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CONCENTRATION-COMPACTNESS PRINCIPLE FOR EMBEDDING

INTO MULTIPLE EXPONENTIAL SPACES

ON UNBOUNDED DOMAINS

Robert Černý, Praha

(Received May 2, 2014)

Abstract. Let Ω ⊂ R
n be a domain and let α < n − 1. We prove the Concentration-

Compactness Principle for the embedding of the spaceW 1
0L

n logα L(Ω) into an Orlicz space

corresponding to a Young function which behaves like exp(tn/(n−1−α)) for large t. We also
give the result for the embedding into multiple exponential spaces.
Our main result is Theorem 1.6 where we show that if one passes to unbounded domains,

then, after the usual modification of the integrand in the Moser functional, the statement
of the Concentration-Compactnes Principle is very similar to the statement in the case of
a bounded domain. In particular, in the case of a nontrivial weak limit the borderline
exponent is still given by the formula

P := (1− ‖Φ(|∇u|)‖L1(Rn))
−1/(n−1)

.

Keywords: Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp con-
stant; concentration-compactness principle

MSC 2010 : 46E35, 46E30, 26D10

1. Introduction

Throughout the paper Ω is a domain in R
n, n > 2, and ωn−1 denotes the surface

of the unit sphere. Furthermore, W 1,p
0 (Ω) denotes the usual completion of C∞

0 (Ω)

in W 1,p(Ω).

The aim of this paper is to prove the Concentration-Compactness Principle for

Orlicz-Sobolev spaces embedded into exponential and multiple exponential Orlicz

The author was supported by the ERC CZ grant LL1203 of the Czech Ministry of
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spaces in the case of an unbounded domain. The case of a bounded domain was

treated in papers [9], [5], [7] and the results are strong enough to be called gen-

eralizations of the corresponding well-known results for the space W 1,n
0 (Ω). Let

us also note that the author is aware of only one paper giving the full statement

of the Concentration-Compactness Principle for the space W 1,n
0 (Ω) in the case of

an unbounded domain (paper [3]), however, the presented proof is not correct (the

error rests upon the fact that if u ∈ W 1,n
0 (Ω) and Ω̃ ⊂ Ω, then u ∈ W 1,n(Ω̃) but

u /∈W 1,n
0 (Ω̃) in general and thus the result for unbounded domains is not just an easy

consequence of the result for bounded domains). Nevertheless, the Concentration-

Compactness Principle usually consists of three or four statements and the most

important one was proved in [16] (this part is also the most difficult to prove). In

fact, the proof of the main result of [16] can be significantly simplified as shown in

the present paper. Concerning the Orlicz-Sobolev setting, no result for unbounded

domains has been published so far.

Let us proceed to a detailed introduction.

Sobolev case on a bounded domain. If Ω is bounded, then the famous Moser-

Trudinger inequality [28] concerning a classical embedding theorem by Trudinger [33]

states that

(1.1) sup
‖∇u‖Ln(Ω)61

∫

Ω

exp(K|u|n
′

) dx

{
6 C(n,K,Ln(Ω)) when K 6 nω

1/(n−1)
n−1 ,

= ∞ when K > nω
1/(n−1)
n−1 .

This result is often used when proving the existence of nontrivial weak solutions to

the n-Laplace equation

(1.2) − div(|∇u|n−2∇u) = f(x, u),

where the nonlinearity f has the growth of exponential type (see for example [2],

[14], [15]).

An often used improvement of the Moser-Trudinger inequality is the following

Concentration-Compactness Principle.

Theorem 1.1. Let n ∈ N, n > 2 and let Ω ⊂ R
n be a bounded domain. Let

{uk} ⊂ W 1,n
0 (Ω) be a sequence satisfying ‖∇uk‖Ln(Ω) 6 1 for every k ∈ N, let

u ∈W 1,n
0 (Ω) and µ ∈ M(Ω). Assume that

uk ⇀ u in W 1,n
0 (Ω), uk → u a.e. in Ω and |∇uk|

n ∗
⇀ µ inM(Ω).

(i) If u = 0, µ = δx0 for some x0 ∈ Ω, and
∫

Ω

exp(nω
1/(n−1)
n−1 |uk|

n/(n−1)) dx→ c+ Ln(Ω)
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for some c ∈ [0,∞), then

exp(nω
1/(n−1)
n−1 |uk|

n/(n−1))
∗
⇀ cδx0 + Ln|Ω inM(Ω).

(ii) If u = 0 and µ is not a Dirac mass concentrated at one point, then there exists

p > 1 such that

exp(nω
1/(n−1)
n−1 p|uk|

n/(n−1)) is bounded in L1(Ω).

(iii) If u 6= 0 and p < P := (1 − ‖∇u‖nLn(Ω))
−1/(n−1) (where we read P = ∞ if

‖∇u‖Ln(Ω) = 1), then

exp(nω
1/(n−1)
n−1 p |uk|

n/(n−1)) is bounded in L1(Ω).

Moreover, in both the cases (ii) and (iii),

exp(nω
1/(n−1)
n−1 |uk|

n/(n−1)) → exp(nω
1/(n−1)
n−1 |u|n/(n−1)) in L1(Ω).

The statement of Theorem 1.1 comes from [27], Theorem I.6 and Remark I.18.

However, the proof of Theorem 1.1 (iii) in the case n > 3 is valid only for p 6

P̃ := (1 − ‖∇u♯‖nLn(Ω))
−1/(n−1), where u♯ denotes the Schwarz symmetral of u.

One has P̃ 6 P and it may happen that P̃ < P in general. The correct proof of

Theorem 1.1 (iii) is given in [8].

The Concentration-Compactness Principle is used in the proof that the supremum

in the Moser-Trudinger inequality with K = nω
1/(n−1)
n−1 is attained (see [4]) and

Theorem 1.1 (iii) also plays an important role when studying (1.2) with a nonlinearity

having the so called critical growth (see for example [14], [15]) and when studying

the multiplicity of weak solutions (see for example [17]). In these cases, the Moser-

Trudinger inequality is not powerful enough.

Let us also note that the upper bound of p in Theorem 1.1 (iii) is sharp. Indeed,

in [8], an example is given showing that we cannot have p = P in Theorem 1.1 (iii).

