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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 51 (2015), 13–25

ON INVERSE CATEGORIES WITH SPLIT IDEMPOTENTS

Emil Schwab and Emil Daniel Schwab

Abstract. We present some special properties of inverse categories with
split idempotents. First, we examine a Clifford-Leech type theorem relative to
such inverse categories. The connection with right cancellative categories with
pushouts is illustrated by simple examples. Finally, some basic properties of
inverse categories with split idempotents and kernels are studied in terms of
split idempotents which generate (right or left) principal ideals of annihilators.

1. Introduction

A category is inverse if for each morphism f there is a unique morphism f−1

such that ff−1f = f and f−1ff−1 = f−1. Inverse categories are the natural
extension of inverse monoids. Many basic properties of inverse semigroups have
been applied to morphisms in inverse categories. In fact, for each object A of an
inverse category C the set HomC(A,A) of all morphisms from A to A is an inverse
monoid. Quite analogously to the case of inverse semigroups, the concepts left
(right) principal ideals, the Green’s relations (L, R, D etc.), the natural ordering ≤,
etc., can be introduced for arbitrary inverse category (see, for example, [2, 3, 7]).

In many familiar categories C, a morphism f ∈ HomC(A,B) (denoted also
f : A→ B) admits a canonical factorization A

h
� X

u
� B (h is an epimorphism, u

is a monomorphism, and f = uh) called an epi-mono factorization of f (epimor-
phisms are denoted in text by � and monomorphism by �). In many algebraic
categories, X is the set-theoretic image of f in the usual sense. The epi-mono
factorizations plays an important role in the theory of exact categories. Exact
category has assumed different meanings in category theory. In Mitchell’s book [6]
an exact category is a category with kernels and cokernels, it is normal (i.e., any
monomorphism is a kernel of a morphism) and conormal (i.e., any epimorphism is
a cokernel of a morphism), and every morphism has an epi-mono factorization. In
[6] abelian categories are defined as additive exact categories. An idempotent i of a
category is said to be split idempotent if i admits an epi-mono factorization. Inverse
categories with kernels and with closed and split idempotents (for the definition of
closed idempotents see Section 4) are exact categories ([7]).
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The theory of bisimple inverse monoids created by Clifford is one of the most
fundamental contribution to the classical theory of inverse semigroups. A semigroup
is bisimple if it consists of a single D-class. Clifford’s theorem describes the structure
of bisimple inverse monoids in terms of their right unit subsemigroup. The Clifford
result on bisimple inverse monoid was interpreted by Leech [5] categorically and
it was extended to arbitrary inverse monoids. Section 2 contains an extension of
these results from inverse monoids to inverse categories with split idempotents (see
also [2, Section 2.1]). The illustrative example described in Section 3 involves a
pair of subcategories of the category of pointed sets. Finally, in Section 4 basic
concepts and properties are considered in inverse categories with kernels and split
idempotents. In a forthcoming paper we will utilize all of these for continuing the
study of exact inverse categories. The notations and terminologies are standard
and we presume elementary basic knowledge of category theory.

2. Inverse categories and Clifford’s theorem

The origins of this section lie in the fundamental result of Clifford [1] on bisimple
inverse monoids.

Theorem 2.1 (Clifford [1]).
(i) Let S be a bisimple inverse monoid. Then the R-class R(S) of S containing the
identity, R(S) = {s ∈ S | ss−1 = 1}, is a right cancellative monoid in which the
set of principal left ideals is closed under finite intersections.

(ii) If R is a right cancellative monoid in which the set of principal left ideals is
closed under finite intersections then S(R) = R × R/%, where (s1, t1)%(s2, t2) iff
(s1, t1) = (us2, ut2) for some unit u ∈ R, can be equipped with a multiplication
· such that (S(R), ·) becomes a bisimple inverse monoid. This multiplication on
S(R) = R×R/% is defined by:

[s1, t1] · [s2, t2] = [ps1, qt2] ,

where Rt1 ∩ Rs2 = Rr and pt1 = qs2 = r for some p, q, r ∈ R ([s, t] being the
equivalence class on R×R generated by (s, t)).

