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RECENT PROGRESS IN ATTRACTORS

FOR QUINTIC WAVE EQUATIONS
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Abstract. We report on new results concerning the global well-posedness, dissipativity
and attractors for the quintic wave equations in bounded domains of R3 with damping terms
of the form (−∆x)

θ∂tu, where θ = 0 or θ = 1/2. The main ingredient of the work is the
hidden extra regularity of solutions that does not follow from energy estimates. Due to the
extra regularity of solutions existence of a smooth attractor then follows from the smoothing
property when θ = 1/2. For θ = 0 existence of smooth attractors is more complicated and
follows from Strichartz type estimates.
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1. Introduction

We consider the nonlinear damped wave equation

(1.1)

{

∂2
t u+ γ(−∆x)

θ∂tu−∆xu+ f(u) = g(x),

u|t=0 = u0, ∂tu|t=0 = u′
0

in a bounded smooth domain Ω ⊂ R
3 endowed with Dirichlet boundary conditions.

Here ∆x is the Laplacian with respect to the variable x = (x1, x2, x3), θ ∈ [0, 1] and

γ > 0 are given exponents, g ∈ L2(Ω) is a given external force and f is a nonlinearity

which satisfies some natural dissipativity and growth assumptions, say,

(1.2) −C + κ|u|q 6 f ′(u) 6 C(1 + |u|q)

for some positive C and q.
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Wave equations of the form (1.1) are of big interest from both the theoretical

and applied points of view and have been studied by many authors, see [1], [5]–[11],

[18], [23], [24] and references therein. It is remarkable that even on the linear level

(f = g = 0), these equations demonstrate rather nontrivial analytic properties in

a strong dependence on the value of the exponent θ. For the convenience of the

reader, we briefly summarize them in the following table:

θ Semigroup Smoothing Maximal regularity

0 C0 asymptotic no
(

0, 1
2

)

C∞ instantaneous no
[

1
2 , 1

)

analytic instantaneous yes

1 analytic instantaneous for ∂tu, yes
asymptotic for u

See [7]–[9], [24] for more details. As we can see from this table, there are three

important borderline cases: the first (θ = 0) corresponds to the classical (weakly)

damped wave equation, the second (θ = 1) gives the so-called strongly damped wave

equations and the third (θ = 1/2) is often referred to as the wave equation with

structural damping although the intermediate choices of θ are also interesting, see

e.g. [7], [18], [24] and references therein.

The situation becomes much more delicate in the presence of the nonlinearity f

since the analytic properties of solutions start to depend also on the growth rate

of f(u) as u → ∞ (on the exponent q in (1.2)). Recall that the solutions u(t) of

problem (1.1) satisfy (at least formally) the energy identity

(1.3)
d

dt
E(u(t), ∂tu(t)) = −γ‖(−∆x)

θ/2∂tu(t)‖
2
L2,

where E(u, v) = 1
2‖∂tv‖

2
L2 +

1
2‖∇xu‖

2
L2 + (F (u), 1) − (g, u). Here and below (u, v)

stands for the usual inner product in L2(Ω) and F (u) :=
∫ u

0
f(v) dv is a potential

of the nonlinearity f . Thus, a weak energy solution of problem (1.1) on the interval

t ∈ [0, T ] is naturally defined as a function u(t) which has the regularity

u ∈ L∞(0, T ;H1
0 (Ω) ∩ Lq+2(Ω)), ∂tu ∈ L∞(0, T ;L2(Ω)),(1.4)

(−∆x)
θ/2∂tu ∈ L2(0, T ;L2(Ω))

(here Hs(Ω) stands for the usual Sobolev space of distributions whose derivatives up

to order s belong to L2, and Hs
0(Ω) is the closure of C

∞
0 (Ω) in Hs(Ω)) and satisfies

equation (1.1) in the sense of distributions. The corresponding energy phase space is

(1.5) E := [H1
0 (Ω) ∩ Lq+2(Ω)]× L2(Ω), ξu := (u, ∂tu) ∈ E .
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Recall also that, due to the Sobolev embedding H1
0 ⊂ L6, we can take E = H1

0 (Ω)×

L2(Ω) if the growth exponent is q 6 4 (in particular, for the case of quintic nonlin-

earities), but the term Lq+2 in the definition (1.5) of the energy phase space looks

unavoidable if the growth exponent is q > 4. The next standard result shows that

weak energy solutions exist and are dissipative for all admissible values of θ and q.

