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HEAPS AND UNPOINTED STABLE HOMOTOPY THEORY

Lukáš Vokřínek

Abstract. In this paper, we show how certain “stability phenomena” in
unpointed model categories provide the sets of homotopy classes with a
canonical structure of an abelian heap, i.e. an abelian group without a choice
of a zero. In contrast with the classical situation of stable (pointed) model
categories, these sets can be empty.

1. Introduction

In stable homotopy theory, the set of homotopy classes of maps admits a
structure of an abelian group. In this paper, we study the corresponding situation
for “unpointed stable homotopy theory”. It turns out to be quite similar with
one exception: the zero of the abelian group structure is non-canonical, i.e. the
homotopy classes form an abelian heap. However, instead of defining and dealing
with unpointed spectra, we study the stability directly in terms of spaces through
an unpointed version of the Freudenthal suspension theorem. This theorem may
seem somewhat obvious for spaces themselves but turns out not to be all that
trivial for spaces equipped with a further structure, such as an action of a group G
or a map to a fixed base space B, or for objects of a general model category.

This paper grew out of an attempt to understand the appearance of non-canonical
abelian group structures on sets of equivariant fibrewise homotopy classes of
maps under certain stability restrictions (dimension vs. connectivity as in the
Freudenthal theorem), utilized in [3] for the algorithmic computation of these sets.
A complementary result [2] shows that unstably, even the existence of a map is
undecidable and thus, the abelian group structures are essential for algorithmic
computations.

In [9], it was realized that the non-canonical abelian group structure could be
replaced by a canonical abelian heap structure that, in fact, comes from an “up to
homotopy” abelian heap structure on the stable part of every fibrewise space. This
structure was constructed from the Moore–Postnikov tower that is rather specific
to spaces. The present paper describes a more conceptual approach, phrased in
terms of model categories.
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The non-canonicality of the group structure comes from the absence of basepoints
– classically, the constant map onto the basepoint serves as the zero element of this
group, while in [3], basepoints do not exist in general, e.g. for spaces equipped with
a free action of a fixed group G or spaces over a fixed base space B that do not
admit any section. In such situations, there is no canonical choice of a zero element
and the best that one could hope for is a structure of an abelian heap that, in
addition, could also be empty.1

We are ready to state the main result of this paper. It uses the notions of
a d-connected object and an n-dimensional object that will only be explained
later, but which in many cases, most notably those mentioned above, have a
straightforward interpretation. Heaps are defined formally after the statement of
the theorem – they are essentially groups without a choice of a zero.

Theorem 1.1. Let M be a simplicial model category. Then the set [X,Y ] of
homotopy classes of maps from an n-dimensional cofibrant object X to a d-connected
fibrant object Y with n ≤ 2d admits a canonical structure of a (possibly empty)
abelian heap.

When [X,Y ] is non-empty, it is possible to make [X,Y ] into an abelian group:
this amounts to picking a zero element 0 ∈ [X,Y ]. However, such a choice is
non-canonical and thus, there is in fact a whole family of abelian group structures
on [X,Y ], one for each homotopy class of maps X → Y . On the other hand, the
abelian heap structure is completely canonical.

In the last section of the paper, we outline a construction of a category of finite
spectra in the spirit of Spanier and Whitehead.

Heaps. Here we define heaps, discuss their relationship to groups and give an
Eckman–Hilton argument; this covers all that is needed in the paper. For further
information, we suggest either [7] or [1]. A Mal’cev operation on a set S is a ternary
operation

t : S × S × S → S

satisfying the following two Mal’cev conditions:

t(x, x, y) = y, t(x, y, y) = x.

It is said to be

– asssociative if t(x, r, t(y, s, z)) = t(t(x, r, y), s, z);
– commutative if t(x, r, y) = t(y, r, x).

A set equipped with an associative Mal’cev operation is called a heap. It is said
to be an abelian heap if in addition, the operation is commutative. We remark
that traditionally, heaps are assumed to be non-empty. Since it is possible to have
[X,Y ] = ∅ in Theorem 1.1, it will be more convenient to drop this convention.

1The set of G-equivariant homotopy classes of maps ∗ → Y is empty when Y has no fixed-point,
e.g. when Y = EG. The set of homotopy classes over B of maps B → Y is empty when Y admits
no section.
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The relation of heaps and groups works as follows. Every group becomes a heap
if the Mal’cev operation is defined as t(x, r, y) = x− r + y. On the other hand, by
fixing an element 0 ∈ S of a heap S, we may define the addition and the inverse

x+ y = t(x, 0, y), −x = t(0, x, 0) .
It is simple to verify that this makes S into a group with neutral element 0. In
both passages, commutativity of heaps corresponds exactly to the commutativity
of groups.

