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OSCILLATION OF THIRD ORDER DIFFERENTIAL EQUATION

WITH DAMPING TERM
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Dedicated to the memory of Professor Marko Švec

Abstract. We study asymptotic and oscillatory properties of solutions to the third order
differential equation with a damping term

x
′′′(t) + q(t)x′(t) + r(t)|x|λ(t) sgn x(t) = 0, t > 0.

We give conditions under which every solution of the equation above is either oscillatory
or tends to zero. In case λ 6 1 and if the corresponding second order differential equation
h′′ + q(t)h = 0 is oscillatory, we also study Kneser solutions vanishing at infinity and the
existence of oscillatory solutions.

Keywords: third order nonlinear differential equation; vanishing at infinity solution;
Kneser solution; oscillatory solution
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1. Introduction

The aim of this paper is to investigate oscillatory and asymptotic properties of

solutions to the third order nonlinear differential equation with a damping term

(1) x′′′(t) + q(t)x′(t) + r(t)|x|λ(t) sgnx(t) = 0, t > 0

where λ > 0, q ∈ C2(R+) and r ∈ C(R+) are positive functions on R+, R+ = [0,∞).

Research is supported by the grant GAP 201/11/0768 of the Czech Grant Agency.
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When λ 6 1 we will also assume that the corresponding second order linear equa-

tion

(2) h′′(t) + q(t)h(t) = 0

is oscillatory.

By a solution of (1) we mean a function x defined on [Tx,∞), Tx > 0, which is

differentiable up to the third order and satisfies (1) on [Tx,∞). A solution x of (1) is

called oscillatory if it has arbitrarily large zeros on [Tx,∞); otherwise it is said to be

nonoscillatory. Observe that if λ > 1, according to [15], Theorem 11.5, all nontrivial

solutions of (1) satisfy sup{|x(t)| : t > T } > 0 for T > Tx, contrary to the case λ < 1

when eventually vanishing solutions can exist.

The asymptotic and oscillatory properties of solutions for equation (1) have been

deeply investigated in literature. The pioneering work is due to M. Švec [20] and

G.Villari [22] for the two-term linear differential equation

(L0) x′′′(t) + r(t)x(t) = 0, t > 0

where r(t) > 0 for t > 0. If there exists µ > 0 such that

∫

∞

t2−µr(t) dt = ∞,

then (L0) has both oscillatory and nonoscillatory solutions and every its nonoscilla-

tory solution x tends to zero as t → ∞ and satisfies

(3) x(t)x′(t) < 0, x(t)x′′(t) > 0 for large t.

This property, sometimes called property A, has been extended to linear and non-

linear higher order equations in various directions, see e.g. the monographs [2], [12],

[13], and [3], [6], [14], [16], [17], [19]. Special attention has been paid to the third

order equations with quasi-derivatives, see e.g. [11], [10], with damping term [5], [9],

[7] or with deviating argument [1] and the references therein.

If (2) is nonoscillatory and h is its positive solution, then (1) can be written as

(

h2(t)
( 1

h(t)
x′(t)

)′)′

+ h(t)r(t)|x|λ(t) sgnx(t) = 0,

which is an equation with quasi-derivatives. This approach has been used by many

authors, see e.g. [5], [8], [9], [10], [21].

If (2) is nonoscillatory, then the result [3], Theorem 2.2 with n = 3 reads as follows.
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Theorem A. Assume
∫

∞
tq(t) dt < ∞. Then every nonoscillatory solution of

equation (1) tends to zero as t → ∞ if and only if
∫

∞

t2r(t) dt = ∞.

Our aim here is to investigate oscillation of (1) when (2) is oscillatory. In this

case, a prototype of equation (1) is

(4) x′′′(t) + x′(t) + r(t)|x|λ(t) sgnx(t) = 0, λ 6= 1,

which is a special case of higher-order differential equations with a damping term

investigated in [14]. A result [14], Corollary 1.7 with n = 3, reads as follows.

Theorem B. Assume λ 6= 1 and r(t) > r0/t for some r0 > 0 and large t. Then

every nonoscillatory solution of equation (4) satisfies limx(i)(t) = 0 for i = 0, 1, 2.

