
Mathematica Bohemica

László Simon
Second order quasilinear functional evolution equations

Mathematica Bohemica, Vol. 140 (2015), No. 2, 139–152

Persistent URL: http://dml.cz/dmlcz/144322

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144322
http://dml.cz


140 (2015) MATHEMATICA BOHEMICA No. 2, 139–152
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Abstract. We consider second order quasilinear evolution equations where also the main
part contains functional dependence on the unknown function. First, existence of solutions
in (0, T ) is proved and examples satisfying the assumptions of the existence theorem are
formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative
properties of the solutions in (0,∞) (boundedness and stabilization as t → ∞) are shown.
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1. Introduction

It is well known the importance of functional differential equations for applications,

thus the theory of functional differential equations in one variable case and the

theory of partial functional equations (evolution equations of first order) have been

intensively studied for several years (see, e.g., [6], [7], [14]). In the field of partial

functional equations the theory of monotone type operators can be applied, too

(see, e.g., [9], [10], [11], [13]). It turned out that by using this theory not only first

order functional evolution equations (parabolic functional equations) but also second

order functional evolution equations can be dealt with, by using arguments similar

to those, which were applied to second order evolution equations (without nonlocal

terms), see, e.g., [4], [15] and [16].

There are several papers on second order semilinear functional equations (semilin-

ear hyperbolic functional equations, see, e.g., [3], [5]).

This work was supported by the Hungarian National Foundation for Scientific Research
under grant OTKA K 81403.
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The aim of this paper is to consider some second order evolution equations of the

form

u′′(t) + [N(t, u′(t);u′, u)](t) +Q[u(t)] + [M(t, u′(t);u′, u)](t) = f(t)(1.1)

with the initial condition

(1.2) u(0) = u0, u′(0) = u1,

by using the theory of monotone type operators and ideas of [4], [15], and [16]. Here

1 < p < ∞,

N : Lp(0, T ;V )× Lp(0, T ;V1)× Lp(0, T ;V1) → Lq(0, T ;V ⋆),

M : Lp(0, T ;V )× Lp(0, T ;V )× Lp(0, T ;V ) → Lq(0, T ;V ⋆
1 ),

are demicontinuous and bounded nonlinear operators, Q : V → V ⋆ is a linear and

continuous operator, V , V1 are reflexive Banach spaces such that V ⊂ V1, the imbed-

ding is compact, finally, V ⊂ H ⊂ V ⋆ is an evolution triple.

Conditions will be formulated which imply the existence of solutions for t ∈ (0, T )

and for t ∈ (0,∞). Further, the boundedness of u′, u for t ∈ (0,∞) and the stabi-

lization of u as t → ∞ will be shown. Several applications will be considered.

In a previous paper a similar equation, basically a particular case of the above

equation was considered, here we shall use analogous arguments.

2. Existence of solutions for t ∈ (0, T )

Let V , V1 be reflexive Banach spaces such that V ⊂ V1 and the imbedding is

compact, V ⊂ H ⊂ V ⋆ an evolution triple (see, e.g., [15], [16]). Denote by Lp(0, T ;V )

(1 < p < ∞) the Banach space of measurable functions u : (0, T ) → V with the norm

‖u‖pLp(0,T ;V ) =

∫ T

0

‖u(t)‖pV dt.

The dual space of Lp(0, T ;V ) is Lq(0, T ;V ⋆) where 1/p+1/q = 1 and V ⋆ is the dual

space of V (see, e.g., [15], [16]). The duality between V ⋆ and V will be denoted by

〈·, ·〉 and between Lq(0, T ;V ⋆) and Lp(0, T ;V ) by [·, ·].

(i) Assumptions on N :

N : Lp(0, T ;V )× Lp(0, T ;V1)× Lp(0, T ;V1) → Lq(0, T ;V ⋆)
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is demicontinuous (i.e., it maps strongly convergent sequences into weakly convergent

sequences), and there is a constant c1 such that

(2.1) ‖[N(t, z; v, w)](t)‖V ⋆ 6 c1‖z‖
p−1
V

for all t ∈ (0, T ), z ∈ V , v, w ∈ Lp(0, T ;V1). Further, for arbitrary fixed t ∈ (0, T ),

z ∈ V ,

(2.2) (v, w) 7→ N(t, z; v, w) is continuous

(as an operator Lp(0, T ;V1) × Lp(0, T ;V1) → Lq(0, T ;V ⋆)). Finally, there exist

constants σ⋆ > 0 and c2 > 0 such that σ⋆ < p− 1 and

〈[N(t, z1; v, w)](t) − [N(t, z2; v, w)](t), z1(t)− z2(t)〉(2.3)

>
c2

[1 + ‖v‖Lp(0,T ;V ) + ‖w‖Lp(0,T ;V )]σ
⋆ ‖z1(t)− z2(t)‖

p
V

for all t ∈ (0, T ), z1, z2 ∈ V , v, w ∈ Lp(0, T ;V ).