(iii) S ∼= S(R(S)) (S is isomorphic to S(R(S))).

(iv) R ∼= R(S(R)) (R is isomorphic to R(S(R))).

Leech’s interpretation is given in terms of a right cancellative category with pu-
shouts and weakly initial object (i.e., an object I such that Hom(I, A) is non-empty
for any object A), and it is extended to arbitrary inverse monoid.

Theorem 2.2 (Leech [5]).
(i) Let S be an inverse monoid. Define C(S) by
− Ob C(S) = E(S) (where E(S) is the set of idempotents of S);
− HomC(S)(e, f) = {(s, e) ∈ S × E(S)|es−1s = s−1s and ss−1 = f}; and
− the composition of two morphisms (s, e) : e→ f and (t, f) : f → g being given

by (t, f) · (s, e) = (ts, e).
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Then C(S) is a right cancellative category with pushouts and with 1 a weakly initial
object of C(S).

(ii) If (C, I) is a pair where C is a right cancellative category with pushouts,
I being a weakly initial object in C then S(C, I) = M/%, where M = {(α, β) ∈
Mor C ×Mor C | Domα = Dom β = I and Codomα = Codom β} and (α1, β1)
%(α2, β2) iff (α1, β1) = (ια2, ιβ2) for some isomorphism ι ∈ Mor C, can be equipped
with a multiplication · such that (S(C, I), ·) becomes an inverse monoid. This
multiplication on S(C, I) = M/% is defined by:

[α1, β1] · [α2, β2] = [γα1, δβ2] ,

where {α2, β1, γ, δ} is a pushout in C and [α, β] is the equivalence class generated
by (α, β) ∈M .

(iii) S ∼= S(C(S), 1) (S is isomorphic to S(C(S), 1)).

(iv) C ≈ C(S(C, I)) (there is an equivalence of categories F : C → C(S(C, I))
such that F (I) = 1).

It may be interesting to consider above the possibility of replacing inverse
monoids with inverse categories. The essential steps in this direction were taken by
Jones and Lawson [2, Propositions 2.2, 2.3, 2.4]. We will follow some of their ideas,
however there are some major differences between our technique and that in [2].
Kawahara’s [4] construction of relations in categories with pullbacks will be very
useful in our development. In order to do this we prove the following lemma.

Lemma 2.1. Let I be an inverse category with split idempotents. Given two
morphisms α : A→ B and β : A→ C with a common domain, and α−1αβ−1β =
γγ−1 (Diagram 1),

A
α−1αβ−1β //

γ−1
��@@@@@@@ A

Y

γ

??~~~~~~~

Diagram 1
is an epi-mono factorization of the idempotent α−1αβ−1β then the following dia-
gram (Diagram 2)

A
β //

α

��

C

γ−1α−1αβ−1

��
B

γ−1β−1βα−1
// Y

Diagram 2
is a pushout in I if α and β are epimorhisms.



16 E. SCHWAB AND E.D. SCHWAB

Proof. Diagram 2 is commutative:
(γ−1β−1βα−1)α = γ−1β−1βα−1α = γ−1α−1αβ−1β = (γ−1α−1αβ−1)β

Now, if Diagram 3 is a commutative diagram in I,

A
β //

α

��

C

β1

��
B

α1 // X

Diagram 3
and

x = α1αγ = β1βγ (x : Y → X) ,

then

xγ−1β−1βα−1 = α1αγγ
−1β−1βα−1 = α1αα

−1αβ−1ββ−1βα−1

= α1αβ
−1βα−1 = β1ββ

−1βα−1 = β1βα
−1 .

Since α is epimorphism, that is αα−1 = 1B, the equality α1α = β1β implies
β1βα

−1 = α1. Thus
xγ−1β−1βα−1 = α1 .

Analogously,
xγ−1α−1αβ−1 = β1 .