It is interesting to compare this result with the Moser-Trudinger inequality (1.1),

where the supremum is finite also for the borderline exponent.

Sobolev case on an unbounded domain. If Ω is not bounded, then W 1,n
0 (Ω)

is embedded into Lp(Ω) for p ∈ [n,∞) only and thus it is natural to state the Moser-

Trudinger inequality with a suitable part of the Taylor expansion corresponding to

the function exp subtracted. We set

Υ(t) = exp(t)−

n−2∑

j=0

tj

j!
.
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Versions of inequality (1.1) for unbounded domains were studied in [1], [26], [15]

and [31].

Since any function from W 1,n
0 (Ω) can be extended by zero outside Ω to obtain

a function from W 1,n
0 (Rn) = W 1,n(Rn), the result is often stated for the space

W 1,n(Rn): If M > 0, then

(1.3) sup
‖∇u‖Ln(Rn)61

‖u‖Ln(Rn)6M

∫

Ω

Υ(K|u|n/(n−1))

{
6 C(n,K,M) when K 6 nω

1/(n−1)
n−1 ,

= ∞ when K > nω
1/(n−1)
n−1 .

This result is again often used when proving the existence of a nontrivial weak

solution to the n-Laplace equation.

Let us also note that in the literature, the finiteness of the supremum in (1.3)

is often proved only for K < nω
1/(n−1)
n−1 . But for example from careful estimates

in [3], Proof of Theorem 1.2, it can be seen that the supremum is finite also for

K = nω
1/(n−1)
n−1 .

The Concentration-Compactness Principle is now formulated as follows:

Theorem 1.2. Let n ∈ N, n > 2 andM > 0. Let {uk} ⊂W 1,n(Rn) be a sequence

satisfying ‖∇uk‖Ln(Rn) 6 1 and ‖uk‖Ln(Rn) 6M for every k ∈ N. Let u ∈W 1,n(Rn)

and µ ∈ M(Rn). Assume that

uk ⇀ u in W 1,n(Rn), uk → u a.e. in R
n and |∇uk|

n ∗
⇀ µ inM(Rn).

Let us set

A∞ = lim
R→∞

lim sup
k→∞

∫

Rn\B(R)

|∇uk|
n dx.

Then A∞ ∈ [0, 1], µ(Rn) 6 1−A∞ and we have:

(i) If u = 0, µ = δx0 for some x0 ∈ R
n, and

∫

B(x0,̺)

Υ(nω
1/(n−1)
n−1 |uk|

n/(n−1)) dx→ c

for some c ∈ [0,∞) and for some ̺ > 0, then

Υ(nω
1/(n−1)
n−1 |uk|

n/(n−1))
∗
⇀ cδx0 inM(Rn),

while for every p > 0 and every ̺ > 0

Υ(nω
1/(n−1)
n−1 p|uk|

n/(n−1)) is bounded in L1(Rn \B(x0, ̺)).
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(ii) If u = 0 and A∞ = 1, then for every p > 1 and every open bounded set Ω0 ⊂ R
n

Υ(nω
1/(n−1)
n−1 p|uk|

n/(n−1)) is bounded in L1(Ω0).

(iii) If u = 0, µ is not a Dirac mass concentrated at one point, A∞ < 1 and

(1.4) p < P :=
(
max

{
A∞,max

x∈Rn
µ({x})

})−1/(n−1)

(with the convention 0−1/(n−1) = ∞), then

Υ(nω
1/(n−1)
n−1 p|uk|

n/(n−1)) is bounded in L1(Rn).

(iv) If u 6= 0 and p < P := (1 − ‖∇u‖nLn(Rn))
−1/(n−1) (where we read P = ∞ if

‖∇u‖Ln(Rn) = 1), then

Υ(nω
1/(n−1)
n−1 p|uk|

n/(n−1)) is bounded in L1(Rn).

Moreover, in cases (ii), (iii) and (iv), we have for every open bounded set

Ω0 ⊂ R
n

Υ(nω
1/(n−1)
n−1 |uk|

n/(n−1)) → Υ(nω
1/(n−1)
n−1 |u|n/(n−1)) in L1(Ω0)

and in case (i), we have for every open bounded set Ω0 ⊂ R
n and every ̺ > 0

Υ(nω
1/(n−1)
n−1 |uk|

n/(n−1)) → Υ(nω
1/(n−1)
n−1 |u|n/(n−1)) in L1(Ω0 \B(x0, ̺)).

Some parts of Theorem 1.2 were stated in [3] (with the proof which is not correct)

and used to show that if n = 2 and Ω is a stripe {(x1, x2) ∈ R
2 : −1 < x1 < 1}, then

there is a version of the result [4] for inequality (1.3). Theorem 1.2 (iv) is given in [16],

the proof is obtained by a minor modification of the proof of Theorem 1.1 (iii) given

in [8]. Paper [16] further gives an application of Theorem 1.2 (ii) to the n-Laplace

equation.

Notice that the maximum max
x∈Rn

µ({x}) is actually attained, since µ({x}) exceeds

any fixed positive number at finite number of points only.

The case of W 1,n(Rn) (or W 1,n
0 (Ω) with Ω not being bounded) admits a new

phenomenon, Theorem 1.2 (ii). This phenomenon is called the Concentration-

Compactness Principle at infinity and it was introduced in [12].

The whole Theorem 1.2 is just a consequence of our general result Theorem 1.6

concerning the Orlicz-Sobolev setting.
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Some notes concerning the sharpness of the upper bounds of p in Theorem 1.2 (ii),

(iii) and (iv) are given in the last section.

Orlicz-Sobolev case on a bounded domain. First, let us recall some well

known results concerning embeddings into exponential and multiple exponential

spaces. If l ∈ N and α < n− 1, we set

(1.5) γ =
n

n− 1− α
> 0, B = 1−

α

n− 1
=

n

(n− 1)γ
> 0

and Kl,n,α =

{
B1/Bnω

γ/n
n−1 for l = 1,

B1/Bω
γ/n
n−1 for l > 2.