Observe that the statement of Theorem B fails to hold under a weaker condition

(5)

∫

∞

0

r(t) dt = ∞,

as is shown in [14], Remark after Corollary 1.7, by an example of equation (4) having

a nonoscillatory solution which does not tend to zero as t → ∞.
Theorem B has been extended in [7], [6] to equation (1) where

(6) q(t) > q0 for some q0 > 0 and q′(t) 6 0.

It has been proved in [6] that if
∫

∞ |q′(t)| dt < ∞ and
∫

∞
r(t) dt < ∞, then (1) has

simultaneously oscillatory solutions and nonoscillatory solutions with oscillating first

derivative (so called weakly oscillatory solutions).

The aim of our paper is to give conditions under which every solution of (1)

is either oscillatory or tends to zero. All cases q(t) → c (c > 0), q(t) → 0 or

q(t) → ∞ as t → ∞, will be treated. In case λ 6 1 and if the corresponding second

order differential equation (2) is oscillatory, we also study solutions satisfying (3)

(so called Kneser solution) which are vanishing at infinity, and the existence of

oscillatory solutions of (1). Our approach is based on the uniform estimates for

positive solutions of quasilinear equations given in [3] and an energy function.
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2. Preliminaries

In this section we establish the main tools needed in the next section.

Consider the third-order quasi-linear differential equation

(7)
...
y(s) +Q2(s)ÿ(s) +Q1(s)ẏ(s) +R(s)|y|λ(s) sgn y(s) = 0, λ > 1

where Qi and R are continuous functions on [a,∞), a > 0 and ˙ = d/ ds.

In [4], the following estimates for positive solutions of (7) have been proved.

Proposition 1 ([4], Theorem 3.4). Assume λ > 1. Let y be a positive solution

of (7) defined on [a, b] and

(8) R(s) > r∗, |Q1(s)| 6 Q2, |Q2(s)| 6 Q

for some constants r∗ > 0 and Q > 0. Then we have the estimate

y(s) 6 Lr
−1/(λ−1)
∗ δ−3/(λ−1)(s) for s ∈ (a, b),

where L is a suitable constant which depends on λ and

δ = min{s− a, α}, α =
2−11

Q
.

This result can be extended to the non-compact interval in the following way.

Lemma 1. Assume that (8) holds on [a,∞). Then any positive solution y of (7)

satisfies

(9) y(s) 6 Lr
−1/(λ−1)
∗ α−3/(λ−1) for s ∈ [a+ α,∞),

where L and α are as in Proposition 1.

P r o o f. Let α = 2−11/Q and b > α + a. By Proposition 1, applied on [a, b], we

have δ = δ(s) ≡ α for s ∈ [a+ α, b] and (9) holds for s ∈ [a+ α, b]. Letting b → ∞,
we get the conclusion. �
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Lemma 2. Let f ∈ C2([a,∞)), where f(t) > 0 is such that

∫

∞

a

√

f(σ) dσ = ∞,

and consider the transformation

s =

∫ t

a

√

f(σ) dσ, x(t) = y(s), ˙ =
d

ds
.

Then x is a solution of equation (1) on [a,∞) if and only if y is a solution of the

equation

...
y(s) +

3f ′(t(s))

2f3/2(t(s))
ÿ(s) +

( f ′′(t(s))

2f2(t(s))
− (f ′(t(s)))2

4f3(t(s))
+

q(t(s))

f(t(s))

)

ẏ(s)

+
r(t(s))

f3/2(t(s))
|y(s)|λ sgn y(s) = 0

on [0,∞), where t = t(s) is the inverse function to s = s(t).

P r o o f. We have

x′(t) = ẏ(s)
√

f(t), x′′(t) = ÿ(s)f(t) +
ẏ(s)f ′(t)

2
√

f(t)
,

x′′′(t) =
...
y(s)f3/2(t) +

3

2
ÿ(s)f ′(t) + ẏ(s)

( f ′′(t)

2
√

f(t)
− (f ′(t))2

4f3/2(t)

)

.

By substitution into (1) we get the conclusion. �

3. Super-linear equation

In this section we study (1) in the case λ > 1. Our first result is the following

statement.