If y : Y → X is a morphism in I such that yγ−1β−1βα−1 = α1 and yγ−1α−1αβ−1 =
β1, then

x = α1αγ = yγ−1β−1βα−1αγ = yγ−1γγ−1γ = y .

�

Theorem 2.3.
(i) Let I be an inverse category with split idempotents. Then the subcategory
E(I) consisting of all epimorphisms of I (hence Mor E(I) = {α ∈ Mor I|αα−1 =
1Codomα}) is a right cancellative category with pushouts.

(ii) If E is a right cancellative category with pushouts then define the category
I(E) by
− Ob I(E) = ObE;
− HomI(E)(A,B) = {(α, β)∈HomE(A, •)×HomE(B, •)|Codomα=Codom β}/% ,

where (α1, β1)%(α2, β2) iff (α1, β1) = (ια2, ιβ2) for some isomorphism
ι ∈ Mor E;

− the composition of two morphisms [α1, β1] : A→ B and [α2, β2] : B → C is
given by

[α2, β2][α1, β1] = [γα1, δβ2] ,
where {α2, β1, γ, δ} is a pushout in E and [α, β] is the equivalence class
generated by (α, β).
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Then I(E) is an inverse category with split idempotents.
(iii) I ∼= I(E(I)).
(iv) E ∼= E(I(E)).

Proof.
(i) By Lemma 2.1, Diagram 2 is a pushout in I if α and β are epimorhisms.

It follows that γ−1β−1βα−1α and γ−1α−1αβ−1β are also epimorphisms. Since
xγ−1β−1βα−1 = α1 and xγ−1α−1αβ−1 = β1 (using notation from the proof of
Lemma 2.1), it follows that x is also epimorphism if α1 and β1 are epimorphisms.
Thus E(I) is a category with pushouts and obviously it is right cancellative.

(ii) This construction of I(E) is the dual construction of Kawahara’s [3] category
of relations (relative to the subcategory of isomorphisms) for a category with
pullbacks. For [α, β] ∈ HomI(E)(A,B), define [α, β]∗ = [β, α] ∈ HomI(E)(A,B);
then we have: [α, β]∗∗ = [α, β] and ([α2, β2][α1, β1])∗ = [α1, β1]∗[α2, β2]∗. Now, it
is an embedding of E in I(E), Γ: E → I(E) defined by

A ∈ Ob E  Γ(A) = A ∈ Ob I(E) ;

α ∈ HomE(A,B) Γ(α) = [α, 1B ] ∈ HomI(E)(A,B)

such that
[α, β] = Γ(β)∗Γ(α) .

Since E is right cancellative it follows that {α, α, 1Codomα, 1Codomα} is a pushout
in E for any morphism α, and therefore

Γ(α)Γ(α)∗ = [1B , 1B ] for any morphism α ∈ HomE(A,B) .

So, for any morphism [α, β] we have: [α, β] = Γ(β)∗Γ(α) is an epi-mono factorization
in I(E). It remains to prove that I(E) is an inverse category. We have:

[α, β][α, β]∗[α, β] = Γ(β)∗Γ(α)Γ(α)∗Γ(β)Γ(β)∗Γ(α) = Γ(β)∗Γ(α) = [α, β] .

The set {[α, α]|Domα = A} is the set of idempotents in HomI(E)(A,A), and
[α, α][β, β] = [β, β][α, α] if [α, α] and [β, β] are two idempotents in HomI(E)(A,A).
So, I(E) is a regular category and its idempotents commute. This proved that I(E)
is an inverse category with split idempotents.

(iii) The functors F : I → I(E(I)) and G : I(E(I))→ I defined by

F (A) = A ; F (α) = [h, u−1]

(where α = uh is an epi-mono factorization of α), and

G(A) = A ; G([α, β]) = β−1α

respectively, are mutually inverse to each other; i.e. G · F is the identity functor on
I and F ·G is the identity functor on I(E(I)).