(ii) Assumptions on Q:

Q : V → V ⋆ is a linear and continuous operator satisfying

〈Qz1, z2〉 = 〈Qz2, z1〉, 〈Qz, z〉 > 0, z1, z2, z ∈ V.

(iii) Assumptions on M :

M : Lp(0, T ;V )× Lp(0, T ;V )× Lp(0, T ;V ) → Lq(0, T ;V ⋆
1 )

is (nonlinear) bounded, demicontinuous and with some nonnegative constants c3 and

σ < p− σ⋆ − 1

(2.4) 〈[M(t, z; v, w)](t), z(t)〉 > −c3
[
1 + ‖v‖Lp(0,T ;V ) + ‖w‖Lp(0,T ;V )

]σ+1
.

Theorem 2.1. Assume (i)–(iii). Then for any f ∈ Lq(0, T ;V ⋆), u0 ∈ V and

u1 ∈ H there exists u ∈ C([0, T ];V ) such that u′ ∈ Lp(0, T ;V ), u′′ ∈ Lq(0, T ;V ⋆)

and u satisfies (1.1), (1.2).

For the definition of the generalized derivatives u′, u′′ see, e.g., [15], page 417.

P r o o f. For simplicity, first consider the case u0 = 0, u1 = 0. Define an operator

S : Lp(0, T ;V ) → Lp(0, T ;V ) by

(Sv)(t) =

∫ t

0

v(s) ds.
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Then S is a linear and continuous operator and u is a solution of (1.1), (1.2) with

u0 = 0, u1 = 0 if and only if v = u′ ∈ Lp(0, T ;V ) satisfies

v′(t) + [N(t, v(t); v, Sv)](t) +Q[Sv(t)](2.5)

+ [M(t, v(t); v, Sv)](t) = f(t), t ∈ (0, T ), v(0) = 0.

Consider the operator A : Lp(0, T ;V ) → Lq(0, T ;V ⋆) defined by

[A(v)](t) = [N(t, v(t); v, Sv)](t) +Q[Sv(t)] + [M(t, v(t); v, Sv)](t).

By (i)–(iii), it is not difficult to show that A is bounded and demicontinuous.

Further, by (i)

∫ T

0

〈[N(t, v(t); v, Sv)](t), v(t)〉dt >
c2

[1 + ‖v‖Lp(0,T ;V ) + ‖Sv‖Lp(0,T ;V )]σ
⋆(2.6)

×

∫ T

0

‖v(t)‖pV dt− ‖N(t, 0; v, Sv)‖Lq(0,T ;V ⋆)‖v‖Lp(0,T ;V )

>
c2

[1 + ‖v‖Lp(0,T ;V ) + ‖Sv‖Lp(0,T ;V )]σ
⋆

∫ T

0

‖v(t)‖pV dt

> const‖v‖p−σ⋆

Lp(0,T ;V )

because

‖Sv‖Lp(0,T ;V ) 6 const‖v‖Lp(0,T ;V ).

Thus by (iii)

∫ T

0

〈[A(v)](t), v(t)〉dt(2.7)

> const‖v‖p−σ⋆

Lp(0,T ;V ) − const[1 + ‖v‖Lp(0,T ;V ) + ‖Sv‖Lp(0,T ;V )]
σ+1

> const‖v‖p−σ⋆

Lp(0,T ;V ) − const[1 + ‖v‖Lp(0,T ;V )]
σ+1,

which implies that

lim
‖v‖Lp(0,T ;V )→∞

∫ T

0

〈[A(v)](t), v(t)〉dt = ∞

since σ < p− σ⋆ − 1, thus A is coercive.

