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Abstract. We study extension of p-trigonometric functions sinp and cosp to complex
domain. For p = 4, 6, 8, . . ., the function sinp satisfies the initial value problem which is
equivalent to

(∗) −(u′)p−2u′′ − up−1 = 0, u(0) = 0, u′(0) = 1

in R. In our recent paper, Girg, Kotrla (2014), we showed that sinp(x) is a real analytic

function for p = 4, 6, 8, . . . on (−πp/2, πp/2), where πp/2 =
∫ 1
0
(1 − sp)−1/p. This allows

us to extend sinp to complex domain by its Maclaurin series convergent on the disc {z ∈
C : |z| < πp/2}. The question is whether this extensions sinp(z) satisfies (∗) in the sense
of differential equations in complex domain. This interesting question was posed by Došlý
and we show that the answer is affirmative. We also discuss the difficulties concerning the
extension of sinp to complex domain for p = 3, 5, 7, . . .Moreover, we show that the structure
of the complex valued initial value problem (∗) does not allow entire solutions for any p ∈ N,
p > 2. Finally, we provide some graphs of real and imaginary parts of sinp(z) and suggest
some new conjectures.
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1. Introduction

The initial value problem

(1.1) −(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0, u(0) = 0, u′(0) = 1

arises in connection with nonlinear boundary value problems for p > 1 (see e.g. [2],

[3], [7], [9]). The solution of (1.1) is known as sinp, see e.g. [2], and cosp
def
= sin′p.

Since the functions sinp and cosp satisfy the well-known p-trigonometric identity, see

e.g. [3],

(1.2) |sinp(x)|
p + |cosp(x)|

p = 1,

they are also known as the p-trigonometric and/or generalized trigonometric func-

tions. Note that (1.2) is in fact the so-called first integral of (1.1) (see e.g. [3]). It

follows from this identity (see e.g. [3]) that

∫ sinp(x)

0

(1− sp)−1/p ds = x

for 0 6 x 6 πp/2, where sinp(x) > 0 and cosp(x) > 0 and where

πp
def
= 2

∫ 1

0

(1 − sp)−1/p ds.

Thus it is natural to define

(1.3) arcsinp(x)
def
=

∫ x

0

(1− sp)−1/p ds for 0 6 x 6 1,

and extend it to [−1, 1] as an odd function. The function sinp is the inverse function

to arcsinp(x) on [−πp/2, πp/2]. Moreover, sinp(x) = sinp(πp − x) for x ∈ (πp/2, πp]

and sinp(x) = − sinp(−x) for x ∈ [−πp, 0]. Finally, sinp(x) = sinp(x + 2πp) for all

x ∈ R (see [3] for details).

Smoothness of sinp on (−πp/2, πp/2) for p > 1 was studied in [4]. The most

surprising result of [4] is that sinp is a real analytic function on (−πp/2, πp/2) for

p = 4, 6, 8, . . ., i.e., sinp(x) equals its Maclaurin on (−πp/2, πp/2) for p = 4, 6, 8, . . .

This approach naturally allows to extend sinp for p = 4, 6, 8, . . . to an open disk

{z ∈ C : |z| < πp/2}

in the complex domain using power series (cf. [7], where the convergence of the

series is conjectured without proof). When our recent result was presented at the
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conference “Nonlinear Analysis Plzeň 2013”, O.Došlý posed an interesting question

whether this extension satisfies (1.1) in the sense of differential equations in complex

domain. This paper addresses his question. For p = 4, 6, 8, . . ., the initial value

problem (1.1) in R is equivalent to

(1.4) −(u′)p−2u′′ − up−1 = 0, u(0) = 0, u′(0) = 1.

Note that for p > 1 real not being an even positive integer, we cannot get rid

of the absolute values in (1.1). Thus the equation (1.1) does not make sense for

general p > 1 in the complex domain. In this paper we consider the problem (1.4)

in complex domain for integer p > 2. The complex valued ordinary differential

equations are studied by means of power series (mostly Maclaurin series). Note that,

by [4], Theorem 3.2 on page 5, sin(n)p (0) exists for 1 < n 6 p, but sin(n)p (0) does not

exist when p > 3 is an odd integer and n > p. Thus, by the formal Maclaurin series of

sinp(x), we mean a series calculated from the limits of the derivatives lim
x→0+

sin(n)p (x),

which were shown to exist in [4] for any n ∈ N and p > 3 an odd integer.