(iv) It is straightforward to check that E(I(E)) is the image of the functor Γ (i.e.,
the smallest subcategory of I(E) which contains all image morphisms Γ(α)). So, E
and E(I(E)) are isomorphic through Γ. �
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Now, it is straightforward to see that:

Proposition 2.1. If the right cancellative category E with pushouts has a weakly
initial object I, then the inverse monoid HomI(E)(I, I) is just Leech’s inverse monoid
S(E , I).

Let (P,≤) be a join-semilattice. The join-semilattice (P,≤) is viewed as a
category in which each Hom-set has at most one element: Ob(P,≤) = P , and
Hom(P,≤)(a, b) is a singleton if and only if a ≤ b. The category (P,≤) is a right
cancellative category with pushouts. The inverse category I(P,≤) is defined by:
− Ob I(P,≤) = P ;
− HomI(P,≤)(a, b) = {(a, x, b) ∈ P 3|a, b ≤ x}; and
− the composition of two morphisms (a, x, b) : a→ b and (b, y, c) : b→ c is given

by
(b, y, c)(a, x, b) = (a, x ∨ y, c) .

Every endomorphism in I(P,≤) is an idempotent, (a, a, a) is the identity mor-
phism in HomI(P,≤)(a, a), (a, x, b)−1 = (b, x, a), and the morphism (a, x, b) is an
epimorphism (monomorphism) if and only if x = b (x = a). The factorization

(a, x, b) = a
(a,x,x)
� x

(x,x,b)
� b is an epi-mono factorization of (a, x, b). If (P,≤) is a

join-semilattice with a least element 0, then the category (P,≤) is right cancellative
with pushouts and with the weakly initial object 0. In this case Leech’s inverse
monoid (S((P,≤), 0), ·) is just the semilattice (P,∨).

The following example is much more complicated. Let Ca the category of integer
affine maps (see [9, Section 2]) defined by
− Ob Ca = Z+;
− HomCa(k, n) =

= {(f, k)| f : R→ R, f(x) = ax+ b, a, b ∈ Z, a > 0, b ≥ 0, and f(k) = n};
and

− the composition (g, n)(f, k) of two morphisms (f, k) : k → n and (g, n) : n→
m is given by (g, n)(f, k) = (g ◦ f, k), where g ◦ f is the usual composition of
maps.

The category Ca is a right cancellative category with pushouts. A morphism (f, k)
will be denoted by f if the domain k (and therefore the codomain f(k) also) is
implied. If f = ax+ b and g = cx+ d are two morphisms in Ca with a common
domain k then Diagram 4 is a pushout,

k
g //

f

��

g(k)

h2=m2x+m−m2g(k)

��
f(k)

h1=m1x+m−m1f(k) // max{m1f(k),m2g(k)} = m

Diagram 4
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where m1 = l.c.m.{a,c}
a and m2 = l.c.m.{a,c}

c . A morphism f is an isomorphism in Ca
if and only if it is an identity. Therefore the morphisms of the inverse category I(Ca)
are pairs of morphisms of Ca with common codomain. We have: Ob I(Ca) = N∗ and
HomI(Ca)(k1, k2) = {(f, g) ∈ HomCa(k1, f(k1))×HomCa(k2, g(k2)) | f(k1) = g(k2)}.
The composition (f2, g2)(f1, g1) of two morphisms (f1, g1) : k1 → k2, (f2, g2) : k2 →
k3, fi = aix+ bi (i = 1, 2), gi = cix+ di (i = 1, 2) is given by
(a2x+ b2, c2x+ d2)(a1x+ b1, c1x+ d1) = (m1a1(x− k1) +m,m2c2(x− k3) +m) ,

where m1 = l.c.m.{c1,a2}
c1

, m2 = l.c.m.{c1,a2}
a2

and m = max{m1f1(k1),m2g2(k3)}
(see Diagram 5),

k1

f1

��44444444444 k2

g1

xxqqqqqqqqqqqqqqqqqqq

f2

&&MMMMMMMMMMMMMMMMMMM k3

g2

��












f1(k1) = g1(k2)

h1=m1x+m−m1f1(k1)

&&MMMMMMMMMMMMMMMMM
f2(k2) = g2(k3)

h2=m2x+m−m2g2(k3)

xxqqqqqqqqqqqqqqqqq

max{m1f1(k1),m2g2(k3)} = m

Diagram 5

Note that the inverse monoid HomI(Ca)(1, 1) is just the Dirichlet analogue of the
free monogenic inverse semigroup (see [9]).