Now we show that A belongs to (S)+ with respect to

D(L) = {v ∈ Lp(0, T ;V ) : v′ ∈ Lq(0, T ;V ⋆), v(0) = 0},
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which means:

vj ∈ D(L), (vj) → v weakly in Lp(0, T ;V ),(2.8)

(v′j) → v′ weakly in Lq(0, T ;V ⋆),(2.9)

lim sup[A(vj), vj − v] 6 0(2.10)

imply

(2.11) (vj) → v strongly in Lp(0, T ;V ).

To prove that (2.8)–(2.10) imply (2.11), observe that

[QS(vj), vj − v] = [QS(vj − v), vj − v] + [QS(v), vj − v],

where the first term on the right hand side is nonnegative (see, e.g., [15], [16]) and

the second term tends to 0 by (2.9), thus

(2.12) lim inf[QS(vj), vj − v] > 0.

Further, since V is compactly imbedded in V1, by the compact imbedding theorem

(see [8]), (2.8), (2.9) imply that

(2.13) (vj) → v in Lp(0, T ;V1)

for a subsequence (again denoted by (vj), for simplicity), hence

(2.14)

∫ T

0

〈[M(t, vj(t); vj , Svj)](t), vj(t)− v(t)〉dt → 0

because the first term in (2.14) is bounded in Lq(0, T ;V ∗
1 ) since M is a bounded

operator. (2.10), (2.12), (2.14) imply that (for a subsequence)

(2.15) lim sup

∫ T

0

〈[N(t, vj(t); vj , Svj)](t), vj(t)− v(t)〉dt 6 0.

Observe that

〈[N(t, vj(t); vj , Svj)](t), vj(t)− v(t)〉(2.16)

= 〈[N(t, vj(t); vj , Svj)](t) − [N(t, v(t); vj , Svj)](t), vj(t)− v(t)〉

+ 〈[N(t, v(t); vj , Svj)](t)− [N(t, v(t); v, Sv)](t), vj(t)− v(t)〉

+ 〈[N(t, v(t); v, Sv)](t), vj(t)− v(t)〉.
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By (2.2), (2.13), (2.8) the second and third terms on the right hand side of (2.16)

converge to 0. Thus (2.8), (2.15), (2.16) and (2.3) imply (2.11).

So we have shown that A is bounded, demicontinuous, coercive and belongs

to (S)+. Consequently (see, e.g., [2]), there is a solution of (2.5), and thus there

is a solution of (1.1), (1.2) in the case u0 = 0, u1 = 0. The case u0 ∈ V , u1 ∈ H can

be easily reduced to the case u0 = 0, u1 = 0. (See, e.g., [11].) �

3. Examples

E x am p l e 3.1. Let V be a closed linear subspace of the Sobolev space W 1,p(Ω)

containing C∞
0 (Ω), V1 = Lp(Ω) where Ω is a bounded domain with sufficiently

smooth boundary, see [1]. The following examples satisfy the assumptions of Theo-

rem 2.1:

〈[N(t, z(t); v, w)](t), y(t)〉

=
n∑

i=1

∫

Ω

b(t, x; [H(v)](t, x), [H̃(v)](t, x))(Diz)|Dz|p−2Diy dx

+

∫

Ω

b0(t, x; [H0(v)](t, x), [H̃0(v)](t, x))z|z|
p−2y dx

where b, b0 are Carathéodory functions satisfying with some positive constants

c2
1 + |θ1|σ

⋆ + |θ1|σ
⋆ 6 b, b0(t, x; θ1, θ2) 6 c3,

H, H̃,H0, H̃0 : Lp(QT ) → Lp(QT ) are continuous linear operators.

Further,

〈Qu, v〉 =

∫

Ω

[ n∑

k,l=1

aklDkuDlv + d0uv

]
dx

where akl, d0 ∈ L∞(Ω), akl = alk,
n∑

k,l=1

akl(x)ξkξl > 0, d0 > 0.