The space W0L
n logα L(Ω) of the Sobolev type, modeled on the Zygmund space

Ln logα L(Ω), is continuously embedded into an Orlicz space with the Young function

that behaves like exp(tγ) for large t (see [24] and [22]). Moreover, it is shown in [22]

(see also [13] and [21]) that in the limiting case α = n−1 we have the embedding into

a double exponential space, i.e., the spaceW0L
n logn−1 L logα logL(Ω), α < n−1, is

continuously embedded into the Orlicz space with the Young function that behaves

like exp(exp(tγ)) for large t. Furthermore, in the limiting case α = n−1 we have the

embedding into a triple exponential space and so on. The borderline case is always

α = n − 1 and for α > n− 1 we have the embedding into L∞(Ω). It is well-known

that the Zygmund space Ln logα L(Ω) coincides with the Orlicz space LΦ(Ω), where

lim
t→∞

Φ(t)

tn logα(t)
= 1,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)

tn logn−1(t) logα(log(t))
= 1,

and so on. For other results concerning these spaces and their precise definitions we

refer the reader to [21], [20], [19], [18], [23] and [29].

The following notation is useful when dealing with multiple logarithmic and mul-

tiple exponential spaces. Let us write

log[1](t) = log(t) and log[j](t) = log(log[j−1](t)) for j > 2, j ∈ N

and

exp[1](t) = exp(t) and exp[j](t) = exp(exp[j−1](t)) for j > 2, j ∈ N.
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Let l ∈ N and α < n− 1. Then we have the above mentioned embedding results for

any Young function Φ satisfying

(1.6) lim
t→∞

Φ(t)

tn
(∏l−1

j=1 log
n−1
[j] (t)

)
logα[l](t)

= 1

(for l = 1 we read (1.6) as lim
t→∞

Φ(t)/(tn logα[1](t)) = 1). As Ω is bounded, all Young

functions satisfying (1.6) give us the same Orlicz-Sobolev space.

Now, let us recall the generalized Moser-Trudinger inequality.

Theorem 1.3. Let l ∈ N, n ∈ N, n > 2, α < n − 1, K > 0 and let Ω ⊂ R
n be

a bounded domain. Let Φ be a Young function satisfying (1.6).

(i) If u ∈W0L
Φ(Ω), then

∫

Ω

exp[l](K|u|γ) dx <∞.

(ii) If K < Kl,n,α, then

sup
u∈W0LΦ(Ω),‖Φ(∇u)‖L1(Ω)61

∫

Ω

exp[l](K|u|γ) dx 6 C(l, n, α,Φ,Ln(Ω),K).

(iii) If K > Kl,n,α, then

sup
u∈W0LΦ(Ω),‖Φ(∇u)‖L1(Ω)61

∫

Ω

exp[l](K|u|γ) dx = ∞.

The first assertion follows from [22], Remarks 3.11 (iv). The other two assertions

follow from [25], Theorem 1.1 and Theorem 1.2 (cases l = 1 and l = 2) and [11],

Theorem 1.1 and Theorem 1.2 (case l > 3). It is also shown in [25] and [11] that if

K = Kl,n,α, then the finiteness of the supremum depends on the choice of Φ.

Finally, we recall the Concentration-Compactness Principle given in [10], [5]

and [7].

Theorem 1.4. Let l ∈ N, n ∈ N, n > 2, α < n− 1 and let Ω ⊂ R
n be a bounded

domain. Let Φ be a Young function satisfying (1.6). Let {uk} ⊂ W0L
Φ(Ω) be

a sequence satisfying ‖Φ(|∇uk|)‖L1(Ω) 6 1 for every k ∈ N, let u ∈ W0L
Φ(Ω) and

µ ∈ M(Ω). Assume that

uk ⇀ u in W0L
Φ(Ω), uk → u a.e. in Ω and Φ(|∇uk|)

∗
⇀ µ inM(Ω).
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(i) If u = 0, µ = δx0 for some x0 ∈ Ω, and

∫

Ω

exp[l](Kl,n,α|uk|
γ) dx→ c+ exp[l](0)Ln(Ω)

for some c ∈ [0,∞), then

exp[l](Kl,n,α|uk|
γ)

∗
⇀ cδx0 + exp[l](0)Ln|Ω inM(Ω).

(ii) If u = 0 and µ is not a Dirac mass concentrated at one point, then there exists

p > 1 such that

exp[l](Kl,n,αp|uk|
γ) is bounded in L1(Ω).

(iii) If u 6= 0 and p < P := (1 − ‖Φ(|∇u|)‖L1(Ω))
−γ/n (where we read P = ∞ if

‖Φ(|∇u|)‖L1(Ω) = 1), then

exp[l](Kl,n,αp|uk|
γ) is bounded in L1(Ω).

Moreover, in both the cases (ii) and (iii),

exp[l](Kl,n,α|uk|
γ) → exp[l](Kl,n,α|u|

γ) in L1(Ω).

Some notes concerning the sharpness of Theorem 1.4 (iii) are given in [7], where

it is shown that if Φ satisfies (1.6) and some additional growth assumptions, then we

cannot have p = P in Theorem 1.4 (iii).

Orlicz-Sobolev case on an unbounded domain. In this case, the results

depend also on the behavior of the Young function Φ for small arguments. Let us

suppose that Φ satisfies an additional assumption

(1.7)
1

C
tn 6 Φ(t) 6 Ctn for t ∈

[
0,

1

C

)
.

Next, let

exp[l](t) =
∞∑

j=0

ajt
j

be the Taylor expansion of the the function exp[l]. We set

Υ(t) =
∑

j∈[n/γ,∞)∩N

ajt
j.
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The following result comes from [6].

Theorem 1.5. Let l ∈ N, n > 2 and α < n− 1. Suppose that a Young function

Φ: [0,∞) 7→ [0,∞) satisfies (1.6) and (1.7). Let u ∈WLΦ(Rn).

(i) If K > 0 then ∫

Rn

Υ(K|u|γ) dx <∞.

(ii) If 0 6 K < Kl,n,α, ‖Φ(|∇u|)‖L1(Rn) 6 1 and ‖Φ(|u|)‖L1(Rn) 6 M for some

M > 0, then ∫

Rn

Υ(K|u|γ) dx 6 C(l, n, α,Φ,M,K).