We end this section with a simple example. Let IQ+ be the category defined by:
− Ob IQ+ = Q+;
− HomIQ+ (x, y) = {(x, a, b)|a, b ∈ Z+, x ba = y}; and
− the composition (y, c, d)(x, a, b) of two morphisms (x, a, b) : x → y and

(y, c, d) : y →z is given by (y, c, d)(x, a, b)=
(
x, amb ,

md
c

)
, wherem= l.c.m.{b, c}.

All endomorphisms are idempotents and the morphism (x, 1, 1) is the identity
on HomIQ+ (x, x). The category IQ+ is inverse in which (x, a, b)−1 =

(
x ba , b, a

)
and (x, a, b) = x

(x,a,1)
� x 1

a

(x 1
a ,1,b)
� x ba is an epi-mono factorization in IQ+ of the

morphism (x, a, b). The category E(IQ+) is nothing but the partially ordered set
(Q+,�) where x � y if and only if x

y ∈ Z+.
We continue in the next section with the presentation of a rich variety of

examples.

3. Two subcategories of the category of pointed sets

The objects of the category of pointed sets Set∗ are pairs (A, a) consisting of
a nonempty set A together with a designated element a ∈ A. Morphisms in Set∗
are mappings that preserve the designated points. The composition of morphisms
in Set∗ are the standard composition of mappings. The identity mapping on A is
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the identity morphism 1(A,a). A singleton in Set∗, that is ({∗}, ∗), is a zero object
(both initial and terminal).

Let S1 be the subcategory of Set∗ defined by: Ob S1 = Ob Set∗; the morphisms
from (A, a) to (B, b) are surjective maps f from A to B such that f(a) = b and
f(x) = f(y) 6= b implies x = y. More precisely, the morphisms in S1 from (A, a) to
(B, b) are such morphisms f of Set∗ (f : A→ B with f(a) = b) which establish a
bijection between A−Af,b and B, where Af,b denotes the set {x ∈ A−{a}|f(x) = b}.

Proposition 3.1. The category S1 is right cancellative with pushouts.

Proof. It is straightforward to see that S1 is right cancellative.
If f ∈ HomS1((A, a), (B, b)) and f : B → A is the map defined by

f(y) =
{
x if y ∈ B − {b} and f(x) = y

a if y = b ,

then f is a morphism in S1 from (B, b) to (A−Af,b, a) such that f/(A−Af,b)f =
1(B,b), where f/(A−Af,b) is the restriction of f to A−Af,b. The morphism ff in S1

from (A, a) to (A−Af,b, a) is such that ff(x) = x for all x ∈ A−Af,b and ff(x) =
a for all x ∈ Af,b (that is, Aff,a = Af,b). Now, it is a routine matter to verify that
for any morphisms f ∈ HomS ((A, a), (B, b)) and g ∈ HomS ((A, a), (C, c)), the
Diagram 6 is a pushout in S1.

(A, a)

f

��

g // (C, c)

ffg

��
(B, b) ggf // (A− (Af,b ∪Ag,c), a)

Diagram 6
�

Now, it is clear that f ∈ HomS1((A, a), (B, b)) is an isomorphism in S1 if
and only if ff = 1(A,a), that is if and only if Af,b = ∅. More precisely, f ∈
HomS1((A, a), (B, b)) is an isomorphism in S1 if and only if f : A → B is a
bijection with f(a) = b. The inverse category I(S1) is defined by:
− Ob I(S1) = Ob S1;
− HomI(S1)((A, a), (B, b)) =

= {[f, g | Codom f = Codom g, f ∈ HomS1((A, a), •), g ∈ HomS1((B, b), •)} ,
where [f, g] is the %-equivalence class generated by (f, g), % being defined on
the set HomS1((A, a), •)×HomS1((B, b), •) by (f1, g1)%(f2, g2) iff (f1, g1) =
(ιf2, ιg2) for some isomorphism ι of S1;
− the composition of two morphisms [f1, g1] : (A, a)→ (B, b) and [f2, g2] : (B, b)
→ (C, c) (see Diagram 7) is given by

[f2, g2][f1, g1] = [f2f2g1f1, g1g1f2g2] ,
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where {g1, f2, f2f2g1, g1g1f2} is a pushout in S1.