Theorem 1.1. Let θ ∈ [0, 1], q > 0, g ∈ L2(Ω), let the nonlinearity f satisfy (1.2)

and the initial data ξu(0) := (u0, u
′
0) ∈ E . Then there exists at least one weak energy

solution u(t) defined for all t > 0 which satisfies the estimate:

(1.6) ‖ξu(t)‖E +

∫ t+1

t

‖(−∆x)
θ/2∂tu(s)‖

2
L2 ds 6 Q(‖ξu(0)‖E)e

−αt +Q(‖g‖L2),

where the positive constant α and the monotone function Q are independent of u

and t.

The proof of this result is straightforward. Indeed, the dissipative estimate (1.6)

formally follows by multiplication of equation (1.1) by ∂tu+βu for a properly chosen

positive constant β followed by Gronwall’s inequality and the existence of a solution

can be verified, say, by Galerkin approximations, see [1], [10].

In contrast to this, the uniqueness and further regularity of energy solutions is

more difficult and requires essential restrictions on the growth exponent q. To the

best of our knowledge this problem has been solved before only for the values of θ

and q collected in the following table:

θ 0
(

0, 12
)

1
2

(

1
2 ,

3
4

) [

3
4 , 1

]

q [0, 2] ? [0, 4) 0 6 q(θ) < 8θ/(3− 4θ) (0,∞)

See [1], [7], [18], [24] for more details. E.g., for the case of structural damping θ = 1/2,

the open problem was to treat the “critical” case of quintic nonlinearities q = 4, and

for the classical case θ = 0 in bounded domains with Dirichlet boundary conditions

the theory has been developed only for cubic and sub-cubic nonlinearities (q 6 2)

although q = 4 has been conjectured as the critical exponent here. For domains

without boundary: Ω = R
3 or Ω = T

3 (periodic boundary conditions), a reasonable

theory exists for q < 4 in [13], [19]. In the quintic case (θ = 0, q = 4) and Ω = R
3,

the global existence of regular solutions has not been known for a long time (see [16],

[20], [26]), but the attractor theory has been not developed for this case.

The aim of these notes is to present our recent results concerning global well-

posedness, dissipativity and existence of smooth global attractors for quintic (q = 4)

wave equations in bounded domains, see [17] and [25] for a detailed exposition. We
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restrict ourselves to discussing only two borderline cases θ = 1/2 and θ = 0 although

our conjecture is that analogous results hold for all θ ∈ (0, 1/2). Note that in both

cases, the regularity of solutions provided by the energy estimate is not sufficient and

the results are obtained by verifying some extra space-time regularity of the solutions

although how this regularity is obtained is very different: in the case of structural

damping, we derive an extra Lyapunov type estimate based on the multiplication

of equation (1.1) by (−∆x)
1/2u while in the weakly damped case it is achieved by

utilizing the so-called Strichartz type estimates which have been recently extended

to the case of bounded domains, see [3], [4]. We discuss each of these two cases in

more details below.

2. Quintic wave equation: the case of structural damping θ = 1/2

The key novelty here is the following theorem proved in [25].

Theorem 2.1. Let θ = 1/2, g ∈ L2(Ω) and let the nonlinearity f(u) be odd

and satisfy (1.2) with q = 4. Then any weak energy solution u(t) of problem (1.1)

belongs to the space L2(0, T ;H3/2(Ω)) and satisfies the estimate

(2.1) ‖u‖L2(t,t+1;H3/2(Ω)) 6 Q(‖ξu‖L∞(t,t+1;E)) +Q(‖g‖L2),

where the monotone function Q is independent of t and u.

P r o o f. We sketch the proof of this theorem for the case of periodic boundary

conditions Ω = T
3. The case of Dirichlet boundary conditions can be reduced to

that one by using the odd extension of the solution u through the boundary (to this

end, we need the assumption that the nonlinearity f is odd) together with a proper

cut-off procedure, see [25] for the details. To this end, we use the following identity

obtained by multiplying (1.1) by (−∆x)
1/2u:

d

dt

(

(∂tu, (−∆x)
1/2u) +

γ

2
‖(−∆x)

1/2u‖2L2

)

+ ‖(−∆x)
3/4u‖2L2 + (f(u), (−∆x)

1/2u)

= (g, (−∆x)
1/2u) + ‖(−∆x)

1/4∂tu‖
2
L2.