Finally, we will need an Eckman–Hilton argument for heaps. If t0, t1 are two
heap operations on the same set S such that t1 is a heap homomorphism with
respect to t0 (the structures distribute over each other) then

t1(x, r, y) = t1(t0(x, r, r), t0(r, r, r), t0(r, r, y))
= t0(t1(x, r, r), t1(r, r, r), t1(r, r, y)) = t0(x, r, y)

and also
t1(x, r, y) = t1(t0(r, r, x), t0(r, r, r), t0(y, r, r))

= t0(t1(r, r, y), t1(r, r, r), t1(x, r, r)) = t0(y, r, x).
That is, the two structures are equal and commutative.

2. Suspensions and loop spaces in unpointed model categories

The proof of Theorem 1.1 follows from abstract versions of theorems of Freuden-
thal and Whitehead. For the Freudenthal theorem, we need to introduce suspsen-
sions and loop spaces or rather their unpointed versions. To get some intuition, we
will describe these constructions for unpointed spaces. Here the suspension is the
usual unreduced suspension, thought of, however, as a space equipped with two
basepoints. The loop space of a space equipped with two basepoints is the space
of paths from the first basepoint to the second. In this paper, loop spaces will be
dealt with in this manner. We will now proceed with formal definitions.

We work in a simplicial model category M with the enriched hom-set denoted
by map(X,Y ), tensor by K ⊗X and cotensor by Y K . Examples that we have in
mind are G-spaces over a fixed G-space B, or diagrams of such, see Section 4. We
denote by I the simplicial set • •oo //• formed by two standard 1-simplices glued
along their initial vertices, and by ∂I its obvious “boundary” composed of the two
terminal vertices. Further, we denote by II0 the cofibrant fibrant replacement of
the terminal object. The standard references for simplicial sets, model categories
and homotopy colimits are [4, 5]. We use the standard Bousfield–Kan simplicial
models for homotopy (co)limits.

We will now define a Quillen adjunction Σ a Ω composed of the suspension and
loop space functors2

Σ: M/II0 // II0 t II0/M :Ωoo

2One may also use M/II0 × II0 instead of M/II0 (later replacing equalizer–cokernel pair by
pullback–pushout), thus producing a more symmetric adjunction. However, the non-symmetric
version is easier to generalize to higher suspensions – these will be needed later.
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where M/II0 is the slice category of objects over II0 while II0 t II0/M is the slice
category of objects under II0 t II0. The functor Σ is defined on p : X → II0 as a
homotopy pushout

X
p

//

p

��

II0

j

��

II0
i

// ΣX
h

with the two components i, j of the universal cone making ΣX into an object under
II0 t II0. In other words, the maps i, j form the homotopy cokernel pair of p. The
loop space functor is defined on [i, j] : II0 t II0 −→ Y as the homotopy equalizer of
i and j. The Bousfield–Kan models for homotopy (co)limits translate these into
the following pushout/pullback squares:

∂I ⊗X
id⊗p

//

incl
��

∂I ⊗ II0 ∼= II0 t II0

[i,j]
��

ΩY //

p

��

Y I

res
��

I ⊗X // ΣX II0
(i,j)

// Y ∂I

From this restatement, it follows rather easily that Σ a Ω is a Quillen adjunction.
Since the unique map II0 → 1 to the terminal object is a weak equivalence

between fibrant objects, it is easy to see that there is a Quillen equivalence
M/II0 'QM. Thus, one may think of Σ as being defined onM while Ω is defined
on objects equipped with a “pair of basepoints” (and ΩY is then the space of paths
from the first basepoint to the second).

For a cofibrant object Y , we consider the derived unit ηY : Y → Ω(ΣY )fib, where
the superscript “fib” denotes the fibrant replacement of ΣY . To state an abstract
version of a Freudenthal suspension theorem, we need a notion of a d-equivalence.

Abstract theorems of Freudenthal and Whitehead. We say that a cofibrant
object D ∈M is excisive if the right derived functor of map(D,−) preserves homo-
topy pushouts in the following sense: when Y : S →M is a diagram consisting of
fibrant objects, indexed by the span category S = • •oo //• , then the composition

hocolimS map(D,Y−) −→ map(D,hocolimS Y ) −→ map(D, (hocolimS Y )fib)
is a weak equivalence.