(iii) If K > Kl,n,α, then there is a sequence {uk} ⊂ WLΦ(Rn) such that

‖Φ(∇uk)‖L1(Rn) 6 1 for every k ∈ N, ‖Φ(uk)‖L1(Rn) → 0 and

∫

Rn

Υ(K|uk|
γ) dx

k→∞
−→ ∞.

It is also shown in [6] that if K = Kl,n,α, then the boundedness depends on the

choice of Φ. Let us note that in the original statement of Theorem 1.5 in [6], the

assumptions ‖Φ(|∇u|)‖L1(Rn) 6 1 and ‖Φ(|u|)‖L1(Rn) 6 M are replaced by esti-

mates of the Luxemburg norms ‖∇u‖LΦ(Rn) 6 1 and ‖u‖LΦ(Rn) 6 M . Our version

is still valid since the ∆2-condition implies that ‖Φ(|∇u|)‖L1(Rn) 6 1 if and only if

‖∇u‖LΦ(Rn) 6 1, and the boundedness of ‖Φ(|u|)‖L1(Rn) is equivalent to the bound-

edness of ‖u‖LΦ(Rn).

Now, let us state the main result of this paper.

Theorem 1.6. Let l ∈ N, n ∈ N, n > 2, α < n− 1 andM > 0. Let Φ be a Young

function satisfying (1.6) and (1.7). Let {uk} ⊂ WLΦ(Rn) be a sequence satisfying

‖Φ(|∇uk|)‖L1(Rn) 6 1 and ‖Φ(|uk|)‖L1(Rn) 6M for every k ∈ N. Let u ∈WLΦ(Rn)

and µ ∈ M(Rn). Assume that

uk ⇀ u in WLΦ(Rn), uk → u a.e. in R
n and Φ(|∇uk|)

∗
⇀ µ inM(Rn).

Let us set

A∞ = lim
R→∞

lim sup
k→∞

∫

Rn\B(R)

Φ(|∇uk|) dx.

Then A∞ ∈ [0, 1], µ(Rn) 6 1−A∞ and we have:

(i) If u = 0, µ = δx0 for some x0 ∈ R
n, and

∫

B(x0,̺)

Υ(Kl,n,α|uk|
γ) dx→ c

501



for some c ∈ [0,∞) and some ̺ > 0, then

Υ(Kl,n,α|uk|
γ)

∗
⇀ cδx0 inM(Rn),

while for every p > 0 and ̺ > 0

Υ(Kl,n,αp |uk|
γ) is bounded in L1(Rn \B(x0, ̺)).

(ii) If u = 0 and A∞ = 1, then for every p > 1 and every open bounded set Ω0 ⊂ R
n

Υ(Kl,n,αp |uk|
γ) is bounded in L1(Ω0).

(iii) If u = 0, µ is not a Dirac mass concentrated at one point, A∞ < 1 and

(1.8)

p < P := sup
{
τ > 1: Φ(τ1/γ t) 6

1

max{A∞,maxx∈Rnµ(x)}
Φ(t) for every t > 0

}
,

then

Υ(Kl,n,αp |uk|
γ) is bounded in L1(Rn).

(iv) If u 6= 0 and p < P := (1− ‖Φ(|∇u|)‖L1(Rn))
−1/(n−1) (where we read P = ∞ if

‖Φ(|∇u|)‖L1(Rn) = 1), then

Υ(Kl,n,αp |uk|
γ) is bounded in L1(Rn).

Moreover, in cases (ii), (iii) and (iv), we have for every open bounded set Ω0 ⊂ R
n

Υ(Kl,n,α|uk|
γ) → Υ(Kl,n,α|u|

γ) in L1(Ω0)

and in case (i), we have for every open bounded set Ω0 ⊂ R
n and every ̺ > 0

Υ(Kl,n,α|uk|
γ) → Υ(Kl,n,α|u|

γ) in L1(Ω0 \B(x0, ̺)).

In this case we are not going to give a detailed discussion concerning the sharpness

of the upper bounds of p in Theorem 1.6. The discussion concerning the sharpness

of Theorem 1.2 implies that the upper bounds of p cannot be improved in general in

Theorem 1.6.

Theorem 1.2 is obtained from Theorem 1.6 by setting Φ(t) = tn. Indeed, in this

case we have

‖Φ(|∇u|)‖L1(Rn) = ‖|∇u|n‖L1(Rn) = ‖∇u‖nLn(Rn)

and it is also easy to check that (1.8) turns to (1.4).
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Let us note that the ∆2-condition implies that the number P in (1.8) satisfies

P > 1.

The paper is organized as follows. Section 3 is devoted to preparation for the proof

of Theorem 1.6. The proof of Theorem 1.6 is given in the fourth section. In the last

section we give some comments concerning assumption (1.7) and we also study the

sharpness of the upper bounds of the exponents in Theorem 1.2.

Notice that our proof of Theorem 1.6 (iv) is much simpler than the proof of the

corresponding W 1,n-result given in [16]. In [16], the proof is obtained by a minor

modification (based on the so called radial lemma) of the proof of Theorem 1.1 (iii)

(the original proof comes from [8] and is quite long). In fact, it is enough to combine

just the statement of Theorem 1.1 (iii) and the radial lemma.

2. Preliminaries

The n-dimensional Lebesgue measure is denoted by Ln. Further, Ln|Ω is its re-

striction to Ω, i.e., Ln|Ω(A) = Ln(A ∩ Ω) for every measurable set A ⊂ R
n. If u is

a measurable function on Ω, then by u = 0 (or u 6= 0) we mean that u is equal (or

not equal) to the zero function a.e. on Ω.

ByM(Rn) we denote the set of all Radon measures on R
n. We write µj

∗
⇀ µ in

M(Rn) if
∫
Rn ψ dµj →

∫
Rn ψ dµ for every test-function ψ ∈ C0(R

n) (C0(R
n) denotes

the set of continuous functions with compact support). It is well known that each

sequence bounded in L1(Rn) contains a subsequence converging weakly* inM(Rn).

By B(x0, R) we denote the open Euclidean ball in R
n centered at x0 with the

radius R > 0. If x0 = 0 we simply write B(R).

By C we denote a generic positive constant which may depend on l, n, α and Φ.

