implies

h(x) = χ(ϕ) = (−1)deg(h)g(−x) = (−1)deg(h)g0(−x)g1(−x) .

Set h0(x) = (−1)deg(g0)g0(−x) and h1(x) = (−1)deg(g1)g1(−x). Then h = h0h1.
Since g0(t) ≡ tdeg(g0) (mod J), we get

h0(x) = (−1)deg(g0)g0(−x) ≡ xdeg(g0) (mod J) ,

hence h0 ∈ J0. In addition, as g1(t) ≡ (t− 1)deg(g1) (mod J), we see that

h1(x) = (−1)deg(g1)g1(−x) ≡ (x+ 1)deg(g1) (mod J) .

This gives h1 ∈ J−1. That is, h0 ∈ J0 and h1 ∈ J1 ∪ J−1, as asserted.
(2) ⇒ (1) For any ϕ ∈ M2(R) with χ(ϕ) = h, we have h(ϕ) = 0 by the

Cayley-Hamilton Theorem. In light of Lemma 8, ϕ is very J#-clean. �

Corollary 2. [7, Corollary 2.8] Let R be a commutative local ring and ϕ ∈M2(R).
Then ϕ is strongly J#-clean if and only if

(1) χ(ϕ) ≡ x2 (mod J); or

(2) χ(ϕ) ≡ (x− 1)2 (mod J); or

(3) χ(ϕ) has a root in J and a root in 1 + J .

In analogy with Corollary 2, we have the following result.

Corollary 3. Let R be a commutative local ring and ϕ ∈ M2(R). Then −ϕ is
strongly J#-clean if and only if

(1) χ(ϕ) ≡ x2 (mod J); or

(2) χ(ϕ) ≡ (x+ 1)2 (mod J); or

(3) χ(ϕ) has a root in J and a root in −1 + J .

Proof. Suppose that −ϕ is strongly J#-clean. As in the proof of Theorem 7, there
exists a factorization χ(ϕ) = h0h1 such that h0 ∈ J0 and h1 ∈ J−1. Consider the
following cases:
Case I. deg(h0) = 2 and deg(h1) = 0. Then h0 = χ(ϕ) = x2 − tr(ϕ)x+ det(ϕ)

and h1 = 1. As h0 ∈ J0, it follows from Lemma 5 that ϕ ∈ J#
(
M2(R)

)
or

equivalently, χ(ϕ) ≡ x2 (mod J).
Case II. deg(h0) = 0 and deg(h1) = 2. Then h1(x) = χ(ϕ) ≡ (x+1)2 (mod J)

because h1 ∈ J−1.
Case III. deg(h0) = 1 and deg(h1) = 1. Then h0 = x − α and h1 = x − β.

Since h0 ∈ J0, we see that h0 ≡ x (mod J), and then α ∈ J . As h1 ∈ J−1, we have
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h1 ≡ x + 1 (mod J), and so β ∈ −1 + J . Therefore χ(ϕ) has a root in J and a
root in −1 + J .

For the reverse implication, if (1) or (2) is valid, then −ϕ ∈ J#
(
M2(R)

)
or

I2 + ϕ ∈ J#
(
M2(R)

)
. This implies that −ϕ is strongly J#-clean. Suppose that

χ(ϕ) has a root in J and a root in −1 + J and −ϕ, I2 + ϕ 6∈ J
(
M2(R)

)
. By

Remark 3, we know that χ(ϕ)(−x) = χ(−ϕ)(x). In this case, χ(ϕ) has a root in J
and a root in 1 + J . According to [6, Theorem 16.4.31], ϕ is strongly J-clean, and
therefore it is strongly J#-clean. �

For instance, choose ϕ =

(
0 7
8 1

)
∈ M2(Z9). Note that J(Z9) = 3Z9. Then

χ(ϕ) = x2 + x+ 7 = (x+ 1)2 + 6x+ 6. Hence χ(ϕ) ≡ (x+ 1)2 (mod J(Z9)), and
so ϕ ∈M2(Z9) is very J#-clean by Corollary 3.

In the next, we investigate very J#-clean matrices over power series rings.

Theorem 8. Let R be a commutative local ring. Then the following are equivalent.

(1) A(x) ∈M2

(
R[[x]]

)
is very J#-clean.

(2) A(0) ∈M2(R) is very J#-clean.

Proof. (1)⇒ (2) Since A(x) is very J#-clean in M2

(
R[[x]]

)
, there exist an

E(x) = E2(x) ∈M2

(
R[[x]]

)
and V (x) ∈ J#

(
M2(R[[x]])

)
such that E(x)V (x) = V (x)E(x), and

A(x) = E(x) + V (x) or A(x) = −E(x) + V (x) .