The integration of this identity over the interval (t, t + 1) gives the desired esti-

mate (2.1) in a straightforward way if we are able to estimate the term containing

the nonlinearity f . To this end, we utilize the following lemma which can be verified

using Fourier series and the Parseval equality.
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Lemma 2.1. Let s ∈ (0, 1) and u, v ∈ Hs(T3). Then

(2.2) (v, (−∆x)
su) = c

∫

R3

∫

T3

(v(x + h)− v(x))(u(x + h)− u(x))

|h|3+2s
dxdh,

where the constant c depends only on s.

This lemma, together with the assumption f ′(u) > −K and the mean value the-

orem gives the desired estimate

(

f(u), (−∆x)
1/2u

)

> −K‖(−∆x)
1/4u‖2L2,

which completes the proof of the theorem in the case of periodic boundary conditions.

�

With the extra regularity of energy solutions proved, their uniqueness and further

regularity can be obtained in a standard way, so we omit the technicalities and only

recall below (see [1], [12], [21]) the definition of the global attractor followed by the

statement of the main result, proved in [25].

Definition 2.1. A compact subset A of a Banach space E is called a global

attractor for a semigroup S(t) : E → E , if

(1) A is strictly invariant, i.e., S(t)A = A for all t > 0;

(2) for any bounded set B ⊂ E and any neighbourhood O(A) of the set A, there

exists a time T = T (B,O) such that S(t)B ⊂ O(A) for all t > T .

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then the energy so-

lution of problem (1.1) is unique and the solution semigroup S(t) associated with

problem (1.1) in the phase space E possesses a global attractor A which is bounded

in the more regular space E1 := [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω).

R em a r k 2.1. The existence of an exponential attractor bounded in E1 that, in

particular, implies finite fractal dimension of the global attractor A is also verified

in [25].

3. Quintic wave equation: the case of weak damping θ = 0

The extra space-time regularity of energy solutions is based here on the following

nontrivial result concerning Strichartz type estimates for the linear wave equation in

a bounded domain, see [3], [4].
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Lemma 3.1. Let ξ0 ∈ E , G(t) ∈ L1([0, T ];L2(Ω)) and let v solve the linear

equation

(3.1) ∂2
t v −∆v = G(t), v|∂Ω = 0, ξv|t=0 = ξ0.

Then v ∈ L4([0, T ];L12(Ω)) and the following estimate holds:

(3.2) ‖v‖L4([0,T ];L12(Ω)) 6 CT (‖ξ0‖E + ‖G‖L1([0,T ];L2(Ω))),

where C may depend on T but it is independent of ξ0 and G.

However, in contrast to the previous case, we do not know whether or not all

energy solutions possess this extra regularity. For this reason, we restrict ourselves

to considering only such energy solutions u(t) of (1.1) which belong to the space

L4(0, T ;L12(Ω)). We will refer in the sequel to such solutions as Shatah-Struwe

solutions of problem (1.1).

The next theorem which gives the global well-posedness of problem (1.1) in the

class of Shatah-Struwe solutions can be proved with help of the so-called Pohozhaev-

Morawetz identity and the above mentioned Strichartz estimate, see [4].

Theorem 3.1. Let θ = 0, g ∈ L2(Ω) and let the nonlinearity f satisfy (1.2) with

q = 4 as well as the following extra assumptions

1. |f ′′(u)| 6 C(1 + |u|3),

2. f(u)u− 4F (u) > −C.

Then, for any (u0, u
′
0) ∈ E , there exists a unique Shatah-Struwe solution u(t) of

problem (1.1) defined for all t > 0.

Thus, the (Shatah-Struwe) solution semigroup S(t) : E → E associated with prob-

lem (1.1) is well-defined. Moreover, these Shatah-Struwe solutions have a number

of good properties: they satisfy the energy identity (1.3) and the dissipative esti-

mate (1.6); they are more regular, say, ξu(t) ∈ E1 for all t if ξu(0) ∈ E1, etc.

