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Abstract. Given a sequence of real or complex numbers, we construct a sequence of
nested, symmetric matrices. We determine the LU- and @Q R-factorizations, the determi-
nant and the principal minors for such a matrix. When the sequence is real, positive and
strictly increasing, the matrices are strictly positive, inverse M-matrices with symmetric,
irreducible, tridiagonal inverses.
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1. BASIC RESULTS FOR NESTED MATRICES

For a positive integer n, and a sequence of complex numbers a1, as,...,a,, the
n X n nested matric M = M (aq,as,...,ay,) is defined by
'al ay ap ai e a1 al T
ay az a2 az ... as a9
ay az a3 asg ... as as
M= |a1 a2 a3 a4 a4 ay
ay; a2 asz a4 ce. Qp—1 Ap-—1
La1 az a3 a4 ... Gp-1 ap

We observe that M is symmetric, so that when all of the a; are real, the spectrum
of M must be real.
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Theorem 1. The nxn matrix M (a1, as,...,ay,) has an LU-factorization in which

L does not depend on the sequence a1, ao, ..., ay,.
[1 0 0 O 0 0]
1 1 0 0 0 0
1 110 0 0
L=1(1 1 11 0 0
1 1 1 1 1 0
11 11 1 1]
'al al a1 al a1 al T
0 a2 —ay G2 —aip ag —ai as — ay as — aq
0 0 as —az az—az ... az — ag az — az
U = 0 0 0 as — a3z ... a4 — as a4 — as
0 0 0 0 cee Qp—1 — Qp—2 QAp—1 — Qp—2
L O 0 0 0 - 0 Ap — Qp—1 |

Proof. The result follows directly from the fact that for 2 < k& < n,
a1+ (ag —a1) + (az —a2) + ... + (ag — ak—1) = ak.
O

Corollary 2. The n x n matrix M(ay,as,...,a,) has an LDL"-factorization
where L is given in Theorem 1 and D is the nxn diagonal matrix D = diag(a1,az—aq,

as — a2, ...,an — Gp_1).

Proof. By direct computation, DLT = U where U is given in Theorem 1. [

2. DETERMINANTS OF NESTED MATRICES
The next theorem follows immediately from Theorem 1.
Theorem 3. The determinant of M (a1, as, ..., ay) is

det M (a1, az,...,a,) = a1(az —a1)(ag — az)...(an — an_1).
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Corollary 4. Let ¢ be a real or complex number, and let the real or complex
sequence ag, a1,,as, . . . , Ay, satisfy the second order recursion a, = an—1 + ca,_o for
n > 2. Then

n—2
_ n—1
det M(a1,az,...,a,) =ajc Haj.
j=0

In particular, when n > 2 and ¢ = ag = a1 = 1, each a; is the 4" Fibonacci
number F;, which yields,

det M(Fy, Fy, ... . F,) = [ F.

The product of the first n + 1 Fibonacci numbers, FoFy ... F,, 1 F, is sometimes
called the n'* Fibonacci generalized factorial, the nt" fibotorial, or the nt" fibonorial.
(See [3], and also the sequence A003266 in [2].)

Corollary 5. Let k be a positive integer, and let M, ; be the n X n matrix

My = M((3), (*31) - ("7377)). Then

k4+n—2 .
dn7k=detMn7k= H (ki:l)

j=k

Proof. By the previous theorem,

= () T () - ()= ()

=k

using the basic binomial coefficient recursion,
JEIN _ (0 J J
(i) =(20)+ ()

Example 6. For k=1andn > 1, M, = M(1,2,3, ey (Yf)) and d,,; = 1. For

k=2andn >1, Myo = M(1,3,6,10,..., (”;1)) and dp 2 = nl. For k = 3 and

n>1, Mys=M(1,4,10,20,..., ("3?)) and dy 3 = nl(n + 1)1/ (2)".

O
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Proposition 7. For k > 4 and n > 1, if d, , = det My, ;,, then
nln+1)!...(n+k—2)!

k—2
(n = 1) I1 5

dn,k =

Proof. Use Corollary 5, substitute using the equivalence (5) = p!/q\(p — q)!,
and cancel factorials that obviously appear in both the numerator and denominator.