(A, a)

f1
��?????????

(B, b)

g1
xxqqqqqqqqqqqqq

f2
&&MMMMMMMMMMMMM

(C, c)

g2
�����������

(D, d)

f2,f2g1 &&MMMMMMMMMMMMM
(E, e)

g1g1f2xxqqqqqqqqqqqqq

(B − (Bg1,d ∪Bf2,e), b)

Diagram 7

Let us consider a second subcategory S2 of the category Set∗: Ob S2 = Ob Set∗;
the morphisms from (A, a) to (B, b) are maps f from A to B such that f(a) = b
and f(x) = f(y) 6= b implies x = y. Obviously, S1 is a subcategory of S2.

Proposition 3.2. The categories I(S1) and S2 are isomorphic.

Proof. If g ∈ HomS1((B, b), (C, c)) then g, which is a morphism in S1 from
(C, c) to (B − Bg,c, b), is also a morphism in S2 from (C, c) to (B, b). So, if
f ∈ HomS1((A, a), (C, c)) then gf ∈ HomS2((A, a), (B, b)). More, if

(f1, g1) ∈ HomS1((A, a), (C, c))×HomS1((B, b), (C, c))

and

(f1, g1) ∈ HomS1((A, a), (D, d))×HomS1((B, b), (D, d))

then

(f1, g1)%(f2, g2) if and only if g1f1 = g2f2 .

So the correspondence
[f, g] gf

is well defined, and it gives rise to an isomorphism between I(S1) and S2. �

Thus S1 and S2 are two subcategories of Set∗ which correspond to each other
in the above described connection (Section 2) between right cancellative categories
with pushouts and inverse categories with split idempotents. In the inverse category
S2 the inverse f−1 of a morphism f ∈ HomS2((A, a), (B, b)) is given by

(∀y ∈ B) f−1(y) =
{
x if y ∈ f(A)− {b} and f(x) = y

a otherwise.

An endomorphism f ∈ HomS2((A, a), (A, a)) is an idempotent in S2 if and only if
f(x) = x for all x ∈ A−Af,a. The factorization f = gh is a mono-epi factorization
of the idempotent f ∈ HomS2((A, a), (A, a)) if g ∈ HomS2((f(A), a), (A, a)),
g(x) = x for all x ∈ f(A), and h ∈ HomS2((A, a), (f(A), a)), h(x) = f(x) for all
x ∈ A. Note that the category S2 is a category with kernels: if f is a morphism in
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S2 from (A, a) to (B, b) then ((Af,b, a), u) is the kernel of f , where u(x) = x for
all x ∈ Af,b.

4. Kernels in inverse categories with split idempotents

Proposition 4.1. Let I be an inverse category with split idempotents and with a
zero object 0. The following assertions are equivalent:

(1) I is a category with kernels;
(2) for any morphism f in I the right annihilators of f form a principal right

ideal generated by an idempotent;
(3) I is a category with cokernels;
(4) for any morphism f in I the left annihilators of f form a principal left ideal

generated by an idempotent.
Proof. (1) ⇒ (2). Let f be a morphism in I, u = ker f , and i = uu−1. If g is a
morphism in I such that fg = 0, then g = uh for some morphism h in I, and
therefore g = uu−1uh ∈ iI.

Conversely, if g ∈ iI then fg = 0, since u = ker f .
(2)⇒ (3). Let f be a morphism in I and jI the principal right ideal (generated

by the idempotent j) of the right annihilators of f−1. If j = uu−1 is an epi-mono
factorization of the idempotent j, then u−1 = coker f .