However, in contrast to the previous case, we do not know whether or not the

analogue of estimate (2.1) holds for the Strichartz norm ‖u‖L4(t,t+1;L12(Ω)), and the

previous theorem actually does not give any control of this norm as t → ∞. Thus,

the control of the Strichartz norm may be a priori lost when passing to the limit

t → ∞ and even if we initially consider the Shatah-Struwe solutions only, the other

types of energy solutions (for which we have neither the energy equality nor the

uniqueness theorem) may a priori appear on the attractor.

For this reason, despite the fact that the considered Shatah-Struwe solutions are

unique, as an intermediate step, we need to exploit the existence of a weak attractor

in the class of energy solutions where the uniqueness theorem is not known. Namely,

662



as proved in [27], if we restrict ourselves to considering the energy solutions which

can be obtained as limits of Galerkin approximations only, then the trajectory of the

dynamical system associated with these solutions possesses a trajectory attractor in

the weak-star topology of L∞

loc(R+, E) and (which is almost the same), the multi-

valued semigroup S(t) associated with these solutions (the uniqueness is not known

for that type of solutions) possesses a global attractor Aw in a weak topology of E ,

see also [10] for more details. Moreover, as shown in [27] (see also [14], [15]), the

solutions on the attractor Aw possess the following backward regularity.

Theorem 3.2. Under the above assumptions, the global attractorAw is generated

by complete energy solutions u(t), t ∈ R which are bounded in E for all t ∈ R.

Moreover, for any such solution u there exists T = T (u) such that u(t) ∈ E1 for

t 6 −T and

‖u‖L∞(−∞,−T ;E1) 6 C,

where the constant C is independent of u.

Combining the result of Theorem 3.1 with the above backward regularity is enough

to verify the analogue of Theorem 2.2 for that case as well.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold. Then the (Shatah-

Struwe) solution semigroup S(t) associated with problem (1.1) possesses a global

attractor A in E which is a bounded set in E1.

Indeed, combining the aforementioned backward regularity, the fact that for any

initial data ξ0 ∈ E1, the corresponding Shatah-Struwe solution remains in E1, and

the proper version of weak-strong uniqueness, we establish that the weak attractor

satisfies Aw ⊂ E1, see [17] for more details. Thus, the energy equality holds for

any solution belonging to this attractor. The asymptotic compactness of the so-

lution semigroup in E can be then established using the so-called energy method,

see [2], [22]. Finally, the additional regularity of the global attractor A is based

on this asymptotic compactness by using more or less standard bootstrapping argu-

ments, see [17].

R em a r k 3.1. In the subcritical case q < 4, the following analogue of the dissi-

pative estimate for the Strichartz norm holds:

(3.3) ‖u‖L4([t,t+1];L12(Ω)) 6 Q(‖ξ0‖E)e
−αt +Q(‖g‖),

where the monotone function Q is independent of t and u and the attractor theory

in this case is essentially simpler, see [17].

663



References

[1] A.V.Babin, M. I.Vishik: Attractors of Evolution Equations. Studies in Mathematics
and Its Applications 25. North-Holland, Amsterdam, 1992, translated and revised from
the 1989 Russian original.

[2] J.M.Ball: Global attractors for damped semilinear wave equations. Partial differential
equations and applications. Discrete Contin. Dyn. Syst. 10 (2004), 31–52.

[3] M.D.Blair, H. F. Smith, C.D. Sogge: Strichartz estimates for the wave equation on
manifolds with boundary. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009),
1817–1829.

[4] N.Burq, G. Lebeau, F. Planchon: Global existence for energy critical waves in 3-D do-
mains. J. Am. Math. Soc. 21 (2008), 831–845.

[5] A.N.Carvalho, J.W.Cholewa: Attractors for strongly damped wave equations with
critical nonlinearities. Pac. J. Math. 207 (2002), 287–310.

[6] A.N.Carvalho, J.W.Cholewa: Local well posedness for strongly damped wave equations
with critical nonlinearities. Bull. Aust. Math. Soc. 66 (2002), 443–463.

