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Abstract. We deal with an optimal matching problem, that is, we want to transport
two measures to a given place (the target set) where they will match, minimizing the total
transport cost that in our case is given by the sum of two different multiples of the Euclidean
distance that each measure is transported. We show that such a problem has a solution with
an optimal matching measure supported in the target set. This result can be proved by an
approximation procedure using a p-Laplacian system. We prove that any optimal matching
measure for this problem is supported on the boundary of the target set when the two
multiples that affect the Euclidean distances involved in the cost are different. Moreover,
we present simple examples showing uniqueness or non-uniqueness of the optimal measure.
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1. Introduction

We are interested in an optimal matching problem (see [5], [8], [14], and [15]) that

consists in transporting two commodities (say nuts and screws, we assume that we

have the same total number of nuts and screws) to prescribed locations, the target

set (say factories where we assemble the nuts and the screws) in such a way that they

match there (each factory receives the same number of nuts and of screws) and the

total cost of the operation, measured in terms of multiples of the Euclidean distance

that the commodities are transported, is minimized. That is, for one unit of mass of

The first and third authors have been partially supported by the Spanish Ministerio de
Economía y Competitividad and FEDER, project MTM2012-31103. The second author
is partially supported by the Spanish Ministerio de Economía y Competitividad under
grants MTM2010-18128 and MTM2011-27998.
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nuts that is transported from x to z and one unit of mass of screws from y to z, we

pay the cost

A|x− z|+B|y − z|,

where z is a point where we match the unit of nuts with the unit of screws and belongs

to the target set, A, B are positive constants and we denote by |·| the Euclidean

distance. With the occurrence of the multiplicative constants we are taking into

account that the cost of transporting nuts and screws can be different (for example

due to different weights).

This problem, which we describe in mathematical precise terms in Section 2, was

first treated in [12] where the authors prove the following results (which we also

describe more precisely in Section 2):

⊲ This optimal matching problem has a solution, that is, an optimal matching

measure supported on the target set and a pair of optimal transport maps that

send each of the commodities to the optimal matching measure. This solution

can be obtained by two different methods. One can use directly the classical

Monge-Kantorovich’s mass transport theory or one can approximate a pair of

Kantorovich potentials by solutions to a system of PDEs of p-Laplacian type

taking the limit as p → ∞.

⊲ One can always obtain a solution of the optimal matching problem with a match-

ing measure supported on the boundary of the target set.

When one considers the sum of two Euclidean distances as cost (taking both

multiplicative constants equal to one) one can find simple examples, see [12] and

Section 4 in this paper, that show that there are configurations for which there are

optimal measures supported in the interior of the target set. We reproduce these

examples in Section 4. Our main goal here is to show that this is not possible when

we have two different multiplicative constants.

Theorem 1.1. Let A 6= B, then any optimal matching measure is supported on

the boundary of the target set.

For the sum of two Euclidean distances there are examples of non-uniqueness for

the optimal matching measure and also examples of uniqueness, see [12]. Here we

also provide examples that show that, even for two different multiplicative constants,

we may have non-uniqueness of the optimal matching measure, but we also include

examples of uniqueness.

Let us end this introduction with some remarks concerning our bibliography. Op-

timal matching problems for uniformly convex cost were analysed in [1], [3]–[5], [8]

and have implications in the economic theory (hedonic markets and equilibria), see

[5]–[9] and references therein. However, when one considers the Euclidean distance
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as cost new difficulties appear since we deal with a non-uniformly convex cost. The

method to solve the problem by taking limit as p → ∞ in a system of PDE’s of p-

Laplacian type relies on a procedure of solving mass transport problems introduced

by Evans and Gangbo in [10] which proves to be quite fruitful, see [2], [11], [13].

We have to remark that the limit as p → ∞ in the system requires some care since

the system is nontrivially coupled and therefore the estimates for one component are

related to the others, and we believe that it is interesting in its own right, see [12].

2. A description of the optimal matching problem and

its p-Laplacian approximation

To write the optimal matching problem in mathematical terms, we fix two non-

negative compactly supported functions f+, f− ∈ L∞, with supports X+, X−, re-

spectively, satisfying the mass balance condition M0 :=
∫
X+

f+ =
∫
X−

f−. We also

consider a compact set D (the target set). Then we take a large bounded domain Ω

such that it contains all the relevant sets, the supports of f+ and f−, X+, X− and

the target set D. For simplicity we will assume that Ω is a convex C1,1 bounded

open set. We also assume that

X+ ∩X− = ∅, (X+ ∪X−) ∩D = ∅ and (X+ ∪X−) ∪D ⊂⊂ Ω.