In Section 2, we prove that, for p = 4, 6, 8, . . ., the function sinp can be extended

by its Maclaurin series to the disc {z ∈ C : |z| < πp/2} and that this series solves

the ordinary differential equation (1.4) in the sense of differential equations in the

complex domain. On the other hand, in Section 3 we show that the complex valued

formal Maclaurin seriesMsinp
(z) of the real function sinp(x) does not satisfy (1.4) in

the sense of differential equations in the complex domain for odd powers p = 3, 5, 7, . . .

In Section 4 we explain the relations between the real and imaginary components of

the complex valued function sinp(z) for p = 2, 6, 10, . . . and p = 4, 8, 12, . . ., and also

the complex valued formal Maclaurin series Msinp
(z) of the real function sinp(x) for

p = 3, 5, 7, . . . In Section 5 we show that the fact that the function sinp(z) cannot be

extended as an entire function follows from an interesting connection between the

p-trigonometric identity and some classical results from complex analysis. Finally,

in Section 6 we visualize some of our result.

In the whole paper, the independent variable z stands for a complex number and

the independent variable x stands for a real number. In the same spirit, sinp(z)

stands for a complex valued function and sinp(x) stands for a function of one real

variable.

2. Extension of sinp for p = 4, 6, 8, . . . to complex domain

We assume that p = 4, 6, 8, . . . throughout this section unless specified differently.

In [4], Theorem 3.3, we proved the following result.
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Proposition 2.1 ([4], Theorem 3.3, page 6). Let p = 4, 6, 8, . . . Then the Maclau-

rin series of sinp(x) converges on (−πp/2, πp/2).

Let Msinp
(x) denote the formal Maclaurin series of sinp(x), p = 3, 4, 5, 6, . . . (any

integer greater than 2). We also proved in the paper [4] that this Maclaurin series

has the particular structure

(2.1) Msinp
(x) =

∞
∑

k=0

αkx
kp+1,

where α0 > 0 and αk 6 0.

The following result answers the question by O.Došlý in the affirmative way.

Theorem 2.1. Let p = 4, 6, 8, . . ., then the unique solution of the initial value

problem (1.4) on |z| < πp/2 is the Maclaurin series (2.1).

In order to prove this result, we need to state several auxilliary results. First of all,

let us note that the equation (1.4) is of second order. In order to apply the known

theory, we rewrite (1.4) as an equivalent system. Using the substitution u′ = v, we

get the first order system

(2.2) u′ = v, v′ = −up−1/vp−2, u(0) = 0, v(0) = 1.

To study systems of equations like (2.2) in complex domain, we need to use complex

functions of several variables. We will often make use of the following result.

Proposition 2.2 ([6], Theorem 16, page 33). Let f and g be holomorphic func-

tions in an open set M ⊂ C
r, r ∈ N. Then the functions f + g, f − g and fg are

holomorphic in M . Moreover, if g(z) 6= 0 for all z ∈ M , then f/g is holomorphic

on M .

Let us consider the first order ODE system

(2.3) y′ = f(z,y), y(z0) = y0,

where y = (y1, y2, . . . , yn)
T ∈ C

n and f = (f1(z,y), f2(z,y), . . . , fn(z,y))
T ∈ C

n

and the function f : C
n+1 → C

n is an analytic complex function of n + 1 complex

variables. The folowing result concerning existence and uniqueness of the initial

values problem in the complex domain is crucial in our proofs.
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Proposition 2.3 ([5], Theorem 9.1, page 76). Let a function f : C
n+1 → C

n be

analytic and bounded in the region

R : |z − z0| < α, ‖w −w0‖ < β,

where α > 0, β > 0, and let

µ
def
= sup

(z,w)∈R

‖f(z,w)‖, γ
def
= min

(

α,
β

µ

)

.