M(t, z; v, w) = g0
(
t, z(t, x), [F1(v,Dv)](t, x), [F2(w,Dw)](t, x)

)

+ g
(
t, z(t, x), [F3(v,Dv)](t, x), [F4(w,Dw)](t, x)

)

where

g0, g : (0, T )× R× R× R → R

are Carathéodory functions satisfying

g0(t, θ1, θ2, θ3)θ1 > 0, |g0(t, θ1, θ2, θ3)| 6 const|θ1|
p−1,

|g(t, θ1, θ2, θ3)| 6 const[1 + |θ1|+ |θ2|+ |θ3|]
σ; Fj : [Lp(QT )]

n+1 → Lp(QT )

are continuous linear operators.
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R em a r k 3.1. In this case the solution of (1.1) can be viewed as a weak solution

of the partial functional differential equation

D2
tu−

n∑

i=1

Di{b(t, x; [H(u′)](t, x), [H̃(u)](t, x))|Du′|p−2Diu
′}

+ b0(t, x; [H0(u
′)](t, x), [H̃0(u)](t, x))|u

′|p−2u′ −
n∑

j,k=1

Dl(aklDku) + d0u

+ g0(t, u
′, [F1(u

′, Du′)](t, x), [F2(u,Du)](t, x))

+ g(t, u′, [F3(u
′, Du′)](t, x), [F4(u,Du)](t, x)) = f(t, x),

in the case V = W 1,p
0 (Ω) with homogeneous Dirichlet boundary condition and in the

case V = W 1,p(Ω) with homogeneous Neumann type boundary condition.

E x am p l e 3.2. Similarly, let V be a closed linear subspace of the Sobolev space

Wm,p(Ω) (m > 1), V1 = Wm−1,p(Ω), H = L2(Ω). Then Q may be an analogous 2m

order linear symmetric elliptic differential operator, N and M may be higher order

nonlinear partial functional differential operators.

4. Uniqueness of the solution

Theorem 4.1. Assume that the conditions of Theorem 2.1 are fulfilled so that

N does not depend on v and w, M does not depend on w and M is Lipschitz in the

following sense:

∫ t

0

‖M(τ, v1(τ); v1)−M(τ, v2(τ); v2)‖
2
H dτ 6 const

∫ t

0

‖v1(τ)− v2(τ)‖
2
H dτ

for arbitrary v1, v2 ∈ Lp(0, T ;V ), t ∈ (0, T ).

Then for arbitrary solutions u1, u2 of (1.1) with f = f1 and f = f2 we have

‖u′
1(t)− u′

2(t)‖
2
H + c2‖u

′
1 − u′

2‖Lp(0,t;V )(4.1)

6 const et
[
‖u′

1(0)− u′
2(0)‖

2
H + ‖f1 − f2‖

q
Lq(0,t;V ⋆)

]
.

R em a r k 4.1. The inequality (4.1) implies the uniqueness of the solution of (1.1),

(1.2).

Further, from (4.1) one obtains estimates for u1 − u2 where uj is the solution of

(1.1), (1.2) with u0 = u0j , u1 = u1j , f = fj , j = 1, 2, since uj(t) = u0j +
∫ t

0
u′
j(s) ds.
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P r o o f of Theorem 4.1. Define vj by vj(t) =
∫ t

0
u′
j(s) ds = Su′

j. Then vj satisfies

(2.5) with f = fj . Apply the difference of these equations to v1 − v2. By using the

arguments in the proof of Theorem 2.1, we obtain

1

2
‖v1(t)− v2(t)‖

2
H −

1

2
‖v1(0)− v2(0)‖

2
H(4.2)

+

∫ t

0

〈[A(v1)](τ) − [A(v2)](τ), v1(τ) − v2(τ)〉dτ

=

∫ t

0

〈f1(τ) − f2(τ), v1(τ) − v2(τ)〉dτ

6

[∫ t

0

‖f1(τ) − f2(τ)‖
q
V ⋆ dτ

]1/q[∫ t

0

‖v1(τ) − v2(τ)‖
p
V dτ

]1/p

6 ε‖v1 − v2‖
p
Lp(0,t;V ) + C(ε)‖f1 − f2‖

q
Lq(0,t;V ⋆)

for arbitrary ε > 0.

The assumptions of our theorem and the Cauchy-Schwarz inequality imply

∫ t

0

〈[A(v1)](τ)− [A(v2)](τ), v1(τ) − v2(τ)〉dτ(4.3)

> c2‖v1 − v2‖
p
Lp(0,t;V ) + 〈[(QS)(v1)](t)

− [(QS)(v2)](t), v1(t)− v2(t)〉 − const

∫ t

0

‖v1(τ) − v2(τ)‖
2
H dτ.