Theorem 1. Let λ > 1. Assume that there exist constants M > 0 and k 6 2

such that

(10) 0 < q(t) 6
M

tk

for large t and

(11) lim
t→∞

t3k/2r(t) = ∞.
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Then every solution x of (1) is either oscillatory or satisfies

(12) lim
t→∞

x(t) = 0.

P r o o f. Let x be a positive solution of (1) on [a,∞) ⊂ R+, a > 0 and let (10)

hold on [a,∞). Consider the transformation from Lemma 2 with f(t) = t−k, i.e.,

s =
(

1− k

2

)−1

(t1−k/2 − a1−k/2) if k < 2,

s = ln
t

a
if k = 2.

Using Lemma 2, we transform equation (1) into

(13)
...
y(s)− 3

2
kt−1+k/2ÿ(s) +

(k

4
(k + 2)tk−2 + q(t)tk

)

ẏ(s)

+ r(t)t3k/2|y(s)|λ sgn y(s) = 0.

This equation is of the form (7) with

Q1(s) =
k

4
(k+2)tk−2(s)+q(t)tk, Q2(s) = −3

2
kt−1+k/2(s), R(s) = r(t(s))t3k/2(s)

where t = (12 (2− k)s+a1−k/2)2/(2−k) for k < 2 and t = a exp s for k = 2. Obviously,

there exists Q > 0 such that |Q1(s)| 6 Q2 and |Q2(s)| 6 Q for s ∈ [a,∞).

Let n ∈ N and let {an}∞n=1 be an increasing sequence such that a1 > max{1, a},
lim
n→∞

an = ∞ and

(14) ̺n = min
t∈[an,∞)

r(t)t3k/2 = r(an)a
3k/2
n , n ∈ N.

Put

sn =

∫ an

a

t−k/2 dt, n ∈ N.

Then an = t(sn) and R(s) > ̺n for s ∈ [sn,∞). Thus the assumption (8) is satisfied

with r∗ = ̺n. Now applying Lemma 1 to equation (13) on [sn,∞) we get

y(s) 6 L̺−1/(λ−1)
n α−3/(λ−1), s ∈ [sn + α,∞),

where α = 2−11/Q and L is a constant given by Proposition 1.

Using (11) and (14) we have

lim
n→∞

̺n = lim
n→∞

r(an)a
3k/2
n = ∞,

thus

0 6 lim
t→∞

x(t) = lim
s→∞

y(s) 6 Lα−3/(λ−1) lim
n→∞

̺−1/(λ−1)
n = 0,

i.e. (12) holds. �
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Remark 1. The statement of the Theorem 1 holds if λ > 1 and one of the

following conditions hold:

(i) there exists q0 > 0 such that

q(t) ∼ q0, lim
t→∞

r(t) = ∞;

(ii) there exist positive constants q0, r0 such that

q(t) ∼ q0t
m, r(t) ∼ r0t

i, where 0 < 3m < 2i,

where the symbol f ∼ g means lim
t→∞

f(t)/g(t) = 1.

Our next result proves the statement of Theorem 1 under different conditions.

Theorem 2. Let λ > 1,

(15) lim
t→∞

r(t)

q3/2(t)
= ∞,

and let there exist constants c1 and c2 such that for t ∈ R+

(16)
|q′(t)|
q3/2(t)

6 c1,
|q′′(t)|
q2(t)

6 c2.

Then the conclusion of Theorem 1 holds.

P r o o f. Let x be a positive solution of (1) on [a,∞) (a > 0). Consider the

transformation from Lemma 2 with f = q, i.e.,

s =

∫ t

a

√

q(σ) dσ, x(t) = y(s), ˙ =
d

ds
.

Using Lemma 2 we have

x′(t) = ẏ(s)
√

q(t), x′′(t) = ÿ(s)q(t) +
ẏ(s)q′(t)

2
√

q(t)
,

x′′′(t) =
...
y(s)q3/2(t) +

3

2
ÿ(s)q′(t) + ẏ(s)

( q′′(t)

2
√

q(t)
− (q′(t))2

4q3/2(t)

)

.