This constant may vary from expression to expression as usual. Sometimes we say

that for every ε > 0 something is true. In such a case the constants C may depend

also on fixed ε > 0.

Properties of exp[l]. The following result comes from [6], Lemma 2.1.

Lemma 2.1. Let l ∈ N. The Taylor coefficients of the function exp[l] satisfy

aj > 0 for each j ∈ N.

Young functions and Orlicz spaces. A function Φ: [0,∞) → [0,∞) is a Young

function if Φ is increasing, convex, Φ(0) = 0 and lim
t→∞

Φ(t)/t = ∞.

Denote by LΦ(A, dµ) the Orlicz space corresponding to a Young function Φ on

a set A with a measure µ. If µ = Ln we simply write L
Φ(A). The space LΦ(A, dµ)
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is equipped with the Luxemburg norm

(2.1) ‖u‖LΦ(A, dν) = inf

{
λ > 0:

∫

A

Φ
( |u(x)|

λ

)
dν(x) 6 1

}
.

For an introduction to Orlicz spaces see e.g. [30].

∆2-condition. In this paper, we say that a function Φ satisfies the ∆2-condition,

if there is C∆ > 1 such that

Φ(2t) 6 C∆Φ(t) for every t > 0.

Using the ∆2-condition one easily proves that for any η > 0 we can find ε > 0 that

(2.2) Φ((1 + ε)t) 6 (1 + η)Φ(t) for every t > 0.

It is not difficult to check the ∆2-condition for our Young functions satisfying (1.6)

and (1.7).

Orlicz-Sobolev spaces. Let A be an nonempty open set in R
n and let Φ be

a Young function satisfying (1.6). In this subsection we consider Orlicz spaces only

with the Lebesgue measure. We define the Orlicz-Sobolev space WLΦ(A) as the set

WLΦ(A) := {u : u, |∇u| ∈ LΦ(A)}

equipped with the norm

‖u‖WLΦ(A) := ‖u‖LΦ(A) + ‖∇u‖LΦ(A),

where ∇u is the gradient of u and we use its Euclidean norm in R
n.

We put W0L
Φ(A) for the closure of C∞

0 (A) in WLΦ(A). We write uk ⇀ u in

WLΦ(A), if

∫

A

∂uk
∂xi

v dx→

∫

A

∂u

∂xi
v dx and

∫

A

ukv dx→

∫

A

uv dx

for every v ∈ LΨ(A) and i ∈ {1, . . . , n}. Here, Ψ is the associated Young function

to Φ.

Non-increasing rearrangement. The non-increasing rearrangement u∗ of

a measurable function u on Ω is

u∗(t) = inf{s > 0: Ln({x ∈ Ω: |u(x)| > s}) 6 t}, t > 0.
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We also define the non-increasing radially symmetric rearrangement u♯ by

u♯(x) = u∗
(ωn−1

n
|x|n

)
for x ∈ B(R), Ln(B(R)) = Ln(Ω).

For an introduction to these rearrangements see e.g. [32]. We need the Pólya-Szegő

inequality (see [32], Theorem 1.C).

Theorem 2.2. Let Φ be a Young function and let u be a Lipschitz continuous

function decaying at infinity (Ln({x ∈ R
n : |u(x)| > t}) <∞ for all t > 0). Then

∫

Rn

Φ(|∇u(x)|) dx >

∫

Rn

Φ(|∇u♯(x)|) dx.

Tools from the measure theory. Let us recall [5], Lemma 2.3.

Lemma 2.3. Let l ∈ N, let Ω ⊂ R
n be an open bounded set, {uk} a sequence of

measurable functions and let uk → u a.e. in Ω. Suppose that there areK, δ, γ, C1 > 0

such that

(2.3) ‖ exp[l](K(1 + δ)|uk|
γ)‖L1(Ω) < C1 for all k ∈ N.

Let F be an even continuous function such that

sup
t∈(t0,∞)

|F (t)|

exp[l](K|t|γ)
<∞ for some t0 > 0.

Then

F (uk)
k→∞
−→ F (u) in the L1(Ω)-norm.

In particular,

exp[l](K|uk|
γ)

k→∞
−→ exp[l](K|u|γ) in the L1(Ω)-norm.

Next, we need a suitable estimate of a radially symmetric function u ∈ LΦ(Rn)

on large spheres. This result comes from [6], Lemma 2.9.

Lemma 2.4. Let u ∈ LΦ(Rn) with ‖u‖LΦ(Rn) 6 M̃ for some M̃ > 0. Suppose

that u is non-negative, radially symmetric and non-increasing with respect to |x|.

Then there are Rs > 0 and Cs > 0 independent of u such that

u(x) 6 CsM̃
1

|x|
for |x| > Rs.

505



3. Preparation for the proof of Theorem 1.6

Case of u 6= 0. The proof of Theorem 1.6 (iv) is obtained by combining the

radial estimate from Lemma 2.4 with Theorem 1.4 (iii) (the version of the result for

a bounded domain and functions vanishing on the boundary). First of all we need

the following observation.

Remark 3.1. Theorem 1.4 (iii) can be extended to the case when Ω = R
n and

functions {uk} ⊂WLΦ(Rn) satisfy an additional assumption

(3.1) Ln({uk 6= 0}) 6 C for every k ∈ N.

This can be seen from the proof of Theorem 1.4 (iii) given in [7]. Indeed, major

part of the proof is based on estimates of the growth of u♯k on Ω♯ and the same

estimates also hold in our case on the ball B(R) such that Ln(B(R)) = C (hence

{u♯k 6= 0} ⊂ B(R) for every k ∈ N). Finally, in the proof of Theorem 1.4 (iii), one

uses some basic properties of the weak convergence in W0L
Φ(Ω) (such as the weak

lower semicontinuity of the modular of the gradient), but these properties are also

valid for the space WLΦ(Rn).

Case of u = 0.

Lemma 3.2. Let l, n, α, M , Ω, Φ, {uk}, u, µ and A∞ be the same as in The-

orem 1.6. Suppose that u = 0. Let N ⊂ R
n be a compact set. Let us define open

bounded sets Nθ = {x ∈ R
n; dist(x,N) < θ}, θ > 0.