[7] A.N.Carvalho, J.W.Cholewa, T.Dlotko: Strongly damped wave problems: Bootstrap-
ping and regularity of solutions. J. Differ. Equations 244 (2008), 2310–2333.

[8] S.Chen, R.Triggiani: Gevrey class semigroups arising from elastic systems with gentle
dissipation: The case 0 < α < 1/2. Proc. Am. Math. Soc. 110 (1990), 401–415.

[9] S.Chen, R.Triggiani: Proof of extensions of two conjectures on structural damping for
elastic systems. Pac. J. Math. 136 (1989), 15–55.

[10] V.V.Chepyzhov, M. I.Vishik: Attractors for Equations of Mathematical Physics. Ameri-
can Mathematical Society Colloquium Publications 49, American Mathematical Society,
Providence, 2002.

[11] I. Chueshov: Global attractors for a class of Kirchhoff wave models with a structural
nonlinear damping. J. Abstr. Differ. Equ. Appl. (electronic only) 1 (2010), 86–106.

[12] I. Chueshov, I. Lasiecka: Von Karman Evolution Equations. Well-posedness and long
time dynamics. Springer Monographs in Mathematics, Springer, New York, 2010.

[13] E.Feireisl: Asymptotic behaviour and attractors for a semilinear damped wave equation
with supercritical exponent. Proc. R. Soc. Edinb., Sect. A, Math. 125 (1995), 1051–1062.

[14] M.Grasselli, G. Schimperna, A. Segatti, S. Zelik: On the 3D Cahn-Hilliard equation with
inertial term. J. Evol. Equ. 9 (2009), 371–404.

[15] M.Grasselli, G. Schimperna, S. Zelik: On the 2D Cahn-Hilliard equation with inertial
term. Commun. Partial Differ. Equations 34 (2009), 137–170.

[16] M.G.Grillakis: Regularity and asymptotic behaviour of the wave equation with a critical
nonlinearity. Ann. Math. (2) 132 (1990), 485–509.

[17] V.Kalantarov, A. Savostianov, S. Zelik: Attractors for damped quintic wave equations
in bounded domains. http://arxiv.org/abs/1309.6272.

[18] V.Kalantarov, S. Zelik: Finite-dimensional attractors for the quasi-linear strongly-
damped wave equation. J. Differ. Equations 247 (2009), 1120–1155.

[19] L.Kapitanski: Minimal compact global attractor for a damped semilinear wave equation.
Commun. Partial Differ. Equations 20 (1995), 1303–1323.

[20] L.Kapitanski: Global and unique weak solutions of nonlinear wave equations. Math.
Res. Lett. 1 (1994), 211–223.

[21] A.Miranville, S. Zelik: Attractors for dissipative partial differential equations in bounded
and unbounded domains. Handbook of Differential Equations: Evolutionary Equa-
tions IV (C.M.Dafermos et al., eds.). Elsevier/North-Holland, Amsterdam, 2008,
pp. 103–200.

[22] I.Moise, R. Rosa, X.Wang: Attractors for non-compact semigroups via energy equa-
tions. Nonlinearity 11 (1998), 1369–1393.

664



[23] V.Pata, S. Zelik: A remark on the damped wave equation. Commun. Pure Appl. Anal.
5 (2006), 611–616.

[24] V.Pata, S. Zelik: Smooth attractors for strongly damped wave equations. Nonlinearity
19 (2006), 1495–1506.

[25] A.Savostianov, S. Zelik: Smooth attractors for the quintic wave equations with fractional
damping. Asymptotic Anal. 87 (2014), 191–221.

[26] J. Shatah, M. Struwe: Regularity results for nonlinear wave equations. Ann. Math. (2)
138 (1993), 503–518.

[27] S. Zelik: Asymptotic regularity of solutions of singularly perturbed damped wave equa-
tions with supercritical nonlinearities. Discrete Contin. Dyn. Syst. 11 (2004), 351–392.

Authors’ address: Anton Savostianov, Sergey Zelik, University of Surrey, Department
of Mathematics, Guildford, Surrey GU2 7XH, United Kingdom, e-mail: a.savostianov@
surrey.ac.uk, s.zelik@surrey.ac.uk.

665


		webmaster@dml.cz
	2020-07-01T18:53:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