Since the second term on the right hand side of (4.3) is nonnegative (see the proof

of Theorem 2.1), choosing ε > 0 sufficiently small, we obtain from (4.2), (4.3)

‖v1(t)− v2(t)‖
2
H + c2‖v1 − v2‖

p
Lp(0,t;V )

6 ‖v1(0)− v2(0)‖
2
H + c3‖f1 − f2‖

q
Lq(0,t;V ⋆)

+ const

∫ t

0

‖v1(τ) − v2(τ)‖
2
H dτ

with some positive constants, which implies by Gronwall’s lemma

‖v1(t)− v2(t)‖
2
H + c2‖v1 − v2‖

p
Lp(0,t;V )(4.4)

6 const et
[
‖v1(0)− v2(0)‖

2
H + ‖f1 − f2‖

q
Lq(0,t;V ⋆)

]
.

Since vj = u′
j, from (4.4) one obtains (4.1). �
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5. Boundedness and stabilization

Now we formulate an existence theorem for t ∈ (0,∞) which can be obtained from

Theorem 2.1, by using a diagonal process and the Volterra property of N andM (see,

e.g. [11], [12]). Denote by Lp
loc(0,∞;V ) the set of functions u : (0,∞) → V such that

for each fixed finite T > 0, for the restriction of u to (0, T ), u|(0,T ) ∈ Lp(0, T ;V ).

Theorem 5.1. Assume that Q : V → V ⋆ satisfies (ii). Let

N : Lp
loc(0, T ;V )× Lp

loc(0, T ;V1)× Lp
loc(0, T ;V1) → Lq

loc(0, T ;V
⋆),

M : Lp
loc(0, T ;V )× Lp

loc(0, T ;V )× Lp
loc(0, T ;V ) → Lq

loc(0, T ;V
⋆
1 )

be operators of Volterra type (i.e., for all t > 0 their restrictions to v, w ∈ Lp(0, t;V1)

and Lp(0, t;V ), respectively, depend only on v|(0,t), w|(0,t)) and assume that for each

finite T > 0 their restrictions to (0, T ) satisfy (i) and (iii).

Then for arbitrary f ∈ Lq
loc(0,∞;V ⋆), u0 ∈ V , u1 ∈ H there exists u such that

u ∈ C([0,∞);V ), u′ ∈ Lp
loc(0,∞;V ), u′′ ∈ Lq

loc(0,∞;V ⋆); further, u satisfies (1.1)

for t ∈ (0,∞) and the initial condition (1.2).

Now we formulate a theorem on the boundedness of the solutions of (1.1), (1.2)

for t ∈ (0,∞).

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied (with the same

constants for all T > 0) such that instead of (2.4)

〈[M(t, z; v, w)](t), z(t)〉 > −const[1 + ‖v‖Lp(0,t;V )]
σ+1

holds and f ∈ Lq(0,∞;V ⋆).

Then for a solution u of (1.1), (1.2), in (0,∞)

‖u′(t)‖H is bounded for t ∈ (0,∞),(5.1)

u′ ∈ Lp(0,∞;V ) and 〈Q[u(t)], u(t)〉 is bounded for t ∈ (0,∞).

Further, if

(5.2) 〈Qz, z〉 > ĉ‖z‖2V for z ∈ V

with some constant ĉ > 0 then

(5.3) u ∈ L∞(0,∞;V ).
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P r o o f. Applying both sides of (1.1) to u′ we obtain

〈u′′(t), u′(t)〉+ 〈[N(t, u′(t);u′, u)](t), u′(t)〉+ 〈Q[u(t)], u′(t)〉(5.4)

+ 〈[M(t, u′(t);u′, u)](t), u′(t)〉 = 〈f(t), u′(t)〉.

Integrating over (0, t), we find by (2.6), (2.4) and the equality

∫ t

0

〈Q[u(τ)], u′(τ)〉dt =
1

2
〈Q[u(t)], u(t)〉 −

1

2
〈Q[u(0)], u(0)〉

(see, e.g., [11], [15], [16]) that

1

2
‖u′(t)‖2H −

1

2
‖u′(0)‖2H + const‖u′‖p−σ⋆

Lp(0,T ;V ) +
1

2
〈Q[u(t)], u(t)〉(5.5)

−
1

2
〈Q[u(0)], u(0)〉 − const[1 + ‖u′‖Lp(0,T ;V )]

σ+1

6 ε‖u′‖p−σ⋆

Lp(0,T ;V ) + C(ε)‖f‖q
⋆

Lq(0,T ;V ⋆)

with some positive constants for arbitrary ε > 0, where q⋆ is defined by

1

p− σ⋆
+

1

q⋆
= 1, i.e., q⋆ =

p− σ⋆

p− σ⋆ − 1
.