This implies that E(0)V (0) = V (0)E(0) and

A(0) = E(0) + V (0) or A(0) = −E(0) + V (0) ,

where E(0) = E2(0) ∈ M2(R) and V (0) ∈ J#
(
M2(R)

)
. Hence A(0) is very J#-

clean in M2(R).
(2)⇒ (1) Since R[[x]]/J

(
R[[x]]

) ∼= R/J and R is local, R[[x]] is local. Assume
that −A(0) is strongly J#-clean. Then

• −A(0) ∈ J#
(
M2(R)

)
;

• or I2 +A(0) ∈ J#
(
M2(R)

)
;

• or the characteristic polynomial χ
(
A(0)

)
= y2−µy+λ has a root α ∈ −1+J

and a root β ∈ J .

If −A(0) ∈ J#
(
M2(R)

)
, then

−A(x) ∈ J#
(
M2(R[[x]])

)
.
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If I2 +A(0) ∈ J#
(
M2(R)

)
, then

I2 +A(x) ∈ J#
(
M2(R[[x]])

)
.

Otherwise, we write y =
∞∑
i=0

bix
i and

χ(−A(x)) = y2 − µ(x)y + λ(x) .

Then y2 =
∞∑
i=0

cix
i where ci =

i∑
k=0

bkbi−k. Let

µ(x) =

∞∑
i=0

µix
i, λ(x) =

∞∑
i=0

λix
i ∈ R[[x]]

where µ0 = µ and λ0 = λ. Then

y2 − µ(x)y + λ(x) = 0

holds in R[[x]] if the following equations are satisfied:

b20 − b0µ0 + λ0 = 0;

(b0b1 + b1b0)− (b0µ1 + b1µ0) + λ1 = 0;

(b0b2 + b21 + b2b0)− (b0µ2 + b1µ1 + b2µ0) + λ2 = 0;

...

Obviously, µ0 = α + β ∈ U and α − β ∈ U . Let b0 = α. Since R is commutative
and 2b0 − µ0 = 2α− µ = α− β, there exists some b1 ∈ R such that

b1(2b0 − µ0) = b0µ1 − λ1.

Further, there exists some b2 ∈ R such that

b2(2b0 − µ0) = b0µ2 + b1µ1 − b21 − λ2.

By iteration of this process, we get b3, b4, . . . . Then y2 − µ(x)y + λ(x) = 0 has
a root y0(x) ∈ −1 + J

(
R[[x]]

)
. If b0 = β ∈ J , analogously, we can show that

y2 − µ(x)y+ λ(x) = 0 has a root y1(x) ∈ J
(
R[[x]]

)
. In light of Corollary 3, −A(x)

is strongly J#-clean. Similarly, we can prove that if A(0) is strongly J#-clean,
then A(x) is strongly J#-clean by Corollary 2. Therefore A(x) is very J#-clean in
M2

(
R[[x]]

)
. �

Example 7. Let R = Z9[[x]] and

A(x) =

0̄ 2̄−
∞∑

n=1
(1̄ + 5̄n)xn

1̄ 1̄−
∞∑

n=1
(1̄ + 7̄n)xn

 ∈M2(R).
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Then

A(0) =

(
0̄ 2̄
1̄ 1̄

)
= −

(
1̄ 0̄
0̄ 1̄

)
+

(
1̄ 2̄
1̄ 2̄

)
,

where

(
1̄ 0̄
0̄ 1̄

)
is an idempotent and

(
1̄ 2̄
1̄ 2̄

)
∈ J#

(
M2(Z9)

)
because (

1̄ 2̄
1̄ 2̄

)2

=

(
3̄ 6̄
3̄ 6̄

)
∈ J

(
M2(Z9)

)
.

Thus A(x) is very J#-clean by Theorem 8. Note that A(0) is not strongly J-clean.

Corollary 4. Let R be a commutative local ring and A(x) ∈ M2

(
R[[x]]/(xm)

)
(m ≥ 1). Then the following are equivalent.

(1) A(x) ∈M2

(
R[[x]]/(xm)

)
is very J#-clean.

(2) A(0) ∈M2(R) is very J#-clean.

Proof. (1)⇒ (2) is obvious.
(2) ⇒ (1) Let ψ : R[[x]] → R[[x]]/(xm) denote the natural homomorphism.

Then ψ induces the surjective ring homomorphism

ψ∗ : M2

(
R[[x]]

)
→M2

(
R[[x]]/(xm)

)
.

Then there exists B(x) ∈M2

(
R[[x]]

)
such that ψ∗

(
B(x)

)
= A(x). Then Theorem 8

completes the proof. �
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