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Abstract. A graph G is a k-tree if either G is the complete graph on k + 1 vertices, or
G has a vertex v whose neighborhood is a clique of order k and the graph obtained by
removing v from G is also a k-tree. Clearly, a k-tree has at least k + 1 vertices, and G is
a 1-tree (usual tree) if and only if it is a 1-connected graph and has no K3-minor. In this
paper, motivated by some properties of 2-trees, we obtain a characterization of k-trees as
follows: if G is a graph with at least k + 1 vertices, then G is a k-tree if and only if G
has no Kk+2-minor, G does not contain any chordless cycle of length at least 4 and G is
k-connected.
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1. Introduction

Graphs in this paper are finite and simple. Let G be a graph. For X ⊆ V (G)

and v ∈ V (G), the neighborhood of v in X is denoted by NX(v). Further, for

X ⊆ V (G) and Y ⊆ V (G), we denote NX(Y ) =
⋃

v∈Y

NX(v). For X ⊆ V (G), the

induced subgraph of G on X is denoted by G[X ]. Let Kt be a complete graph on

t vertices. We say that Kt is a minor of G if Kt can be obtained from a subgraph

of G by contracting edges (and deleting the resulting multiple edges and loops).

A graph G is a k-tree if either G is the complete graph on k + 1 vertices, or G

has a vertex v whose neighborhood is a clique of order k and the graph obtained by

removing v from G is a k-tree. Clearly, a k-tree has at least k+1 vertices and 1-trees

are usual trees. It is also obvious that G is a 1-tree if and only if it is a 1-connected

graph and has no K3-minor. An edge bonding of two disjoint graphs G and G
′ is any
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graph constructed from G and G′ by identifying an edge of G with an edge of G′.

Cai [3] showed that an edge bonding of two disjoint 2-trees is also a 2-tree. Some

properties of 2-trees can be summarized as follows (see [1], [3]): if G is a 2-tree, then

G is planar, G is the edge-maximal graph having no K4-minor, G does not contain

any chordless cycle of length at least 4 and G is 2-connected.

From [1], [4], it is known that k-trees are intrinsically related to treewidth, which

is an important parameter in the Robertson-Seymour theory of graph minors and

in algorithmic complexity. In particular, a graph has treewidth k if and only if it is

a subgraph of a k-tree. Thus, k-trees are the edge-maximal graphs of treewidth k.

Bose et al. [2] gave a characterization of the degree sequences of 2-trees. Motivated

by the properties of 2-trees, we can obtain a characterization of k-trees as follows.

Theorem 1.1. Let G be a graph with at least k + 1 vertices. Then G is a k-tree

if and only if (a)–(c) are fulfiled

(a) G has no Kk+2-minor;

(b) G does not contain any chordless cycle of length at least 4;

(c) G is k-connected.

2. Proof of Theorem 1.1

We first extend the concept of ‘an edge bonding’ due to Cai [3] to the concept of

‘a Kt-bonding’. Let G and G′ be two disjoint graphs and have Kt as a subgraph.

A Kt-bonding of G and G′ is any graph constructed from G and G′ by identifying

a Kt of G with a Kt of G
′. An ear in a k-tree is a vertex of degree k whose neighbors

are adjacent to each other.

Lemma 2.1. A Kk-bonding of two disjoint k-trees is also a k-tree.

P r o o f. Let G1 be a k-tree on s vertices and G2 be a k-tree on t vertices. Then

G1 and G2 have Kk as a subgraph. Let G be a Kk-bonding of G1 and G2. We

now use induction on s. If s = k + 1, then G1 = Kk+1, and hence G is the graph

obtained from G2 by adding an ear. Thus G is a k-tree. Assume that s > k+1. It is

known that the set of all ears of G1 is an independent set in G1 and has at least two

elements. This implies that there exists an ear v in G1 with v /∈ V (Kk). Then G− v

is a Kk-bonding of G1 − v and G2. By the induction hypothesis, G − v is a k-tree.

Thus G is also a k-tree. �

We now prove Theorem 1.1.
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P r o o f of Theorem 1.1. We use induction on n to prove the necessity. Let G be

a k-tree on n vertices. Then n > k + 1. If n = k + 1, then G = Kk+1. Clearly, G

satisfies (a)–(c). Assume that n > k+1. Let u be an ear of G and denote G′ = G−u.

Let NG(u) = {x1, . . . , xk}. Then {x1, . . . , xk} is a clique in G.

By the induction hypothesis, G′ has no Kk+2-minor. If G has Kk+2-minor, let H

be a subgraph of G so that we can obtain Kk+2 from H by contracting edges, then

u ∈ V (H). By dH(u) 6 dG(u) = k < k+1, we have that u /∈ V (Kk+2). This implies

that some edge uxj in H will be contracted in the process of forming Kk+2. Let

H ′ be the graph obtained from H by contracting uxj . Since {x1, . . . , xk} is a clique

in G, it is easy to see that H ′ is a subgraph of G′. Since we can obtain Kk+2 from H ′

by contracting edges, we have that G′ has Kk+2-minor, a contradiction. Therefore,

G has no Kk+2-minor.