Choosing ε > 0 sufficiently small, from (5.5) we obtain (5.1), since p− σ⋆ > σ + 1.

Finally, (5.2) and (5.5) imply (5.3). �

Now we prove a theorem on the stabilization of the solution as t → ∞.

Theorem 5.3. Assume that the assumptions of Theorem 5.2 are satisfied so that

for all t > 0

(5.6) 〈[M(t, z; v, w)](t), z(t)〉 > c̃‖z(t)‖2H − const[1 + ‖v‖Lp(0,t;V )]
σ+1, t ∈ (0,∞)

with some constant c̃ > 0, and there exists a > 0 such that

(5.7) ‖[M(t, z; v, w)](t)‖V ⋆
1
6 const

[
‖z‖V + ‖v‖p−1

Lp(t−a,t;V )

]
.

Further, let there exist f∞ ∈ V ⋆ such that (f − f∞) ∈ L2(0, T ;H).

Then for a solution u of (1.1), (1.2) in (0,∞) we have

(5.8) ‖u′(t)‖H 6 const e−c̃t, t ∈ (0,∞).
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Further, there exists w0 ∈ V such that

(5.9) ‖u(t)− w0‖H 6 const e−c̃t, t ∈ (0,∞),

and w0 satisfies the equation

(5.10) Qw0 = f∞.

P r o o f. Since Q : V → V ⋆ is linear, continuous, uniformly monotone, there exists

a unique solution u∞ ∈ V of

(5.11) Qu∞ = f∞

(see, e.g., [15], [16]). By (5.3) and (5.11) we obtain for w = u− u∞

〈w′′(t), w′(t)〉+ 〈[N(t, u′(t);u′, u)](t), u′(t)〉+ 〈Q[w(t)], w′(t)〉

+ 〈[M(t, u′(t);u′, u)](t), u′(t)〉 = 〈f(t)− f∞, u′(t)〉

since w′(t) = u′(t), w′′(t) = u′′(t); hence, integrating over (0, T ) with respect to t,

we find by (5.6)

1

2
‖w′(T )‖2H −

1

2
‖w′(0)‖2H + const‖w′‖p−σ⋆

Lp(0,T ;V )(5.12)

+
1

2
〈Q[w(T )], w(T )〉 −

1

2
〈Q[w(0)], w(0)〉

+ c̃

∫ T

0

‖w′‖2H dt− const[1 + ‖w′‖Lp(0,T ;V )]
σ+1

6 ε

∫ T

0

‖w′(t)‖2H dt+ C(ε)‖f − f∞‖2L2(0,T ;H)

with some positive constants. Choosing ε > 0 sufficiently small, we obtain from

inequality (5.12)

(5.13) ‖u′(T )‖2H + 2c̃

∫ T

0

‖u′(T )‖2H dt 6 const, for all T > 0

since ‖u′‖Lp(0,T ;V ) is bounded for all T > 0. The constant c̃ is positive, thus by

Gronwall’s lemma

‖u′(T )‖2H 6 c⋆e−c̃T , T > 0

with some constant c⋆, i.e. we have (5.8).
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The inequality (5.8) implies (5.9) since for any T1, T2 (T2 > T1)

‖u(T2)− u(T1)‖
2
H = (u(T2), u(T2)− u(T1))H − (u(T1), u(T2)− u(T1))H

=

∫ T2

T1

〈u′(t), u(T2)− u(T1)〉dt =

∫ T2

T1

(u′(t), u(T2)− u(T1))H dt

6 ‖u(T2)− u(T1)‖H

∫ T2

T1

‖u′(t)‖H dt,

hence

(5.14) ‖u(T2)− u(T1)‖H 6

∫ T2

T1

‖u′(t)‖H dt,

which implies

‖u(T2)− u(T1)‖H → 0 as T1, T2 → ∞.