Whenever T is a map from a measure space (X,µ) to an arbitrary space Y , we denote

by T#µ the pushforward measure of µ by T . Explicitly, (T#µ)[B] = µ[T−1(B)] (the

measurable sets for T#µ are exactly the ones such that T−1(B) is µ-measurable).

When we write T#f = g, where f and g are nonnegative functions, this means that

the measure having density f is pushed-forward to the measure having density g.

For Borel functions T± : Ω → Ω such that T+#f+ = T−#f−, we consider the

functional

FA,B(T+, T−) :=

∫

Ω

A|x− T+(x)|f
+(x) dx+

∫

Ω

B|y − T−(y)|f
−(y) dy,

where, as in the introduction, |·| denotes the Euclidean norm and A, B are positive

constants.

The optimal matching problem can be stated as the minimization problem

(2.1) min
(T+,T−)∈AD(f+,f−)

FA,B(T+, T−),

where AD(f+, f−) := {(T+, T−) : T±(X±) ⊂ D, T+#f+ = T−#f−}.
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If (T ∗
+, T

∗
−) ∈ AD(f+, f−) is a minimizer of the optimal matching problem (2.1),

we shall call the measure µ∗ := T ∗
+#f+ = T ∗

−#f− a matching measure to the

problem. Note that there is no reason why a matching measure should be absolutely

continuous with respect to the Lebesgue measure. In fact we shall see examples of

matching measures that are singular (see Example 4.1).

Let us denote by M(D,M0) := {µ ∈ M+(Ω): supp(µ) ⊂ D, µ(Ω) = M0} the

set of all possible matching measures. Given µ ∈ M(D,M0), we denote A(f±, µ) :=

{T± : T±#f± = µ} and we have that

(2.2) inf
(T+,T−)∈AD(f+,f−)

FA,B(T+, T−) = inf
µ∈M(D,M0)

inf
(T+,T−)∈A(f+,f−,µ)

FA,B(T+, T−)

= inf
µ∈M(D,M0)

{AW1(f
+, µ) +BW1(f

−, µ)}

where A(f+, f−, µ) := {(T+, T−) : T+ ∈ A(f+, µ), T− ∈ A(f−, µ)}, and where

W1(·, ·) denotes the 1-Wasserstein distance (its definition is given in [16] (see also [17])

as the value of the optimal mass transport problem with the Euclidean distance as the

cost between its two arguments). Indeed, observe that given (T+, T−) ∈ AD(f+, f−),

if we define µ := T+#f+, we have that µ ∈ M(D,M0) and (T+, T−) ∈ A(f+, f−, µ).

Note that on the right-hand side of (2.2) we are considering all possible measures

supported in D with total mass M0 and then we minimize the total transport cost.

This is probably the most natural way of looking at the optimal matching problem

and it is equivalent to our previous formulation. We have the following existence

theorem, for the proof we refer to [12].

Theorem 2.1. The optimal matching problem (2.1) has a solution, that is, there

exist Borel functions (T ∗
+, T

∗
−) ∈ AD(f+, f−) such that

FA,B(T
∗
+, T

∗
−) = inf

(T+,T−)∈AD(f+,f−)
FA,B(T+, T−).

Moreover, we can obtain a solution (T̃+, T̃−) of the optimal matching problem (2.1)

with a matching measure supported on the boundary of D.

The limit as p → ∞ in a p-Laplacian system. In this section we show that

we can follow the ideas of Evans-Gangbo [10], to get the matching measure and

Kantorovich potentials for the transports involved at the same time; we refer to [12]

for details. Let us begin with the following statement:

WD
f± := inf

(T+,T−)∈AD(f+,f−)
FA,B(T+, T−) = sup

v,w∈W 1,∞(Ω)
|∇v|∞6A, |∇w|∞6B

v6w in D

∫

Ω

vf+ − wf−.
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This result is the starting point of our variational approach to the problem via

a p-Laplacian system in this section. Take p > N in this section and recall that, for

simplicity, we assumed that Ω is a convex C1,1 bounded open set. Let us consider

the variational problem

(2.3) min
(v,w)∈W 1,p(Ω)×W 1,p(Ω)

v6w in D

1

p

∫

Ω

1

Ap
|Dv|p +

1

p

∫

Ω

1

Bp
|Dw|p −

∫

Ω

vf+ +

∫

Ω

wf−.