Then there exists in the disk D0, |z−z0| < γ a unique analytic function w : C → C
n

which is the solution of (2.3).

Lemma 2.1. There is δ > 0 such that in U0
def
= {z ∈ C : |z| < δ} the initial value

problem (1.4) has the unique solution u(z) which is an analytic function in U0.

P r o o f. Consider (2.2) in complex domain. Let us denote

f1(z, ξ, η)
def
= η

and (recall p = 4, 6, 8, . . . by assumption of this section)

f2(z, ξ, η)
def
= −

ξ2m+1

η2m
, where z, ξ, η ∈ C and m ∈ N.

Naturally, the functions f = ξ and g = η are holomorphic in the entire complex

plane. Thus by Proposition 2.2, functions f1(z, ξ, η) and f2(z, ξ, η) are holomorphic

on some neighborhood of [0, 0, 1]. Let R denote the maximal closed subset of this

neigborhood. Then the functions f1 and f2 are holomorphic on the closed domain R

and so they are continuous on R. Hence they are bounded on R (see [6], page 37).

Therefore, the system (2.2) has a unique solution by Proposition 2.3. �

The previous lemma yields a local solution u(z) of (1.4) in a small neighborhood U0

of 0 in C. Since u(z) is analytic in U0, it can be written as a power series u(z) =
∞
∑

k=0

akz
k, where this power series converges towards u(z) for all z ∈ U0. Our next

aim is to show that the series corresponding to u(z) has the same coefficients as the

series corresponding to sinp(x), which is the unique solution to the real-valued initial

value problem (1.1). For this purpose, we will use the following result concerning

the sums of two powers series.
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Proposition 2.4 ([8], Theorem 16.6, page 352). If the sums of two power series

in the variable z − z0 coincide on a set of points E for which z0 is a limit point

and z0 /∈ E, then identical powers of z − z0 have identical coefficients, i.e., there is

a unique power series in the variable z − z0 with the given sum on the set E.

Now we are ready to prove the main result of this section.

P r o o f of Theorem 2.1. By Lemma 2.1, u(z) =
∞
∑

k=0

akz
k is the unique solution

of (1.4) at any point z ∈ U0. Observe that the solution u(z) =
∞
∑

k=0

akz
k solves also

the real-valued Cauchy problem (1.4) in the sense of real analysis. On the other

hand, sinp is the unique solution of the real-valued Cauchy problem (1.4). Since

the Maclaurin series (2.1) of sinp converges towards sinp in (−πp/2, πp/2) under

the assumption of this section, we find that (2.1) satisfies (1.4) in (−πp/2, πp/2).

Moreover, convergence of (2.1) on (−πp/2, πp/2) implies convergence of
∞
∑

k=0

αkz
kp+1

for all z ∈ C, |z| < πp/2. Therefore,

∞
∑

j=0

ajz
j =

∞
∑

k=0

αkz
kp+1 for all z ∈ U0 ∩ (−πp/2, πp/2).

Now we consider the set of points zn = δ/(n+ 1), n ∈ N. From the previous equation,

we have
∞
∑

j=0

ajz
j
n −

∞
∑

k=0

αkz
kp+1
n = 0 =

∞
∑

j=0

0 · zjn.

By Proposition 2.4, we find that these two series must coincide on U0. Hence the

Maclaurin series (2.1) satisfies (1.4) on U0. Let u be given by the series (2.1). Then

u′′, (u′)p−2, up−1 have the radius of convergence πp/2 for p > 2, p ∈ N. Since

any power series converges absolutely within the radius of its convergence, we see

from (1.4) that

−

[( ∞
∑

k=0

αkz
kp+1
n

)′]p−2( ∞
∑

k=0

αkz
kp+1
n

)′′

−

( ∞
∑

k=0

αkz
kp+1
n

)p−1

= 0 =

∞
∑

j=0

0 · zjn

for all zn = δ/(n+ 1), n ∈ N. Thus, by Proposition 2.4, u given by the series (2.1)

is the solution of (1.4) on the disc D = {z ∈ C : |z| < πp/2}. �
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3. Obstacles for extension of sinp for p = 3, 5, 7, . . .

to complex domain

Lindqvist [7] proposed an alternative definition of sinp as the solution of

(3.1)
d

dz
(w′)p−1 + wp−1 = 0, w(0) = 0, w′(0) = 1

in complex domain for p > 1 (considered only formally). In [7], Section 7, he conjec-

tures the possibility that solutions to (3.1) and the real Cauchy problem

(3.2) (|u′|p−2u′)′ + |u|p−2u, u(0) = 0, u′(0) = 1

could produce different solutions on R. We address this question in this section.