(i) If µ(N) < 1 and

p < P := sup
{
τ > 1: Φ(τ1/γ t) 6

1

µ(N)
Φ(t) for every t > 0

}

(with the convention that P = ∞ for µ(N) = 0), then there is θ > 0 such that

‖Υ(Kl,n,αp |uk|
γ)‖L1(Nθ) is bounded.

(ii) If A∞ < 1 and

p < P := sup
{
τ > 1: Φ(τ1/γ t) 6

1

A∞
Φ(t) for every t > 0

}

(with the convention that P = ∞ for A∞ = 0), then there is R > 0 such that

‖Υ(Kl,n,αp |uk|
γ)‖L1(Rn\B(R)) is bounded.
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P r o o f. The proof is obtained by suitably modifying [10], proof of Lemma 3.1.

We are going to give a detailed proof of Lemma 3.2 (i), then we give a sketch of the

proof of Lemma 3.2 (ii).

First, suppose that 0 < µ(N) < 1. Fix p < P . Next we fix p1, p2 ∈ (p, P ) such

that p1 < p2. Let m ∈ N be so large that 2m > 2p
1/γ
1 . Since p1 < p2 and µ(N) > 0,

we can find σ > 0 so small that

(3.2)
1

µ(N)
p
1/γ
1 6

1− 3σ

µ(N) + 2σ
p
1/γ
2 .

The definition of the sets Nθ, θ > 0, and the countable additivity of measures imply

that we can find 0 < a < b < c such that

(3.3) µ(Nb \Na) 6
σ

2Cm
∆

and µ(Nc) < µ(N) + σ.

We are going to construct {vk} ⊂WLΦ(Rn) with the following properties

vk = p
1/γ
1 uk in Na, vk = 0 in R

n \Nb,

‖Φ(|∇vk|)‖L1(Rn) 6 1, ‖Φ(|vk|)‖L1(Rn) 6 C.

Let ψ ∈ C0(R
n) be a test-function satisfying 0 6 ψ 6 1, ψ ≡ 1 on Nb and ψ ≡ 0

on R
n \Nc. Hence

∫

Nb

Φ(|∇uk|) 6

∫

Nc

ψΦ(|∇uk|)
k→0
−→

∫

Nc

ψ dµ 6 µ(Nc) 6 µ(N) + σ

and thus there is k1 ∈ N such that

(3.4)

∫

Nb

Φ(|∇uk|) 6 µ(N) + 2σ for k > k1.

Next, using the definition of P , p2 < P , the estimate Φ(st) 6 sΦ(t) for s ∈ [0, 1] and

t > 0 (this estimate easily follows from the definition of a Young function) and (3.2)

we obtain

Φ(p
1/γ
1 t) 6

(p1
p2

)1/γ
Φ(p

1/γ
2 t) 6 µ(N)

1− 3σ

µ(N) + 2σ

1

µ(N)
Φ(t) for every t > 0

and thus (3.4) implies

(3.5)

∫

Nb

Φ(p
1/γ
1 |∇uk|) 6 1− 3σ for k > k1.
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In a similar way to that applied when obtaining (3.4) we can use (3.3) to find k2 > k1

such that

(3.6)

∫

Nb\Na

Φ(|∇uk|) 6
σ

Cm
∆

for k > k2.

Now, we can define vk. Fix ψ ∈ C1(Rn) such that 0 6 ψ 6 1, ψ ≡ 1 on Na and ψ ≡ 0

on Rn \Nb. We set vk = p
1/γ
1 ψuk. We are going to apply Theorem 1.5 (ii). Thus, we

need to check its assumptions. First, by the ∆2-condition we have for every k ∈ N

∫

Rn

Φ(|vk|) 6

∫

Rn

Φ(p
1/γ
1 |uk|) 6 C

∫

Rn

Φ(|uk|) 6 C.

Next, let us prove that there is k3 > k2 such that

(3.7)

∫

Rn

Φ(|∇vk|) 6 1 for k > k3.

We have

∫

Rn

Φ(|∇vk|) =

∫

Na

Φ(|∇vk|) +

∫

Nb\Na

Φ(|∇vk|) = I1 + I2.

By (3.5) we have

I1 =

∫

Na

Φ(|∇vk|) =

∫

Na

Φ(p
1/γ
1 |∇uk|) 6 1− 3σ.

Next, we set T = max
Nb

|∇ψ|. We obtain

Φ(|∇vk|) 6 Φ(p
1/γ
1 ψ|∇uk|+ p

1/γ
1 |uk||∇ψ|) 6 Φ(p

1/γ
1 |∇uk|+ p

1/γ
1 T |uk|).

Hence

I2 =

∫

Nb\Na

Φ(|∇vk|) =

∫

(Nb\Na)∩{|∇uk|>T |uk|}

+

∫

(Nb\Na)∩{|∇uk|6T |uk|}

6

∫

Nb\Na

Φ(2p
1/γ
1 |∇uk|) +

∫

Nb\Na

Φ(2p
1/γ
1 T |uk|) = J1 + J2.

By (3.6), the choice of m and by the ∆2-condition, we have J1 6 σ for k > k2.

Furthermore, as uk ⇀ 0 in WLΦ(Nb), we obtain uk → 0 in LΦ(Nb) (L
Φ(Nb) is com-

pactly embedded into WLΦ(Nb)) and thus J2 6 σ for k sufficiently large. Thus (3.7)
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follows and we can use Theorem 1.5 (ii) with K = (p/p1)Kl,n,α < Kl,n,α to obtain

for k > k3
‖Υ(Kl,n,αp|uk|

γ)‖L1(Na) = ‖Υ(Kp1|uk|
γ)‖L1(Na)

6 ‖Υ(K|vk|
γ)‖L1(Rn) 6 C.

Furthermore, we can use Theorem 1.5 (i) to show that

‖Υ(Kl,n,αp|uk|
γ)‖L1(Na) 6 C for k = 1, . . . , k3.

Hence we are done in the case 0 < µ(N) < 1.

If µ(N) = 0, the proof has to be modified a bit, as σ cannot be defined by (3.2).

However, since Φ satisfies the ∆2-condition, there is plainly σ ∈ (0, 1/4) so small

that

Φ(p
1/γ
1 t) 6

1− 3σ

2σ
Φ(t) for every t > 0.