O
3. THE INVERSE OF A NESTED MATRIX
Theorem 8. When M = M(aq,as,...,ay) is invertible, its inverse is tridiagonal.
Further,
a2 . .
—_— wheni=j =1,
ai(az — a1)

Aj+1 — Aj—1

(ajr1 —aj)(a; —aj—1)

when 1 <i=j <n,

-1 L= ].
(M=) _ when i = j =n,
Qp — An—1
-1 .
_— when |i — j| =1,
aj+1 — Gj
0 when |i — j| > 1.

Proof. The tridiagonality of M ~! arises from the fact that the (i, j)-cofactors
have a repeated row or column when |j —i| > 1. For 1 < j < n, the (j, j)-cofactor
is det M(a1,a9,...,a;-1,aj41,...,a,). The (1,1)-cofactor is det M (az,as,...,an).
The (n,n)-cofactor is det M (a1, a9, ...,an—1). For 1 < j < n, the the (j, j+ 1)-minor
is the determinant of

a ... aq aq aq . aq aq

a

a ... Gj-1 Gj-1 Gj-1 ... Aj-1 aj—1

al cee Q51 aj aj41 . 541 G541

al cee Q51 aj 542 . aj4-2 Q542

ar ... aj—1 aj aj+2 ... Ap—1 GOnp-—1
Lair ... Gj-1 aj aj+2 ... Ap—1 Ap
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So by iteratively subtracting the first j — 1 rows from each of the following rows, we
obtain

al al al al a1 ay
0 ag—ajg ... as —ai as —ai as —ai as —aq
0 0
. aj_lfaj_g aj_lfaj_g aj_lfaj_g aj_lfaj_g aj_lfaj_g
0 0 0 ajfaj_l aj+1faj_1 aj+1faj_1 aj+1faj_1
0 0 0 aj—Gj_1 Qj42—0j-1 ... Qj}2 =051 Gj42—05_1
0 0 0 aj—aj_1 Ap—1—0j-1 Qp—1—05-1
L aj; —aj—1 p—-1—0aj-1 Qan—0aj—1 |

Now subtracting the j*® row from the all of the subsequent rows yields

al al al al al al
0 ag—ay ... as —aj ags —ai as —aq as —ai
0 0
" aj—1—0a;-2 Aj—1—0aj-2 Aj—1—05-2 ... Qj—1—Aj-2 Gj—1—0Aj-2
0 0 Gj —Qj—1 Qj41—aj—1 ... Qj41—Gj—1 Gj41—aj—1
0 0 Qj42 = Qj41 --- Q42— Aj41 Gy —Ajpl
0 e 0 0 aj+27aj+1 e anflfaj_i_l anflfaj_i_l
L 0 0 e 0 0 aj+27aj+1 e anflfaj_i_l anfaj_i_l B

Thus the (j, 7 + 1)-minor is the product

al(ag — al)(ag — ag) . (aj — aj,l) . det M(aj+2 — aj+1, aj+3 — aj+1, ey Qp — aj+1)

=ai(az —a1)(as — az) ... (a; — aj-1) - (aj42 — aj+1)(aj43 — @j42) - (An — Gn-1)
_ det M(az,as,...,a,)

aj+1 — Gj

Since the matrix is symmetric, the (4, j + 1)-cofactor is

(=1)7ti+ det M (az, as, . .., an)

Tyl — Gy

Now use the fact that (M ~1);; is the ratio of the (i, j)-cofactor of M to the deter-
minant of M, and apply Corollary 3. U
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4. THE QQR-FACTORIZATION OF A NESTED MATRIX

Lemma 9. The n x n matrix L in Theorem 1 has (Q R-factorization L = Q. Ry,

where
r_1 n—1 T
T = 0 0 0 0
1 1 _ [n=2
vn V(n—1)n n—1 0 0 0
1 1 1 _ . /n=3 0 0
Vn \/(n—l)n \/(n—2)(n—1) n—2
QL= |-L 1 1 1
v Jin-n  /(n—2)(n-1) /(n—3)(n—2)
3
1 1 1 1 1 _ /1
Vf \/<n;1>n \/<n721><n71> \/<n731><n72> %?3 v 2
Lvi Jin—hn  /(n-2)(n—1) /(n—3)(n—2) V23 Jiz
and

0 if i > 4,

n—j7+1 e

- J - ifj>i=1,

(RL)ij = Vvn
" 1
n_J+ if5>i0>2.