However, we have definitions of πp and sinp in this paper different from those in [7].

Turning to our definitions of πp and sinp, we get an equation corresponding to (3.1):

(3.3)
d

dz
(w′)p−1 + (p− 1)wp−1 = 0, w(0) = 0, w′(0) = 1

which is equivalent to (1.4), which is equivalent to (2.2). Since the (p−1)-st power is

a multivalued complex function, we will limit ourselves to p ∈ N, p > 1, in order to be

able to perform rigorous analysis. The question is whether (3.3) produces a solution

which is different from the solution (1.1) on R. In the previous section we proved

that for p = 4, 6, 8, . . . (and of course for p = 2) the solutions of (3.3) and (1.1) are

identical. Now we show that for p = 3, 5, 7, . . . the solutions are different for negative

arguments.

This proposition is crucial for the proof of the main result of this section.

Proposition 3.1 ([4], Theorem 3.4, page 6). Let p = 3, 5, 7, . . . Then the formal

Maclaurin series of sinp(x)—the solution of the Cauchy problem (1.1)—converges on

(−πp/2, πp/2). Moreover, the formal Maclaurin series of sinp(x) converges towards

sinp(x) on [0, πp/2), but does not converge towards sinp(x) on (−πp/2, 0).

Now we are ready to formulate the main result of this section.

Theorem 3.1. Let p = 3, 5, 7, . . . Then the unique solution u(z) of the complex

initial value problem (1.4) differs from the solution sinp(x) of the Cauchy prob-

lem (1.1) for z = x ∈ (−πp/2, 0).

P r o o f. Let us recall that (3.3) is equivalent to (2.2). There exists a unique

solution of (2.2) on some nonempty open disc in C containing 0 by Proposition 2.3.
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In the same way as in the proof of Theorem 2.1 (with obvious modifications), it

follows that Msinp
(z) solves (3.3) on the open disc |z| < πp/2 and it is the unique

solution on this disc. Since sinp(x) is the unique solution of (1.1), sinp(x) 6= Msinp
(x)

for x ∈ (−πp/2, 0) by Proposition 3.1, we see that (1.1) and (3.3) produce different

solutions on R. �

4. Relations between real and imaginary parts

Let us mention an interesting relationship between real and imaginary parts of

sinp(z) for p = 4, 8, 12, . . . One can see in Figure 1 that the graph of the imaginary

part of sin4(z) is the graph of the real part, rotated by −π/2.

Theorem 4.1. Let p = 4, 8, 12, . . . Then

ℜ[sinp(z)] = ℑ[sinp(iz)]

for all z ∈ C, |z| < πp/2.

P r o o f. Note that by (2.1)

sinp(z) =
∞
∑

k=0

αkz
kp+1 = z

∞
∑

k=0

αkz
kp

for z ∈ C, |z| < πp/2. We assume p = 4l where l = 1, 2, 3, . . . and thus

sinp(z) = z
∞
∑

k=0

αkz
4kl.

Substituting iz into this formula we find

sinp(iz) = iz
∞
∑

k=0

αk(iz)
4kl = i

∞
∑

k=0

αkz
4kl+1 = i sinp(z).

Now the result easily follows from comparison of the real and imaginary parts of

sinp(z) and i sinp(ż). This completes the proof. �

Theorem 4.2. Let p = 2, 6, 10, 14, . . . Then for all ϕ ∈ [0, 2π) there exists z ∈ C,

|z| < πp/2 such that

ℜ[sinp(z)] 6= ℑ[sinp(e
iϕz)].
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Figure 1. Continued on the next page.
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Figure 1. Contourlines of the real and imaginary parts of sinp(z) for p = 2, 4, 6 andMsinp(z)
for p = 3, 5, 6. Note that the imaginary part of sin4(z) is its real part rotated
by −π/2.
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P r o o f. It is known from [4] that the series Msinp
(z) has the form

Msinp
(z) =

∞
∑

k=0

αkz
kp+1.