Standard tools from variational analysis show that there exists a minimizer (vp, wp)

of (2.3). In addition, any two minimizers differ by a constant, that is, if (vp, wp) and

(ṽp, w̃p) are minimizers then there exists a constant c with vp = ṽp+c andwp = w̃p+c.

We can pass to the limit as p → ∞ in the sequence of minimizer functions. In

fact, up to a subsequence,

lim
p→∞

(vp, wp) = (v∞, w∞) uniformly,

where (v∞, w∞) is a solution of the variational problem

(2.4) max
v,w∈W 1,∞(Ω)

|∇v|∞6A, |∇w|∞6B
v6w in D

∫

Ω

vf+ − wf−.

Note that the constraint |∇v|∞ 6 A, |∇w|∞ 6 B is equivalent to

|v(x)− v(y)| 6 A|x− y|, |w(x) − w(y)| 6 B|x− y|.

The limit (v∞, w∞) gives a pair of Kantorovich potentials for our optimal matching

problem. But in fact this limit procedure gives much more since it allows us to

identify the optimal matching measure (see [12]).

Concerning the PDE that is solved in this limit procedure we have: Let (vp, wp)

be minimizer functions of problem (2.3). Then there exists a positive Radon measure

hp of mass M0 such that






−div
( 1

Ap
|∇vp|p−2∇vp

)
= f+ − hp in Ω,

1

Ap
|∇vp|p−2∇vp · η = 0 on ∂Ω,






−div
( 1

Bp
|∇wp|p−2∇wp

)
= hp − f− in Ω,

1

Bp
|∇wp|p−2∇wp · η = 0 on ∂Ω.
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This positive measure hp is supported on {x ∈ D : vp(x) = wp(x)}. Here η denotes

the normal unit exterior vector to the boundary of Ω.

Moreover, we have that up to a subsequence,

hp ⇀ h∞ as p → ∞, weakly∗ as measures,

with h∞ a positive Radon measure of mass M0 supported on {x ∈ D : v∞(x) =

w∞(x)}. In addition, (v∞, w∞) satisfies

Av∞ is a Kantorovich potential for the transport of f
+ to h∞,

Bw∞ is a Kantorovich potential for the transport of h∞ to f
−,

with respect to the Euclidean distance. A Kantorovich potential for the mass trans-

port of f+ to h∞ is a 1-Lipschitz function w such that
∫
Ω
wf+ −

∫
Ω
wdh∞ =

W1(f
+, h∞).

We conclude that the measure h∞ is an optimal matching measure for the optimal

matching problem (2.1).

3. Localizing the support of optimal matching measures

in the nonsymmetric case A 6= B

Let us show that, in any space dimension, and for any configuration of the data

f+, f− and D, any possible optimal measure is supported on ∂D when A 6= B.

This has to be contrasted with the case in which A = B where we can have optimal

measures supported in the interior of D (see Example 4.1 in the next section).

P r o o f of Theorem 1.1. We argue by contradiction. Hence, assume that there

exists an optimal measure µ0 with a nontrivial part of it supported in D◦, the

interior of D. Let (T ∗
+, T

∗
−) be the solution of the optimal matching problem (2.1)

obtained in Theorem 2.1. Then, since T ∗
±#f± = µ0, there exists z0 a point in D

◦ in

the support of µ0, x0 ∈ X+ a Lebesgue point of T
∗
+ and y0 ∈ X− a Lebesgue point

of T ∗
−, such that T

∗
+(x0) = z0 and T ∗

−(y0) = z0.

Now, computing the derivative of

G(z) = A|x0 − z|+B|y0 − z|

with respect to z at z0 we get

DG(z0) = −A
x0 − z0
|x0 − z0|

−B
y0 − z0
|y0 − z0|

.
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Since A 6= B and (x0 − z0)/|x0 − z0| and (y0 − z0)/|y0 − z0| are unitary vectors, we

conclude that

(3.1) DG(z0) 6= 0.

Therefore, the main idea of the proof is that we can move some mass of µ near z0
so that the cost diminishes. Note that since we have z0 ∈ D◦, such change of moving

mass to a nearby point is possible since we remain in D. So, let us fix δ > 0 such

that Bδ(z0) ⊂ D.