Consequently, there exists w0 ∈ H such that

(5.15) ‖u(T )− w0‖H → 0 as T → ∞

and by (5.14)

‖u(T )− w0‖H 6

∫ ∞

T

‖u′(t)‖ dt 6 const e−c̃T ,

i.e., we have (5.9). Since u ∈ L∞(0,∞;V ),

(5.16) u(Tk) → w⋆
0 weakly in V, w⋆

0 ∈ V

for some sequence (Tk), lim(Tk) = ∞. Clearly, (5.16) implies

u(Tk) → w⋆
0 weakly in H,

thus by (5.15) w0 = w⋆
0 ∈ V and (5.16) holds for an arbitrary sequence (Tk) converg-

ing to ∞.

Finally, we show (5.10). Consider an arbitrary fixed v ∈ V and

χT (t) = χ(t− T ) where χ ∈ C∞
0 , suppχ ⊂ (0, 1),

∫ 1

0

χ(t) dt = 1.

Applying (1.1) to v ∈ V , multiplying by χT (t) and integrating over (0,∞) with

respect to t, we obtain
∫ ∞

0

〈u′′(t), v〉χT (t) dt+

∫ ∞

0

〈[N(t, u′(t);u′, u)](t), v〉χT (t) dt(5.17)

+

∫ ∞

0

〈Q[u(t)], v〉χT (t) dt+

∫ ∞

0

〈[M(t, u′(t);u′, u)](t), v〉χT (t) dt

=

∫ ∞

0

〈f(t)(t), v〉χT (t) dt.

150



Let (Tk) be an arbitrary sequence converging to ∞. For the first term on the left

hand side of (5.17) (with T = Tk) we have by (5.8)

(5.18)

∫ ∞

0

〈u′′(t), v〉χTk
(t) dt = −

∫ ∞

0

〈u′(t), v〉χ′
Tk
(t) dt → 0 as k → ∞,

further by (ii), (5.16) and Lebesgue’s dominated convergence theorem

∫ ∞

0

〈Q[u(t)], v〉χTK
(t) dt =

∫ ∞

0

〈Qv, u(t)〉χTK
(t) dt(5.19)

=

∫ 1

0

〈Qv, u(Tk + τ)〉χ(τ) dτ →

∫ 1

0

〈Qv,w0〉χ(τ) dτ = 〈Qv,w0〉 = 〈Qw0, v〉

as k → ∞.

For the second term on the left hand side of (5.17) we have by (5.1)
∣∣∣∣
∫ ∞

0

〈[N(t, u′(t);u′, u)](t), v〉χTk
(t) dt

∣∣∣∣(5.20)

=

∣∣∣∣
∫ 1

0

〈[N(Tk + τ, u′(tk + τ);u′, u)](Tk + τ), v〉χ(τ) dτ

∣∣∣∣

6 const

∫ 1

0

‖u′(Tk + τ)‖p−1
V dτ · ‖v‖V → 0 as k → ∞.

For the fourth term on the left hand side of (5.17) we have by (5.7), (5.1)
∣∣∣∣
∫ ∞

0

〈[M(t, u′(t);u′, u)](t), v〉χTk
(t) dt

∣∣∣∣(5.21)

=

∣∣∣∣
∫ 1

0

〈[M(Tk + τ, u′(tk + τ);u′, u)](Tk + τ), v〉χ(τ) dτ

∣∣∣∣

6 const‖v‖V1

∫ 1

0

‖[M(Tk + τ, u′(Tk + τ);u′, u)](Tk + τ)‖V ⋆
1
dτ

6 const‖v‖V1

∫ 1

0

[
‖u′(Tk + τ)‖V + ‖u′‖p−1

Lp(Tk+τ−a;Tk+τ ;V )

]
dτ → 0

as k → ∞.

Finally, for the right hand side of (5.17) we obtain, by using (f − f∞) ∈ L2(0,∞;H)

and the Cauchy-Schwarz inequality
∫ ∞

0

〈f(t)(t), v〉χTk
(t) dt =

∫ ∞

0

(f(t)(t), v)χTk
(t) dt(5.22)

=

∫ 1

0

〈f(Tk + τ), v〉χ(τ) dτ →

∫ 1

0

〈f∞, v〉χ(τ) dτ = 〈f∞, v〉.

From (5.17)–(5.22) one obtains (5.10) as k → ∞. �
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R em a r k 5.1. By using examples in Section 3 it is not difficult to formulate

examples satisfying the assumptions of Theorems 5.1–5.3.
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