Let us fix a collection D ⊆Mcof of cofibrant excisive objects.
• We say that Y is d-connected if for each D ∈ D, map(D,Y fib) is d-connected.
• We say that a map f : Y → Z is a d-equivalence if for each D ∈ D, the map
f∗ : map(D,Y fib)→ map(D,Zfib) is a d-equivalence of simplicial sets.

Theorem 2.1 (generalized Freudenthal). Let Y be a d-connected cofibrant object.
Then the canonical map ηY : Y → Ω(ΣY )fib is a (2d+ 1)-equivalence.

Let In denote the following collection of maps:
In = {∂∆k ⊗D → ∆k ⊗D | k ≤ n, D ∈ D} .
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We say that X has dimension at most n if the unique map 0→ X from the initial
object is an In-cell complex (i.e. it is obtained from In by pushouts and transfinite
compositions); we write dimX ≤ n. More generally, if A→ X is an In-cell complex,
we write dimAX ≤ n.
Remark. It is also possible to add to In all trivial cofibrations – this does not change the homotopy
theoretic nature of In-cell complexes.

Theorem 2.2 (generalized Whitehead). Let X, Y , Z be objects ofM and f : Y →
Z a d-equivalence. If dimX ≤ d, then the induced map

f∗ : [X,Y ]→ [X,Z]

is surjective. If dimX < d, the induced map is a bijection.

The usefullness of the above theorems is limited by the existence of a class D of
excisive objects for which the resulting notions of connectivity and dimension are
interesting. Examples of such classes are provided in Section 4. We continue with
the proof of Theorem 1.1 assuming Theorems 2.1 and 2.2 – these are proved in
Section 3.

Proof of Theorem 1.1. We will denote by [ , ]A the set of homotopy classes in
A/M, i.e. homotopy classes of maps under A, and by [ , ]B the set of homotopy
classes in M/B, i.e. homotopy classes of maps over B.

It follows from the Quillen adjunction Σ a Ω, Theorems 2.1 and 2.2 that for
dimX ≤ 2 connY , we have

[X,Y ] ∼= [X,Y ]II0 ∼= [X,Ω(ΣY )fib]II0 ∼= [ΣX,ΣY ]∂II ,

where we denote ∂II = ∂I ⊗ II0 ∼= II0 t II0. It is rather straightforward to equip
ΣX ∈ ∂II/M with a “weak co-Malcev cooperation” – this comes from such a
structure on I ∈ ∂I/sSet given by the zig-zag

(1) I Ĩ
∼oo // I t∂I I t∂I I

• tar • • tar • tar

•src •

�����
src •

77777
����� •src

(both maps take the copies of I in Ĩ onto the corresponding copies of I in the
target; for the second map, they are the left, the middle and the right copy).
Tensor-multiplying by X and collapsing the source and target copies of X to II0’s,
one gets

ΣX ∼←−− Σ̃X −→ ΣX t∂II ΣX t∂II ΣX .

On homotopy classes, it induces the map t in the following diagram.

[ΣX,ΣY ]∂II × [ΣX,ΣY ]∂II × [ΣX,ΣY ]∂II t

))

∼=

[ΣX t∂II ΣX t∂II ΣX,ΣY ]∂II // [Σ̃X,ΣY ]∂II [ΣX,ΣY ]∂II
∼=oo
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To prove the Mal’cev conditions, consider the homotopy commutative diagram

Σ̃X //

∼

��

htpy

ΣX t∂II ΣX t∂II ΣX

[inleft,inleft,inright]
��

ΣX
inright

// ΣX t∂II ΣX

with the map on the right restricting to the indicated maps on the three copies
of ΣX in the domain – they are the inclusions of ΣX as the left or right copy
in ΣX t∂II ΣX. Easily, this yields in [ΣX,ΣY ]∂II the identity t(x, x, y) = y and
a symmetric diagram gives t(x, y, y) = x. Thus, t is a Mal’cev operation. The
associativity is equally simple to verify.