By substitution into (1) we get

(17)
...
y(s)+

3q′(t)

2q3/2(t)
ÿ(s)+

( q′′(t)

2q2(t)
− (q′(t))2

4q3(t)
+1

)

ẏ(s)+
r(t)

q3/2(t)
|y(s)|λ sgn y(s) = 0,
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where t = t(s) is the inverse function to s = s(t). This equation is of the form (7)

with

Q1(s) =
q′′(t)

2q2(t)
− (q′(t))2

4q3(t)
+ 1, Q2(s) =

3q′(t)

2q3/2(t)
, R(s) =

r(t)

q3/2(t)
,

where t = t(s).

Let n ∈ N and let {an}∞n=1 be an increasing sequence such that an ∈ [a,∞),

lim
n→∞

an = ∞ and

(18)
r(an)

q3/2(an)
= min

t∈[an,∞)

r(t)

q3/2(t)
.

Put

sn =

∫ an

a

√

q(σ) dσ, ̺n =
r(an)

q3/2(an)
, Q = max

{3

2
c1,

(c2
2

+
c21
4

+ 1
)1/2}

.

Then by (16) we have |Q1(s)| 6 Q2, |Q2(s)| 6 Q for s ∈ [a,∞), an = t(sn) and

R(s) > ̺n for s ∈ [sn,∞). Thus the assumption (8) is satisfied with r∗ = ̺n.

Applying Lemma 1 to equation (17) on [sn,∞), we get

y(s) 6 L̺−1/(λ−1)
n α−3/(λ−1), s ∈ [sn + α,∞),

where α = 2−11/Q and L is given by Proposition 1.

Moreover, using (15) and (18) we have

(19) lim
n→∞

̺n = lim
n→∞

r(an)

q3/2(an)
= ∞.

Using the same argument as in the proof of Theorem 1, we get lim
t→∞

x(t) = 0. �

Remark 2. If q(t) = q0t
−k (k 6 2), then Theorem 1 follows from Theorem 2.

However, in general, conditions (10) and (16) are independent.

Theorems 1, 2 do not require that equation (2) be oscillatory. Both the theorems

cover the limiting case for oscillation of equation (2), for example when (2) is the

Euler equation. In this case the assumptions of Theorem A are not satisfied, thus

Theorems 1, 2 extend Theorem A.

Theorems 1, 2 also complete [7], Theorems 4.1, 5.1, where it is proved that if (5)

and (6) hold, then every nonoscillatory solution x of (1) satisfies lim sup
t→∞

|x(i)(t)| < ∞,
i = 0, 1, 2.
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4. Sub-linear and linear equations

Now we study (1) in the case λ 6 1.

Definition. We say that a solution x of (1) is a Kneser solution if (3) holds.

Obviously, if x is a Kneser solution of (1), then lim
t→∞

x′(t) = 0.

Theorems 1 and 2 can be extended to λ 6 1 in the following way.

Theorem 3. Let λ 6 1 and let either (10), (11) or (15), (16) hold.

Then every nonoscillatory solution of equation (1) is either unbounded or tends

to zero as t → ∞.

P r o o f. Let x be a bounded positive solution of (1) on [t0,∞). Then v = x is

a solution of the equation

(20) v′′′(t) + q(t)v′(t) +R(t)v3(t) = 0,

where

R(t) =
r(t)

(x(t))3−λ
> Kr(t) for t > t0,

where K > 0 is a suitable constant. We can apply Theorem 1 or 2 to (20) and get

the conclusion. �

Remark 3. Theorem 3 extends [9], Theorem 4, where conditions ensuring that

every Kneser solution of (1) tends to zero as t → ∞ are given.

In the sequel, we assume that equation (2) is oscillatory. Theorem 3 can be

completed in the following way.

Theorem 4. Let (2) be oscillatory and let the assumptions of Theorem 3 hold.

In addition, assume either

(21) q′(t) 6 0 for large t

or

(22) lim sup
t→∞

q′(t)

r(t)
= 0.

Then every nonoscillatory solution of (1) which tends to zero as t → ∞ is a Kneser
solution.