This ensures that (3.4) still implies (3.5).

The proof of Lemma 3.2 (ii) is similar to the above. In this case we fix R0 > 0 so

large that
∫
Rn\B(R0)

Φ(|uk|) is very close to A∞ for k large, then we pick R1, R2 ∈

(0, R0) such that R1 < R2, µ(B(R2) \B(R1)) is very small and µ(B(R0) \B(R1)) is

very small. We set vk = p
1/γ
1 ψuk, where the function ψ ∈ C1(Rn) is chosen so that

0 6 ψ 6 1, ψ ≡ 0 on B(R1) and ψ ≡ 1 on R
n \B(R2). �

4. Proof of Theorem 1.6

P r o o f of the estimate µ(Rn) 6 1−A∞. We can use the countable additivity of

measures to see that it is enough to show that µ(B(R)) 6 1−A∞ for arbitraryR > 0.

Thus, the proof is an easy exercise based on the assumptions ‖Φ(|∇uk|)‖L1(Rn) 6 1

for every k ∈ N, Φ(|∇uk|)
∗
⇀ µ inM(Ω), the definition of A∞ and a suitably chosen

test-function. �

P r o o f of Theorem 1.6 (i). First, let us prove the assertion concerning the

boundedness. Fix p > 0 and ̺ > 0. In our case we have A∞ = 0 and thus, by

Lemma 3.2 (ii), we can find R > 0 so large that

‖Υ(Kl,n,αp |uk|
γ)‖L1(Rn\B(R)) is bounded.

Next, let us define a compact set N = B(2R) \B(x0, ̺). We plainly have µ(N) = 0

and thus we can use Lemma 3.2 (i) to obtain that

‖Υ(Kl,n,αp |uk|
γ)‖L1(N) is bounded.
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Hence

‖Υ(Kl,n,αp |uk|
γ)‖L1(Rn\B(x0,̺)) is bounded.

It remains to prove the assertion concerning the convergence in measures. From

Lemma 2.3, uk ⇀ 0, Υ(0) = 0 and from the previous results it follows that if G ⊂ R
n

is an open bounded set, then

(4.1) η > 0 ⇒

∫

G\B(x0,η)

Υ(Kl,n,α|uk|
γ)

k→∞
−→ 0.

Now, (4.1) and the assumptions imply

(4.2) η > 0 ⇒

∫

B(x0,η)

Υ(Kl,n,α|uk|
γ)

k→∞
−→ c.

Fix an arbitrary test function ψ ∈ C0(R
n) and let ε > 0. Then there is η > 0 such

that

(4.3) |ψ(x) − ψ(x0)| <
ε

2max(c, 1)
whenever |x− x0| < η.

We have

I :=

∣∣∣∣
∫

Rn

ψ d(cδx0)−

∫

Rn

ψΥ(Kl,n,α|uk|
γ)

∣∣∣∣ =
∣∣∣∣cψ(x0)−

∫

Rn

ψΥ(Kl,n,α|uk|
γ)

∣∣∣∣

6

∫

Rn\B(x0,η)

|ψ|Υ(Kl,n,α|uk|
γ) +

∫

B(x0,η)

|ψ − ψ(x0)|Υ(Kl,n,α|uk|
γ)

+ |ψ(x0)|

∣∣∣∣c−
∫

B(x0,η)

Υ(Kl,n,α|uk|
γ)

∣∣∣∣ = I1 + I2 + I3.

From (4.1), compactness of the support of ψ and sup
Rn

|ψ| < ∞ we see that there is

k1 ∈ N such that I1 < ε for k > k1. Further, using (4.2) and (4.3) we obtain

I2 =

∫

B(x0,η)

|ψ − ψ(x0)|Υ(Kl,n,α|uk|
γ)

6
ε

2max(c, 1)

∫

B(x0,η)

Υ(Kl,n,α|uk|
γ)

k→∞
−→

ε

2

c

max(c, 1)
6
ε

2
.

Therefore we can find k2 > k1 such that I2 < ε for k > k2. Finally, from (4.2) and

|ψ(x0)| < ∞ we obtain k3 > k2 such that I3 < ε for k > k3. Hence we have I < 3ε

for k large enough and we are done. �

P r o o f of Theorem 1.6 (ii). Since A∞ = 1, for every R > 0 we have µ(B(R)) = 0

and thus the assertion easily follows from Lemma 3.2 (i). �
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P r o o f of Theorem 1.6 (iii). Fix p < P . By Lemma 3.2 (ii), we can find R > 0

so large that

‖Υ(Kl,n,αp |uk|
γ)‖L1(Rn\B(R)) is bounded.

Next, for every point x ∈ B(R), we can use Lemma 3.2 (i) to find a radius rx > 0

such that

‖Υ(Kl,n,αp |uk|
γ)‖L1(B(x,rx)) is bounded.

Since B(R) is compact, the result follows. �

P r o o f of Theorem 1.6 (iv). Fix p < P . By the equimeasurability of uk and u
♯
k

we have ∫

Rn

Υ(Kl,n,αp |uk|
γ) =

∫

Rn

Υ(Kl,n,αp |u
♯
k|

γ).

Next, since Φ satisfies the ∆2-condition and since we assume that ‖Φ(|uk|)‖L1(Rn) 6

M for every k ∈ N, there is M̃ > 0 such that ‖uk‖LΦ(Rn) 6 M̃ for every k ∈ N, and

thus we can apply Lemma 2.4 to obtain Rs > 0 and Cs > 0 such that

(4.4) u♯k(x) 6 CsM̃
1

|x|
for every |x| > Rs and every k ∈ N.

Let us set R = max{Rs, CsM̃}. We have

∫

Rn

Υ(Kl,n,αp |u
♯
k|

γ) =

∫

B(R)

Υ(Kl,n,αp |u
♯
k|

γ) +

∫

Rn\B(R)

Υ(Kl,n,αp |u
♯
k|

γ)

= I1 + I2.