By (3.1) and a continuity argument, there exists a positive number η and a point

z1 ∈ Bδ(z0) such that

A|x0 − z1|+B|y0 − z1| < A|x0 − z0|+B|y0 − z0| − η.

Now, using again a continuity argument we can find a small r0 > 0 such that

A|x− z1|+B|y − z1| < A|x− z0|+B|y − z0| −
η

2

for every x ∈ Br0(x0) and every y ∈ Br0(y0). Therefore, we can choose r 6 min{r0, δ}

satisfying

(3.2) r <
η

2(A+B)

and such that

(3.3) A|x− z1|+B|y − z1| < A|x− z0|+B|y − z0| −
η

2

for every x ∈ Br(x0) and every y ∈ Br(y0).

Since x0 and y0 are Lebesgue points of T
∗
+ and T ∗

−, respectively, we have

lim
δ→0

1

|Bδ(x0)|

∫

Bδ(x0)

|T ∗
+(x) − z0| dx = 0, lim

δ→0

1

|Bδ(y0)|

∫

Bδ(y0)

|T ∗
−(x) − z0| dx = 0.

Therefore, inside the two balls Br(x0) and Br(y0) we can find two sets E1 and E2,

respectively, of positive measure, such that

(3.4) T ∗
+(E1) ⊂ Br(z0) and T ∗

−(E2) ⊂ Br(z0).

Also we can assume that

(3.5)

∫

E1

f+(x) dx =

∫

E2

f−(y) dy = k > 0.
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Note that, thanks to the mass balance condition (3.5), we have an optimal trans-

port map x = S(y) that sends f−χE2
to f+χE1

. In particular, S satisfies

∫

E1

H(x)f+(x) dx =

∫

E2

H(S(y))f−(y) dy

for every continuous function H . Hence,

∫

E1

A|x− zi|f
+(x) dx =

∫

E2

A|S(y)− zi|f
−(y) dy, i = 0, 1.

Using this together with (3.3) we obtain that

(3.6)

∫

E1

A|x − z1|f
+(x) dx+

∫

E2

B|y − z1|f
−(y) dy

=

∫

E2

(A|S(y)− z1|+B|y − z1|)f
−(y) dy

6

∫

E2

(A|S(y)− z0|+B|y − z0|)f
−(y) dy − k

η

2

=

∫

E1

A|x − z0|f
+(x) dx+

∫

E2

B|y − z0|f
−(y) dy − k

η

2
.

Now let us define

T̃+(x) =

{
T ∗
+(x), x ∈ X+ \ E1,

z1, x ∈ E1,
and T̃−(y) =

{
T ∗
−(y), y ∈ X− \ E2,

z1, y ∈ E2.

This pair corresponds to the transport of f+ and f− to the measure (M0−k)µ+kδz1
that is supported in D.