Our main result in this section is the following statement.
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Theorem 5. Let (2) be oscillatory. Let λ 6 1, q′(t) 6 0 for t > 0 and let either

(10), (11) or (15), (16) hold. In addition, when λ < 1, assume that there exists

M > 0 such that

(23) r(t) > Mq1/2(t) for large t.

Then every solution of (1) which has a zero is oscillatory, and every nonoscillatory

solution is a Kneser solution and tends to zero as t → ∞.

To prove Theorems 4, 5, the following lemmas will be needed.

Lemma 3 ([8], Proposition 2). Let (2) be oscillatory. Then any nonoscillatory

solution x of (1) is the one of the following types:

(a) x(t)x′(t) 6 0 for large t;

(b) x′ changes its sign for large t.

Lemma 4. Assume λ 6 1. Let x be a nonoscillatory solution of (1) and

(24) F (t) = −x(t)x′′(t) +
1

2
x′2(t)− 1

2
q(t)x2(t).

(i) If either (21) or (22) holds and x is a bounded solution, then the function F is

nonpositive and nondecreasing for large t.

(ii) If q′(t) 6 0 for t > 0, then the function F is nonpositive and nondecreasing for

t > 0.

P r o o f. First we prove monotonicity of F . We have for t > 0

(25) F ′(t) = r(t)|x(t)|λ+1 − 1

2
q′(t)x2(t) = x2(t)

( r(t)

|x(t)|1−λ
− q′(t)

2

)

.

If q′(t) 6 0 for t > 0 (for t large), then F ′(t) > 0 for t ∈ R+ (for t large). Suppose

(22). Then for any nonoscillatory solution x of (1) there exist t0 and M such that

0 < x(t) 6 M and

r(t)

x1−λ(t)
− q′(t)

2
> Mλ−1r(t)− q′(t)

2
>

r(t)

2

(

2Mλ−1 − q′(t)

r(t)

)

>
Mλ−1

2
r(t)

for t > t0. Hence, (25) implies that F is nondecreasing for large t.

Now we prove that F is nonpositive for large t or for t > 0 in claim (i) or (ii),

respectively. By Lemma 3 any eventually positive solution of (1) is of type (a) or (b).

First note that any solution of type (a) satisfies either x′′(t) > 0 or x′′ is oscillatory,
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i.e., x′′ has infinitely many zeros. Indeed, if x′′(t) < 0 for large t, then x′ is negative

decreasing for large t and x becomes negative.

Let x be a positive solution of type (a) and x′′(t) > 0 for large t. Then x′ is

increasing and negative and lim
t→∞

x′(t) = 0, otherwise x becomes negative for large t.

Hence, lim
t→∞

F (t) 6 0 and F is nonpositive.

Let x be a positive solution of type (a) and let x′′ be oscillatory. Let {tk} be an
increasing sequence tending to infinity such that x′ has local maxima at tk, k ∈ N.

Since x′(t) 6 0, we get

lim
k→∞

x′(tk) = 0,

otherwise x becomes negative for large t. Since x′′(tk) = 0, we have from (24) that

lim
k→∞

F (tk) 6 0.

Thus, in view of the monotonicity, lim
t→∞

F (t) 6 0 and F is nonpositive.

Let x be a positive solution of type (b). Then x′ changes its sign and x′′ has

infinitely many zeros. Let {tk} and {τk} be increasing sequences tending to infinity
such that tk < τk, x′ has local minima at tk,

x′(tk) < 0, x′(τk) = 0, x′′(t) > 0, t ∈ (tk, τk).

This implies

x′(t) < 0, t ∈ [tk, τk), x′′(tk) = 0,

and there exists a sequence {ξk} such that tk < ξk < τk and

−x(ξk)x
′′(ξk) +

1

2
(x′(ξk))

2 = 0, k ∈ N.

From this equation and (24) we have F (ξk) < 0, k ∈ N and by the monotonicity of F

we get the conclusion. �

P r o o f of Theorem 4. Let x be a nonoscillatory solution of (1) which tends to

zero as t → ∞. We prove that it is a Kneser solution. First, suppose that x′′′(t) 6= 0

for large t. Then by Lemma 3 we have x′(t) < 0 and x′′(t) > 0 for large t.