(3)⇒ (4). Let f be a morphism in I, h = coker f , and i = h−1h. Then Ii is the
principal left ideal (generated by the idempotent i) of the left annihilators of f .

(4)⇒ (1). Let f be a morphism in I and Ij the principal left ideal (generated
by the idempotent j) of the left annihilators of f−1. If j = uu−1 is an epi-mono
factorization of the idempotent j, then u = ker f . �

For any morphism f of the inverse category I with split idempotents and kernels,
the idempotent i (resp. j) which generates the principal right (resp. left) ideal of
right (resp. left) annihilators of f is uniquely determined by f , and we will denote
it by (f)′ (resp. ′(f)). It is straightforward to check that for any morphism f of I
we have (f)′ = ′(f−1) and therefore (i)′ = ′(i) for any idempotent i. Much more,
for any idempotent i of I we have i ≤ ((i)′)′, and an idempotent i will be called
closed if i = ((i)′)′.

Now in the inverse category with split idempotents S2 the object (A, a) is
a zero object if and only if A is a singleton: A = {a}. The category S2 is a
category with kernels and closed idempotents (see [8]). For any morphism f ∈
HomS2((A, a), (B, b) we have:

(∀x ∈ A) (f)′(x) =
{
x if x ∈ Af,b − {a}
a otherwise.

and

(∀y ∈ B) ′(f)(y) =
{
y if y /∈ f(A)
b otherwise.
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An exact category in the sense of Mitchell [6] is a normal category (i.e. any mono-
morphism is a kernel of a morphism) and conormal category (i.e. any epimorphism
is a cokernel of a morphism) with kernels and cokernels, and every morphism has
an epi-mono factorization. A category is called Boolean if the set of subobjects of
any object forms a Boolean algebra.

Theorem 4.1 ([7]). An inverse category with split idempotents and kernels in which
all idempotents are closed is an exact Boolean category. The Boolean algebra of the
subobjects of an object A is isomorphic to the Boolean algebra of all idempotents of
Hom(A,A), where (i)′ is the complement of the idempotent i and the intersection
and union operations are defined by

i ∧ j = ij , i ∨ j = ((i)′(j)′)′ .

In what follows I will be denote an inverse category with split idempotents and
kernels in which all idempotents are closed. By [8, Lemma 1] in a such category for
any morphism f we have:

(f)′′ = f−1f and ′′(f) = ff−1 ,

where (f)′′ = ((f)′)′ and ′′(f) = ′(′(f)).

Proposition 4.2. Let f ∈ HomI(A,B) and g ∈ HomI(B,C) be two morphisms in
the category I. The following assertions are equivalent:

(1) the sequence A f→ B
g→ C is a semi-exact sequence in I;

(2) the sequence B
′′(f)→ B

(g)′′→ B is a semi-exact sequence in I;

(3) there is an idempotent i ∈ HomI(B,B) such that if = f and gi = 0;

(4) ′′(f) ≤ (g)′,
where ≤ is the natural partial order relation on the inverse monoid HomI(B,B).

Proof. (1)⇒ (2) [(g)′′][′′(f)] = g−1gff−1 = 0.
(2)⇒ (3) ′′(f)f = f and g[′′(f)] = g[(g)′′][′′(f)] = 0.
(3) ⇒ (4) gi = 0 implies that i ∈ (g)′I and therefore i ≤ (g)′; and if = f

implies that i[′′(f)] = ′′(f) and therefore ′′(f) ≤ i.
(4)⇒ (1) ′′(f) ≤ (g)′, that is [(g)′][′′(f)] = ′′(f), implies that gf = g[′′(f)]f =

g[(g)′][′′(f)]f = 0. �

Proposition 4.3. The sequence A f→ B
g→ C is an exact sequence in I if and

only if ′′(f) = (g)′.