Using (3.4), (3.6) and (3.2), for such choice of the transport maps we have

∫

Ω

A|x− T̃+(x)|f
+(x) dx+

∫

Ω

B|y − T̃−(y)|f
−(y) dy

=

∫

X+\E1

A|x− T ∗
+(x)|f

+(x) dx+

∫

X−\E2

B|y − T ∗
−(y)|f

−(y) dy

+

∫

E1

A|x− z1|f
+(x) dx+

∫

E2

B|y − z1|f
−(y) dy

6

∫

X+\E1

A|x− T ∗
+(x)|f

+(x) dx+

∫

X−\E2

B|y − T ∗
−(y)|f

−(y) dy

+

∫

E1

A|x− z0|f
+(x) dx+

∫

E2

B|y − z0|f
−(y) dy − k

η

2
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=

∫

X+\E1

A|x− T ∗
+(x)|f

+(x) dx+

∫

X−\E2

B|y − T ∗
−(y)|f

−(y) dy

+

∫

E1

A|x− T ∗
+(x) + T ∗

+(x)− z0|f
+(x) dx

+

∫

E2

B|y − T ∗
−(y) + T ∗

−(y)− z0|f
−(y) dy − k

η

2

6

∫

X+

A|x − T ∗
+(x)|f

+(x) dx+

∫

X−

B|y − T ∗
−(y)|f

−(y) dy

+

∫

E1

A|T ∗
+(x)− z0|f

+(x) dx+

∫

E2

B|T ∗
−(y)− z0|f

−(y) dy − k
η

2

6

∫

X+

A|x − T ∗
+(x)|f

+(x) dx+

∫

X−

B|y − T ∗
−(y)|f

−(y) dy

+

∫

E1

Arf+(x) dx+

∫

E2

Brf−(y) dy − k
η

2

=

∫

X+

A|x − T ∗
+(x)|f

+(x) dx+

∫

X−

B|y − T ∗
−(y)|f

−(y) dy

+Ark +Brk − k
η

2

<

∫

X+

A|x − T ∗
+(x)|f

+(x) dx+

∫

X−

B|y − T ∗
−(y)|f

−(y) dy,

which is a contradiction with the fact that µ is an optimal matching measure. �

R em a r k 3.1. A possible strategy to show that there is an optimal matching

measure supported on ∂D in the case A = B can be to take a sequence An 6= B

such that An → A = B and consider the limit of the corresponding optimal matching

measures µn (which are supported on ∂Ω). This limit would give an optimal measure

for A = B supported on ∂D. In [12] the fact that there is always (regardless of

whether A = B or not) an optimal measure supported on ∂D was proved directly

using techniques from optimal mass transport theory.

To end this section, we observe that, as was done for the case A = B in [12] (we

refer to that reference for the proof) we can characterize when the optimal matching

measure is a delta in the general case.

Theorem 3.1. Assume that there is a point z0 ∈ D such that for any pair of

points x ∈ X+ and y ∈ X− we have

(3.7) min
z∈D

{A|x− z|+B|y − z|} = A|x− z0|+B|y − z0|.

Then the measure M0δz0 is an optimal matching measure.
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Conversely, if M0δz0 is an optimal matching measure, then for any pair of points

x ∈ X+ and y ∈ X− we have (3.7).

It is easy to see that, for D convex, condition (3.7) is equivalent to

〈
A

x− z0
|x− z0|

+B
y − x0

|y − z0|
, z − z0

〉
6 0 for all x ∈ X+, y ∈ X− and z ∈ D

(note that z0 must belong to ∂D when A 6= B).

4. Examples

Let us now show the uniqueness and non-uniqueness of the optimal matching

measure.

E x am p l e 4.1. Consider the optimal matching problem for the data: Ω = ]−4, 4[,

f+ = bχ]−3,−2[+(1− b)χ]2,3[, f
− = χ]−2,−1[ and D = [0, 1], where 0 6 b 6 1 is fixed.

⊲ A symmetric cost. First, let us describe in detail what happens when A = B

(we can assume that A = B = 1). In this case any matching measure in D is of the

form µ = bδ0 + ν for any positive Radon measure ν of mass 1− b, supported on D.

Indeed, it is easy to see that for

T ∗
+(x) =

{
0 if − 3 < x < −2,

t∗+(x) in the other case,

where t∗+ is any optimal transport map transporting (1− b)χ]2,3[ to ν, and

T ∗
−(x) =

{
0 if − 2 < x < −2 + b,

t∗−(x) in the other case,

where t∗− is any optimal transport map transporting χ]−2+b,−1[ to ν, we have

F1,1(T
∗
+, T

∗
−) = 4.

Also, for

v∗(x) :=

{
−x if x 6 0,

x if x > 0,

and

w∗(x) = x,
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we have ∫

Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx = 4.

Then our assertion follows from

∫

Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx 6 sup
v,w∈W 1,∞(Ω)
|v′|∞, |w′|∞61

v6w in D

∫

Ω

vf+ − wf−

= inf
(T+,T−)∈AD(f+,f−)

F1,1(T+, T−) 6 F1,1(T
∗
+, T

∗
−).

We distinguish three cases:

1. If b = 1, δ0 is the unique matching measure.

2. If 0 < b < 1, there are infinitely many matching measures but all of them with

singular part.

3. If b = 0, we have that any positive Radon measure of mass 1 supported on D

is a matching measure. Moreover, only in this case, the cost of the matching

problem is the same as the cost of the classical transport problem of f+ to f−.

So we cannot expect uniqueness of the matching measure in general, but it may

hold for some special configurations of the masses and the target set. Uniqueness

of the matching measure holds in one dimension if and only if the target set D is

located to the left or to the right from the supports of f+ and f−, while if there is

some mass of f+ to the left of D and some mass of f− to the right (or vice versa)

then there are infinitely many optimal matching measures.