Assume that x′′′ is oscillatory. If x′′(t) > 0 for large t, then the conclusion holds.

Let x′′ be oscillatory. Consider a function F defined by (24). By Lemma 4 (i) there

exists t0 > 0 such that F is nonpositive and nondecreasing on [t0,∞). Let {tk}∞k=1

be an increasing sequence such that t0 6 t1, x′′ has local minima at tk, k = 1, 2, . . .,

and x′′(tk) 6 0. Hence, x′′′(tk) = 0 and from equation (1) we have

(26) −x′(tk) =
r(tk)

q(tk)
xλ(tk), k ∈ N.
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Moreover, (24) and (26) imply

0 > 2F (tk) > x′2(tk)− q(tk)x
2(tk) =

(r(tk)

q(tk)

)2

x2λ(tk)− q(tk)x
2(tk)

for k ∈ N. This and (15) yield

x(tk) >
( r(tk)

q3/2(tk)

)1/(1−λ)

.

Letting k → ∞, we get a contradiction with the boundedness of x. �

P r o o f of Theorem 5. Let x be a solution of (1) and let F be defined by (24).

If x(t0) = 0 for some t0 ∈ R+, then F (t0) > 0. If x is nonoscillatory, then by

Lemma 4 (ii) we get F (t) < 0 for t > t0, a contradiction. Hence x must be oscillatory.

Now we prove that if x is nonoscillatory, then it is a Kneser solution and tends to

zero as t → ∞. If x is a bounded solution, then by Theorem 3 we have lim
t→∞

x(t) = 0

and by Theorem 4 x is a Kneser solution.

Assume that x is an unbounded solution. According to Lemma 3, such solutions

are of type (b). Let {tk}∞k=1 be an increasing sequence such that x has local maxima

at tk and

lim
k→∞

x(tk) = ∞.

Then x′(tk) = 0 and x′′(tk) 6 0. Moreover, equation (1) gives x′′′(tk) < 0. Let

{τk}∞k=1 be the sequence such that tk < τk and τk is the first zero of x′′′ lying to the

right of tk, k = 1, 2, . . .. Denote

∆k = (tk, τk), k ∈ N.

Then x′ and x′′ are negative decreasing, and x is positive decreasing on ∆k. Consider

the function F defined by (24). Then by Lemma 4, F (t) 6 0 for t ∈ ∆k and

(27) |x′′(t)| 6 q(t)

2
x(t), |x′(t)| 6

√

q(t)x(t), t ∈ ∆k.

Moreover, from (25) we have

(28)

∫

∞

a

r(t)xλ+1(t) dt 6 F (∞)− F (a) < ∞

for any a > 0, and from (1)

(29) |x′(τk)| =
r(τk)

q(τk)
xλ(τk).
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Hence, (27) and (29) imply

r(τk)

q(τk)
xλ(τk) = |x′(τk)| 6 q1/2(τk)x(τk).

Now, if λ = 1, then

1 >
r(τk)

q3/2(τk)

and letting k → ∞ we get a contradiction with (15) or (10), (11). Hence, (1) has no
unbounded nonoscillatory solution.

Let λ < 1. Then

(30) x(τk) >
( r(τk)

q3/2(τk)

)1/(1−λ)

,

so from (27), (29)

r(τk)

q(τk)
xλ(τk) = |x′(τk)| =

∫

∆k

|x′′(s)| ds 6 |x′′(τk)|(τk − tk)

6
q(τk)

2
x(τk)(τk − tk)

and this implies

(31) ∆k = τk − tk > 2
r(τk)

q2(τk)
xλ−1(τk).

Put ξk = min
t∈∆k

r(t). From (30), (31) we get

∫

∆k

r(t)xλ+1(t) dt > r(ξk)x
λ+1(τk)∆k > 2r(ξk)

r(τk)

q2(τk)
x2λ(τk)

> 2r(ξk)
r(τk)

q2(τk)

( r(τk)

q3/2(τk)

)2λ/(1−λ)

.