First we show that α0 = 1 and α1 = −1/(p(p+ 1)) < 0 (cf e.g. [7]). In fact,

evaluating the integral in (1.3) we see that

arcsinp(x) =

∫ x

0

(1− sp)−1/p ds = 2F1

(1

p
,
1

p
, 1 +

1

p
, xp

)

x for 0 6 x 6 1,

where 2F1 is the Gauss hypergeometric function. Using the known series

2F1(a, b, c, z) =

∞
∑

k=0

(a)k(b)kz
k

(c)kk!
for |z| < 1,

where (a)k =
k
∏

j=0

(a+ k − 1) for any a ∈ R stands for the rising factorial, we find

arcsinp(w) = w

∞
∑

k=0

(1/p)2kw
kp

(1 + 1/p)kk!
for 0 < w < 1.

Hence

arcsinp(w) = w +
1

p(p+ 1)
wp+1 +O(w2p+1) for 0 < w < 1.

Denoting w = sinp(x), we find

x = w +
1

p(p+ 1)
wp+1 +O(w2p+1),

which yields

(4.1) w = x−
1

p(p+ 1)
wp+1 +O(w2p+1).

Substituting (4.1) into itself we obtain

w = x−
1

p(p+ 1)

(

x−
1

p(p+ 1)
+O(w2p+1)

)p+1

+O(w2p+1).

Hence

(4.2) sinp(x) = x−
1

p(p+ 1)
xp+1 +O(w2p+1),
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which gives the desired formulas for α1 = 1 and α2 = −1/p(p+ 1). With this at

hand, we can write

(4.3) Msinp
(z) = z −

1

p(p+ 1)
zp+1 +

∞
∑

m=2

αmzmp+1

= z −
zp+1

p(p+ 1)
− z2p+1

∞
∑

m=0

αm+2z
mp.

Let z = a, a ∈ R, 0 < a < πp/2 for simplicity. Then ϕ0 = π/2 is the unique angle

in [0, 2π) such that ℜ[z] = ℑ[eiϕ0z]. The assumption on p of this theorem is that

there exists l ∈ N ∪ {0} such that p = 4l + 2. Thus ℜ[zp+1] = ℜ[z4l+3] = ℜ[a4l+3].

On the other hand, ℑ[(eiϕ0z)p+1] = ℑ[(ia)4l+3] = −a4l+3 for ϕ0 = π/2. Inserting

z = a and z = ia into (4.3), taking the real and imaginary part, respectively, and

subtracting, we get

(4.4) ℜ[Msinp
(a)]−ℑ[Msinp

(ia)] =

= −
2ap+1

p(p+ 1)
+ a2p+1

(

ℜ

[ ∞
∑

m=0

αm+2a
mp

]

−ℑ

[

i2p+1
∞
∑

m=0

αm+2(ia)
mp

])

.

Since the series on the right-hand side are convergent on the disc {z ∈ C : |z| < πp/2},

A
def
= max

{z∈C : |z|6πp/4}

∣

∣

∣

∣

(

ℜ

[ ∞
∑

m=0

αm+2z
mp

]

−ℑ

[

i2p+1
∞
∑

m=0

αm+2(iz)
mp

])∣

∣

∣

∣

< ∞

exists and from (4.4) we find

∣

∣

∣

∣

ℜ[Msinp
(a)]−ℑ[Msinp

(ia)]

ap+1
−

2

p(p+ 1)

∣

∣

∣

∣

6 Aap.

Taking 0<a<min{πp/4, (Ap(p+ 1))
−1/p

}, we see that ℜ[Msinp
(a)]−ℑ[Msinp

(ia)] 6=0.