Moreover, in one dimension there is necessarily a singular part in an optimal

measure if the masses f+ and f− have some part of both of them to the left or to

the right of D, while if f+ is completely on the right and f− completely on the left

of D then there are optimal matching measures without singular part (note that

these measures without singular part are not supported on ∂D).

Now, let us come back to the symmetric situation given in the case b = 0. In

this case we can also compute optimal pairs (vp, wp) (we leave this to the reader,

details can be found in [12]). For this sequence (vp, wp) we obtain that the limit

of the measures hp is the matching measure h∞ = δ0/2 + δ1/2. Remark that this

measure is supported on ∂D. Note that (vp, wp) is unique up to a constant, that

is, any other minimizer is of the form (vp + c, wp + c), c constant. Therefore, this

example shows that not every possible optimal matching measure can be obtained

using this approximation procedure.

⊲ A non symmetric cost. Now consider A 6= B, for example, we take A = 1 and

B > 1. Then the unique matching measure (for any b) is µ = δ0.
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Indeed, in this case, the optimal transport maps are easy to find. We have

T ∗
+(x) = 0 and T ∗

−(x) = 0.

To compute the total cost with these two maps we have to compute

∫

Ω

|x− T ∗
+(x)|f

+(x) dx = b

∫ −2

−3

−xdx+ (1− b)

∫ 3

2

xdx =
5

2

and

B

∫

Ω

|y − T ∗
−(y)|f

−(y) dy = B

∫ −1

−2

−y dy = B
3

2
.

Hence, for these T ∗
± we have

F1,B(T
∗
+, T

∗
−) =

5

2
+B

3

2
.

Now, let us compute a pair of potentials. In this case, we need to impose |v′|∞ 6 1

and |w′|∞ 6 B. Let us take

v∗(x) :=

{
−x if x 6 0,

x if x > 0,

and

w∗(x) = Bx.

With these two potentials we get

∫

Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx =
5

2
+B

3

2
.

Then our assertion follows again from the duality argument:

∫

Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx 6 sup
v,w∈W 1,∞(Ω)

|v′|∞61, |w′|∞6B
v6w in D

∫

Ω

vf+ − wf−

= inf
(T+,T−)∈AD(f+,f−)

F1,B(T+, T−) 6 F1,B(T
∗
+, T

∗
−).

Hence in this case we have uniqueness of the matching measure regardless of the

value of b. In fact, if b 6= 0 it is clear that the part of f+ that is on the left of 0

must be taken there and the rest of it also goes to zero since, as B > A, it is more
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expensive to take mass to the right from zero. When b = 0 the same argument

applies.

In the general case, uniqueness of the optimal matching measure holds in one

dimension for A 6= B for any possible configuration of f+ and f− when the target

set is an interval, [a, b]. To see this fact just argue as in the proof of Theorem 1.1 in

the previous section using the fact that the function

G(z) = A|x− z|+B|y − z|

has a unique minimum in [a, b] that is given by b for x, y > b, by a for x, y 6 a, by b

if x 6 a, y > b and by a if y 6 a, x > b (to describe the location of the minimum we

assumed that A < B).

Therefore, to obtain a non-uniqueness example with A 6= B we have to go up to

dimension two.

E x am p l e 4.2. Let us take in R
2 two measures

f+ = δ(0,0) and f− = δ(1,0),

and consider A > B = 1. Now we will choose a target set D for which there are

infinitely many optimal matching measures. Let 1 < k < A and consider the curve

Γ = {z : A|z|+ |z − (1, 0)| = k}.

On the x-axis the unique point on this curve is given by
(
(k − 1)/(A− 1), 0

)
. Now we

consider the equation G(z) = A|z|+ |z− (1, 0)| = k and compute the derivative with

respect to z1 at the point ((k − 1)/(A− 1), 0) obtaining Gz1(((k − 1)/(A− 1), 0)) =

A − 1 6= 0. Therefore, by the Implicit Function Theorem we have that the curve

Γ passes trough ((k − 1)/(A− 1), 0) and near this point is a smooth arc that we

call γ. With this in mind we choose D to be any smooth small domain such that

D ⊂ {z : A|z| + |z − (1, 0)| > k} and the boundary of D contains a piece of the

smooth arc γ of Γ near ((k − 1)/(A− 1), 0). Then it is easy to check that for any

point z̃ on ∂D ∩ γ the measure δz̃ is an optimal matching measure for our problem.
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