The function r(t)/q3/2(t) is bounded away from zero, and so, in view of (23),
∫

∞

a

r(t)xλ+1(t) dt >
∞
∑

k=1

∫

∆k

r(t)xλ+1(t) dt

> 2

∞
∑

k=1

r(ξk)
r(τk)

q2(τk)

( r(τk)

q3/2(τk)

)2λ/(1−λ)

> 2min
s>t1

( r(s)

q3/2(s)

)2λ/(1−λ)+1 ∞
∑

k=1

r(tk)

q1/2(tk)

> 2M min
s>t1

( r(s)

q3/2(s)

)(λ+1)/(1−λ) ∞
∑

k=1

1 = ∞,

which contradicts (28). Thus (1) has no unbounded solutions. �
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Remark 4. Theorem 5 extends [7], Theorem 5.3, where it is proved that if λ 6 1,

(6), and r(t) > M > 0 for large t, then any nonoscillatory solution x of (1) satisfies

lim
t→∞

x(i)(t) = 0, i = 0, 1, 2.

We conclude this section with an application of our results to the linear equation

(L) x′′′(t) + q(t)x′(t) + r(t)x(t) = 0, t > 0.

This equation has a nonoscillatory solution if q′(t) 6 0 for t > 0, see [13], Theo-

rem 1.13. Thus, applying Theorem 5 to (L) we get the existence of a Kneser solution

for (L).

Corollary 1. Let q′(t) 6 0 for t > 0 and let either (10), (11) or (15), (16) hold.

Then (L) has both oscillatory and nonoscillatory solutions and every nonoscillatory

solution tends to zero as t → ∞ and satisfies (3) for all t > 0.

Remark 5. Corollary 1 extends [9], Theorem 2, where the existence of a Kneser

solution vanishing at infinity was studied.

The following examples illustrate our results.

Example 1. Consider the equation

(32) x′′′(t) +
1

t2
x′(t) + 7tλ−4|x|λ(t) sgnx(t) = 0, t > 1,

where λ > 1. If λ > 1, applying Theorem 1 with k = 2 we get that every nonoscil-

latory solution of (32) is vanishing at infinity. If λ = 1, then by Theorem 5 every

solution with a zero is oscillatory and every nonoscillatory solution is a Kneser solu-

tion vanishing at infinity. One can check that x(t) = 1/t is a solution of (32) with

λ = 1.

Example 2. Consider the equation

(33) x′′′(t) +
1

t
x′(t) +

1√
t
|x|λ(t) sgnx(t) = 0, t > 1,

where λ 6 1. By Theorem 5, every solution of (33) with a zero is oscillatory and

every nonoscillatory solution is a Kneser solution vanishing at infinity.

Example 3. Consider the equation

(34) x′′′(t) + etx′(t) + e2t|x|λ(t) sgnx(t) = 0,

where λ > 1. By Theorem 2, every nonoscillatory solution of (34) is vanishing at

infinity. Observe that Theorem 1 is not applicable to this equation.
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Concluding remarks. (1) Sometimes the assumption q ∈ C2 can be weakened.

In particular, Theorem 1 holds under a weaker assumption q ∈ C and Theorems 3, 4

with assumptions (10), (11) hold under q ∈ C and Theorem 5 under q ∈ C1.

(2) Sansone (see [13]) constructed a function q such that q(t) > 0 and the linear

equation (L) with r(t) = q′(t) has all solutions oscillatory. It is an interesting problem

to find conditions for all solutions of (1) to be oscillatory. In view of Theorems 1, 5

this problem reduces to the nonexistence of nonoscillatory solutions tending to zero

as t → ∞.
(3) After this paper was written, the comprehensive monograh [18] concerning

oscillatory and asymptotic properties of solutions for various types of third order

differential equations has been published. Theorems 1–5 extend results of Sections 2.5

and 4.1 of [18]. In particular, Theorem 5 extends [18] , Theorems 4.1.14–4.1.20,

where it is assumed that q(t) 6 0, and Corollary 1 extends a result of S. Padhi [18],

Theorem 2.5.12, where it is assumed that r(t) > M > 0 for large t.

Acknowledgement. The authors would like to thank the referee for helpful

suggestions to the paper.
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