By the induction hypothesis, G′ has no chordless cycle of length at least 4. If G

has a chordless cycle C with |V (C)| > 4, then u ∈ V (C). This is impossible by

G[{u} ∪NG(u)] = Kk+1. Therefore, G has no chordless cycle of length at least 4.

By the induction hypothesis, G′ is k-connected. Thus G is also k-connected by

dG′(u) = k.

We now use induction on n to prove the sufficiency. Let n > k+1 and G be a graph

on n vertices satisfying (a)–(c). If n = k + 1, then G = Kk+1 by G satisfying (c).

Clearly, G is a k-tree. Assume that n > k + 2. We first prove the following Claim.

Claim. G contains Kk as a subgraph.

P r o o f of Claim. Since G has no Kk+2-minor, G is not a complete graph. Then

there exist two vertices u, v ∈ V (G) with uv /∈ E(G). Since G is k-connected, by

Menger’s theorem, there are at least k internally-disjoint paths between u and v. Let

P1 = ux11 . . . x1t1v,

P2 = ux21 . . . x2t2v,

...

Pk = uxk1 . . . xktkv

be the k internally-disjoint paths between u and v so that |P1|+ |P2|+ . . .+ |Pk| is

minimal. Let

X1 = {x11, . . . , x1t1},

X2 = {x21, . . . , x2t2},

...

Xk = {xk1, . . . , xktk}.
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DenoteX = X1∪. . .∪Xk. Let s and t be two arbitrary integers with 1 6 s < t 6 k.

Since Ps∪Pt is a cycle of length at least 4, by the minimality of |P1|+ |P2|+ . . .+ |Pk|,

we have that NXs
(Xt) 6= ∅ and NXt

(Xs) 6= ∅. Let xsi ∈ Xs and xtj ∈ Xt so that

xsixtj ∈ E(G) and i+ j is minimal. Since uxs1 . . . xsixtj . . . xt1u is a chordless cycle

of G with length i + j + 1, we have that i + j = 2. This implies that i = j = 1

and xs1xt1 ∈ E(G). Therefore, G[{x11, x21, . . . , xk1}] = Kk. The proof of Claim is

completed. �

Denote F = G[{x11, x21, . . . , xk1}] = Kk. We now consider the following two

cases.

Case 1. G− V (F ) is connected.

Let P = uy1 . . . ylv be a path connecting u and v in G − V (F ) and denote Y =

{y1, . . . , yl}. IfX∩Y = ∅, then there exists a subgraph F∪P∪P1∪. . .∪Pk ofG so that

we can get a Kk+2 from this subgraph by contracting edges. In other words, G has

Kk+2-minor, a contradiction. Thus X∩Y 6= ∅. Let yl0 ∈ X∩Y so that l0 is minimal,

and denote P0 = uy1 . . . yl0 . Then there exists a subgraph F ∪P0 ∪P1∪ . . .∪Pk of G

so that we can get a Kk+2 from this subgraph by contracting edges. In other words,

G has Kk+2-minor, a contradiction.

Case 2. G− V (F ) is not connected.

Let H1, . . . , Hm be m connected components of G − V (F ). If G[V (Hi) ∪ V (F )]

satisfies (a)–(c) for each i with 1 6 i 6 m, then by the induction hypothesis,

G[V (Hi) ∪ V (F )] is a k-tree for each i with 1 6 i 6 m. Since G is a Kk-bonding

of G[V (H1) ∪ V (F )], . . . , G[V (Hm) ∪ V (F )], we have that G is also a k-tree by

Lemma 2.1. We now assume that there exists a r with 1 6 r 6 m such that

G[V (Hr) ∪ V (F )] does not satisfy (a)–(c).

If G[V (Hr) ∪ V (F )] does not satisfy (a), i.e., G[V (Hr) ∪ V (F )] has Kk+2-minor,

then G also has Kk+2-minor as G[V (Hr)∪V (H)] is a subgraph of G, a contradiction.

If G[V (Hr)∪V (F )] does not satisfy (b), i.e., G[V (Hr)∪V (F )] contains a chordless

cycle C with |C| > 4, then C is also a chordless cycle in G, a contradiction.

Assume that G[V (Hr)∪V (F )] does not satisfy (c), i.e., G[V (Hr)∪V (F )] is not k-

connected. If |V (Hr)| = 1, then by G satisfying (c), we have that G[V (Hr)∪V (F )] =

Kk+1, which is a k-connected graph, a contradiction. So |V (Hr)| > 2. Let V ′ be

a vertex-cut of G[V (Hr) ∪ V (F )] with |V ′| < k and let M1,M2 be two connected

components of G[V (Hr)∪V (F )]−V ′. If V (M1)∩V (F ) 6= ∅, then V (M2)∩V (F ) = ∅.

This implies that V (M1)∩V (F ) = ∅ or V (M2)∩V (F ) = ∅. Without loss of generality,

we let V (M1) ∩ V (F ) = ∅. Then M1 is also a connected component of G − V ′. In

other words, V ′ is a vertex-cut of G. Thus G is not k-connected, a contradiction.

This completes the proof of Theorem 1.1. �
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