First, we estimate I1. Let us fix p̃ ∈ (p, P ). Next we define vk = max{|uk| − tk, 0},

where tk are such that u
♯
k(x) = tk for |x| = R. Further, by (4.4) we have tk 6 T :=

CsM̃/R. Since we can apply Theorem 1.4 (iii) to vk (see Remark 3.1), we have

I1 6

∫

B(R)

Υ(Kl,n,αp |u
♯
k|

γ) 6

∫

B(R)

exp[l](Kl,n,αp |u
♯
k|

γ)

6

∫

B(R)

exp[l](Kl,n,αp |v
♯
k + T |γ)

6

∫

B(R)∩{p |v♯
k
+T |γ6p̃ |v♯

k
|γ}

+

∫

B(R)∩{p |v♯
k
+T |γ>p̃ |v♯

k
|γ}

6

∫

B(R)

exp[l](Kl,n,αp̃ |v
♯
k|

γ) +

∫

B(R)

exp[l](Kl,n,αp |CT + T |γ)

6 C + C = C.
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It remains to estimate I2. From (4.4), CsM̃/R 6 1, and the Lebesgue Monotone

Convergence Theorem (the Taylor coefficients aj are non-negative by Lemma 2.1)

we obtain

(4.5)

∫

Rn\B(R)

∑

j>n/γ

ajK
j
l,n,αp

j |u♯k|
γj dx

6 ωn−1

∑

j>n/γ

ajK
j
l,n,αp

jCγj
s M̃γj

∫ ∞

R

yn−1−γj dy

= C
∑

j>n/γ

ajK
j
l,n,αp

jCγj
s M̃γjRn−γj

6 CRn
∞∑

j=0

ajK
j
l,n,αp

j = CRn exp[l](Kl,n,αp) = C.

If n/γ ∈ N, then we also need to estimate the summand corresponding to this index.

By (1.7) we have

∫

Rn\B(R)

|u♯k|
n
6 C

∫

Rn\B(R)

Φ(|u♯k|) 6 C

∫

Rn

Φ(|u♯k|) 6 CM = C

and thus

(4.6)

∫

Rn\B(R)

an/γK
n/γ
l,n,αp

n/γ |u♯k|
n
6 Can/γK

n/γ
l,n,αp

n/γ = C.

Therefore we have from (4.5) and (4.6)

I2 =

∫

Rn\B(R)

Υ(Kl,n,αp |u
♯
k|

γ) =

∫

Rn\B(R)

∑

j>n/γ

ajK
j
l,n,αp

j |u♯k|
γj 6 C

and we are done. �

P r o o f of the results concerning the L1-convergence. The results concerning the

L1-convergence of Υ(Kl,n,α|uk|
γ) follow from the results concerning the boundedness

and from Lemma 2.3. �
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5. Concluding remarks

Some comments concerning the assumption (1.7). This assumption comes

from paper [6], where Theorem 1.5 is proved and applied to some PDEs. It can

be seen that the proof of Theorem 1.5 uses only the first of the two inequalities

in (1.7), i.e. (1/C)tn 6 Φ(t), t ∈ [0, 1/C] (this inequality is used in the proof of

Lemma 2.4, while the inequality Φ(t) 6 Ctn, t ∈ [0, 1/C] is used in the proof of

the result concerning PDEs). In this paper, we also use assumption (1.7) to ensure

the ∆2-condition. Thus, a careful inspection of our proofs shows that (1.7) can be

replaced by a bit weaker assumption

Φ(t) >
1

C
tn, t ∈

[
0,

1

C

]
, and Φ satisfies the ∆2-condition.

It can be also seen that we can replace (1.7) by

Φ(t) >
1

C
tp, t ∈

[
0,

1

C

]
, and Φ satisfies the ∆2-condition

for some p > 1, as long as we state our results for Υ̃(t) =
∑

j>p/γ

ajt
j instead of Υ.

Sharpness of the upper bounds of p in Theorem 1.2. To show that we

cannot have p = P in Theorem 1.2 (iv), it is enough to use the sequence of compactly

supported functions {uk} given in [8], Proof of Proposition 2.1. In fact, we cannot

use the result from [8] directly, since the paper [8] studies the integrability with

respect to the function exp, while our function Υ is a bit smaller. However, it can

be seen that for any fixed D > 0 we have

(5.1) e−kΥ((D + k(n−1)/n)n/(n−1))
k→∞
−→ ∞.

Indeed, we have Υ(t) = exp(t)−
n−2∑
j=0

tj/j ! and

e−k exp((D + k(n−1)/n)n/(n−1))
k→∞
−→ ∞,

while for every p > 0

e−k((D + k(n−1)/n)n/(n−1))p 6 e−kCkp
k→∞
−→ 0.

From (5.1) it can be seen that the construction from [8] still works.
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Now, suppose that we have the situation from Theorem 1.2 (i). To see that on

no neighborhood of x0 we can have a better exponent than the one given by Moser-

Trudinger inequality (1.1), it is enough to fix R > 0 sufficiently small and to use the

Moser functions

mk(x) =

{
ω
−1/n
n−1 log1/n

′

(k) for |x| ∈ [0, k−1R],

ω
−1/n
n−1 log−1/n(k) log(R/|x|) for |x| ∈ [k−1R,R]

defined for every n ∈ N. Again, it is not important that we work with Υ instead

of exp.

The sharpness for unbounded sets in the situation of Theorem 1.2 (ii) is obtained

considering the sequence {mk(· − xk)}, where {xk} ⊂ R
n is a suitable sequence

satisfying |xk| → ∞.

Finally, suppose that we have the situation of Theorem 1.2 (iii) with at least one

of the quantities A∞ and max
x∈Rn

µ({x}) being positive (otherwise we have P = ∞).

Now, if A∞ > 0 then we can use the sequence {A∞mk(· − xk)}, where |xk| → ∞, to

see that we cannot have

Υ(nω
1/(n−1)
n−1 A−1/(n−1)

∞ |uk|
n/(n−1)) is bounded in L1(Rn \B(R))

for any fixed R > 0.

In the case max
x∈Rn

µ({x}) > 0, let us suppose that max
x∈Rn

µ({x}) = µ({0}). Now, it is

easy to see that the sequence {µ({0})mk} can be used to show that we cannot have

Υ(nω
1/(n−1)
n−1 µ−1/(n−1)({0}) |uk|

n/(n−1)) is bounded in L1(B(̺))

for any fixed ̺ > 0.
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