Vin—i+1)(n—i+2)

Proof. Clearly, the columns of Q1 are pairwise orthogonal, unit vectors. A sim-
ple induction shows that the j*" column of L is a linear combination of the first j
columns of Q, for 1 < j < n. Since (Qr) ™ = (Qr)T, R = (Qr)T L, so the entries
of Ry are obtained as unweighted sums of entries from the columns of Q. Specif-
ically, (Rr)i; is the sum of the entries in column ¢ of @, from max{i — 1,5} to n
for 2 < i < n, and from j to n for ¢ = 1. The orthogonality of the all 1’s column
(parallel to the first column of Q1) to all of the other columns of @1, and the fact

that the entries in each column of @), are constant on and below the diagonal, leads

directly to the formula stated. O
Theorem 10. The n x n matrix M(ay,az,...,a,) has a QR-factorization in
which Q = @, and hence, does not depend on the sequence a,as,...,a,. For

this choice of (), the corresponding R is R,U where U is the upper triangular ma-
trix in Theorem 1. Equivalently, R = Ry DLT where D is the diagonal matrix in
Corollary 2.

Proof. M = M(ay,as,...,a,) has an LU-decomposition as M = LU where
L and U are given in Theorem 1. By Lemma 9, L = QL Ry, so M = (QLRL)U =
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QL(RLU). Since Ry, and U are both upper triangular, their product is upper trian-
gular. ([

5. STRICTLY INCREASING, POSITIVE SEQUENCES AND INVERSE M-MATRICES

Theorem 11. When the a; are real with 0 < a1 < az < ... < ap, M =
M (az,as,...,a,) has all principal minors positive. Further, M1 an irreducible,
tridiagonal M-matrix. That is, M is an entrywise positive, inverse M -matrix.

Proof. The positive, increasing values of the a; together with Theorem 3
guarantee that the principal minors are all positive and that M is entrywise positive.
Theorem 8 and the positive, increasing values of the a; guarantee that the inverse is
an irreducible Z-matrix. An invertible Z-matrix with an entrywise positive inverse
is an M-matrix, see [1], Theorem 6.2.3, Condition Nss. O

Example 12. When M = M(1,2,3,...,n), M~ is the symmetric, irreducible,
tridiagonal M-matrix

2 -1 0 o0 0 O
-1 2 -1 0 0 O
o -1 2 -1
M>7*=]0 0 -1 2 0 0
-1 0
0 0 o -1 2 -1
L O 0 0 0 -1 1 |
Theorem 13. When the a; are real with 0 < a1 < az < ... < ap, M =

M (ay,as,...,a,) has Cholesky factorization M = CC™ with C = LD"/? where L is
given in Theorem 1 and where

D'? = diag(v/a1, Vaz — a1, vaz — az, ..., \/an — an_1).

Proof. Since the a; are positive and strictly increasing, the entries of D'/? are
well-defined. Clearly, CCT = (LD'/?)(LD'/?)T = LDL™ = M by Corollary 2. [
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6. RELATED MATRICES

Consider the nested matrix M given by

a a a
M=1]a b b
b c
and the related matrices
c b a a a a b ¢
N=|b b al, S=|b b a and T=1a b b
a a a c b a a a
Let J be
0 0 1
J=10 1 0],
1 0 0

so J7' = J. Then N = JMJ, S = MJ and T = JM. Since det(J) = —1,
det(N) = det(M), and det(S) = det(T) = — det(M). Interestingly, although N is
permutation similar to M, the LU-decomposition and ) R-decomposition of N do
not have the simple structure that the corresponding decompositions of M have.
Less surprisingly, neither .S nor T has the nice decomposition properties that M

possesses.
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