Proof First we show that if u : X � A and v : Y � A are two subobjects of A, then
they are isomorphic subobjects of A if and only if ′′(u) = ′′(v). If u = vγ, where
γ is an isomorphism, then ′′(u) = uu−1 = vγγ−1v−1 = vv−1 = ′′(v). Conversely if
′′(u) = ′′(v) then u = uu−1u = vv−1u and v = uu−1v, where (v−1u)(u−1v) = 1Y
and (u−1v)(v−1u) = 1X . Therefore u : X � A and v : Y � A are isomorphic
subobjects.
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Now, if f = uh (A f→ B = A
h
� X

u
� B) is an epi-mono factorization of the

morphism f , then u : X � B is the (epimorphic) image of f and it is straightforward

to see that ′′(f) = ′′(u). If (g)′ = vv−1 (B (g)′→ B = B
v−1

� Y
v
� B) is an epi-mono

factorization of (g)′, by the proof of (4) ⇒ (1) in Proposition 4.1, taking into
account that (g)′ = ′(g−1)), it follows that v : Y � B is the kernel of g, and clearly
(g)′ = ′′(v). Since the subobjects u : X � B and v : Y � B are isomorphic if and
only if ′′(u) = ′′(v), it follows that the sequence A f→ B

g→ C is exact if and only
if ′′(f) = (g)′. �

Remark 4.1. If the sequence A f→ B
g→ C is a semi-exact sequence in I then the

interval [′′(f), (g)′] in the semilattice of idempotents of HomI(B,B) serves as a
measure of the deviation from exactness.

The exact category in the sense of Mitchell [6] is designed to encapsulate, in
the first stage, the properties of exact (semi-exact) sequences and the Noether
isomorphism theorems. As in the case of exactness (Propositions 4.2 and 4.3)
the exact category I brings with it specific elements related to idempotents of
the category. The following two propositions are the expression of the Noether
isomorphism theorems ([6, Corollaries 16.2 and 16.7]) in terms of split idempotents.

Proposition 4.4. Let A
u
� B

v
� C in the category I, and let ′(v) = C

q
� X

q−1

� C

and ′(vu)[′(v)] = C
h
� Z

h−1

� C be epi-mono factorizations of the idempotents ′(v)
and ′(vu)[′(v)], respectively. Then h[′(vu)]q−1 : X ∼→ Z is an isomorphism in I
(Diagram 8).

X
q−1

  @@@@@@@ Z
h−1

��@@@@@@@

C
′(v) //

q
>>~~~~~~~

C

p
��@@@@@@@

′(vu) // C

h

??~~~~~~~ ′(vu)[′(v)] // C

Y
p−1

??~~~~~~~

Diagram 8

Proof. If ′(vu) = C
p
� Y

p−1

� C is an epi-mono factorization of ′(vu), then by
replacing α by p and β by q in Diagram 2, it follows by Lemma 2.1 that Diagram
9 is a pushout.
Now, since p = coker(vu) and q = coker(v), the isomorphism of the upright arrow
h[′(vu)]q−1 follows taking into account [6, Proposition 16.5] and the Diagram from
the proof of [6, Corollary 16.2].

C

p

��

q // X

h[′(vu)]q−1

��
Y

h[′(v)]p−1
// Z

Diagram 9
�
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Proposition 4.5. Let A
u1
� C and B

u2
� C be two subobjects of C in the category

I. If C = A ∪B then Im(′(u1)[′(u2)]) = 0.

Proof. If C
h
� C is the cointersection of the quotient objects C

p
� X and C

q
� Y ,

where p = cokeru1 and q = cokeru2, then the sequence 0→ A ∪B
v
� C

h
� C → 0

is exact in I. Now, if C = A ∪ B then v = 1A∪B and C = 0. By [6, Proposition
16.5], taking into account the Diagram what precedes the Second Noether Theorem
in [6], the following diagram (Diagram 10) is a pushout:

A ∪B

q

��

p // X

��
Y // 0
Diagram 10

By Lemma 2.1 it follows that C � 0 � C is an epi-mono factorization of the
idempotent ′(u1)[′(u2)], that is Im(′(u1)[′(u2)]) = 0. �
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