This concludes the proof. �
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5. Consequence of complex p-trigonometric identity

As was mentioned earlier, the maximal possible radius of convergence for the (for-

mal) Maclaurin series for functions sinp and cosp is πp/2. This fact was anticipated

in [7] and studied in detail in [4]. In this section we explain that there was no hope

for these series to have their radius of convergence infinite for p = 3, 4, 5, 6, . . . Con-

trary to what one would think, we will show that it is not the absolute value in (1.1)

that produces the main difficulty. It is a complex analogy of the p-trigonometric

identity that produces the impossibility of sinp to be an entire complex functions for

p = 3, 4, 5, 6, . . .

Let us reconsider (1.4), i.e.,

−(u′)p−2u′′ − up−1 = 0, u(0) = 0, u′(0) = 1,

now for any p = 3, 4, 5, 6, . . . in the complex domain. Let us assume that u is a so-

lution which is a holomorphic function on some neighborhood U0 of 0. Multiplying

the equation of (1.4) by u′ and integrating from 0 to z ∈ U0, we obtain

(u′(z))p − (u′(0))p + (u(z))p − (u(0))p = 0.

Now using the initial conditions of (1.4) we get

(5.1) (u′(z))p + (u(z))p = 1,

which is the first integral of (1.4), and we can think of it as a complex p-trigonometric

identity for holomorphic solutions of (1.4) for p = 3, 4, 5, 6, . . .

Now we state the very classical result from complex analysis.

Proposition 5.1 ([1], Theorem 12.20, page 433). Let f and g be entire functions

satisfying for some positive integer n the identity

fn + gn = 1.

(i) If n = 2, then there is an entire function h such that f = cos ◦h, g = sin ◦h.

(ii) If n > 2, then both f and g are constants.

It follows from this result that a holomorphic solution u of (1.4) cannot be an

entire function for any p = 3, 4, 5, 6, . . ., since the derivative of an entire function is

an entire function as well and u and u′ must satisfy (5.1). Thus by Proposition 5.1

u and u′ are constant, which contradicts u′(0) = 1.
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In particular, for p = 4, 6, 8, . . ., with u(z) = sinp(z) and u′(z) = cosp(z) this

becomes

cospp(z) + sinpp(z) = 1

and we see that sinp and cosp cannot be entire functions.

Note that there was an interesting internet discussion [10] that called our at-

tention towards this connection between complex analysis (including the classical

reference [1], Theorem 12.20) and p-trigonometric functions. It seems to us that this

connection has been overlooked by the “p-trigonometric community”.

6. Visualization of sinp(z) and their Maclaurin series

In this section we visualize graphs of the extensions of sinp(z) by its Maclaurin

series for p = 4, 6 and the formal Maclaurin series for p = 3, 5, 7 and compare

them with the classical result sinp(z) = sin2(z), see Figure 2. To the best of our

knowledge, these figures in complex domain are new and we believe that they will

help to stimulate discussion on this topic. We also formulate some conjectures in the

caption of Figure 3.
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Figure 2. Comparison of real parts of sinp(z) for p even (extended by the Maclaurin series)
and the real parts of the formal Maclaurin series Msinp(z) and the real function
sinp(x) for p odd.
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Figure 3. Numerical comparison of the real and imaginary parts of sinp(πp/2e
iπϕ) for

p = 2, 4, 6 (extended by Maclaurin series) and the real and imaginary parts of

Msinp(πp/2e
iπϕ) for p = 3, 5, 7. Note that these graphs are only an illustra-

tion, because we know nothing about the convergence of the series for z ∈ C,
|z| = πp/2. From these pictures we conjecture this convergence. It is interesting
to note in these pictures that for larger p, the graph of the real part is a small
perturbation of πp/2 cosϕ and the graph of the imaginary part is a small pertur-
bation of πp/2 sinϕ. We conjecture that this phenomena occur due to the fact
that the Maclaurin series is Msinp(z) = z − zp+1/(p(p+ 1)) + O(z2p+1) and for
large p the higher order terms are negligible. Moreover, limp→∞ πp/2 = 1. Thus
we conjecture that these graphs tend to graphs of sinϕ and cosϕ for p → ∞,
respectively.
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