Higher suspensions and commutativity. In order to get commutativity, we
introduce higher suspensions. Let ∂Ik be the obvious boundary of Ik = I × · · · × I
and denote ∂IIk = ∂Ik ⊗ II0 and IIk = Ik ⊗ II0. We assume that M is right proper
(otherwise, one would have to fibrantly replace IIk and make the implied adjustments
in the constructions below). The higher suspensions are naturally defined on the
category ∂IIk/M/IIk of composable pairs of maps ∂IIk i−−→ X

p−−→ IIk, whose
composition is the canonical inclusion. Then Σ`X is the pushout in

∂I` ⊗X
id⊗p

//

in⊗ id
��

∂I` ⊗ IIk

��

in⊗ id

��

I` ⊗X //

id⊗p

55
Σ`X //_____ I` ⊗ IIk

This makes Σ`X into an object over II`+k. The map i then induces
∂II`+k = Σ`∂IIk → Σ`X,

making Σ` into a functor Σ` : ∂IIk/M/IIk → ∂IIk+`/M/IIk+`. As such, Σ` is a left
Quillen functor. Moreover, it is clear that Σ`0Σ`1 ∼= Σ`0+`1 .

The right properness ofM implies ∂IIk/M/IIk 'Q ∂IIk/M and we may think of
the suspensions as defined on ∂IIk/M. By an obvious generalization of Theorem 2.1,
we obtain for dimX ≤ 2 connY bijections

[X,Y ] ∼= [ΣX,ΣY ]∂II ∼= [Σ2X,Σ2Y ]∂II
2
.

“Squaring” (1) yields the following diagram

∂I2

��

∂Ĩ2h
∼

oo h
∼

//

��

∂I2

��

I2 Ĩ2∼oo //
// I2 t∂I2 I2 t∂I2 I2

with the two parallel arrows denoting two possible ways of folding a square into three
squares – horizontally and vertically. Thus, the diagram takes place in ∂Ĩ2/sSet.
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Denoting ∂ĨI
2

= ∂Ĩ2 ⊗ II0, we obtain two heap structures on [Σ2X,Σ2Y ]∂ĨI
2

that
distribute over each other. Since the Eckman–Hilton argument holds for heaps,
these structures are identical and commutative. Because h is a weak equivalence,
the canonical map

[Σ2X,Σ2Y ]∂II
2 ∼=−−→ [Σ2X,Σ2Y ]∂ĨI

2

is a bijection and it may be used to transport the abelian heap structure to
[Σ2X,Σ2Y ]∂II2 . �

3. Proofs of the generalized Freudenthal theorem and the
generalized Whitehead theorem

Proof of Theorem 2.1. The following diagram commutes

Ω(Σ map(D,Y ))fib

∼

��

map(D,Y )

ηmap(D,Y ) 11

ηY ∗ -- map(D,Ω(ΣY )fib)

and the vertical map is a weak equivalence since map(D,−) commutes with homo-
topy limits such as Ω in general and it commutes with the homotopy pushout Σ by
our assumption of D being excisive. The map ηmap(D,Y ) is a (2d+ 1)-equivalence
since the Freudenthal suspension theorem holds in simplicial sets and map(D,Y )
is d-connected. �

Proof of Theorem 2.2. Denoting ι : ∂∆k⊗D → ∆k⊗D, we will first show that
the square

(2)

map(∆k ⊗D,Y ) f∗ //

ι∗

����

map(∆k ⊗D,Z)

ι∗

����

map(∂∆k ⊗D,Y )
f∗

// map(∂∆k ⊗D,Z)

is (d − k)-cartesian, i.e. that the map from the top left corner to the homotopy
pullback is a (d− k)-equivalence. Equivalently, the induced map of the homotopy
fibres of the two vertical maps is a (d− k)-equivalence for all possible choices of
basepoints.

The square (2) is isomorphic to

map(D,Y )∆k f∗ //

ι∗

����

map(D,Z)∆k

ι∗

����

map(D,Y )∂∆k
f∗

// map(D,Z)∂∆k

This square maps to the square on the left of the following diagram via evaluation
at any vertex of ∆k in such a way that the corresponding homotopy fibres over
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ϕ : D → Y and ψ = fϕ : D → Z are organized in the right square:

map(D,Y ) f∗ //

id
��

map(D,Z)

id
��

contractible //

��

contractible

��

map(D,Y )
f∗

// map(D,Z) Ωk−1
ϕ map(D,Y )

f∗

// Ωk−1
ψ map(D,Z)

(the loop spaces are the usual loop spaces based at the indicated points). The
square on the left is ∞-cartesian and in the one on the right, the map of the
homotopy fibres of the vertical maps is f∗ : Ωkϕ map(D,Y )→ Ωkψ map(D,Z) which
is indeed a (d− k)-equivalence.

It follows easily from the properties of (d − n)-cartesian squares that for all
In-cell complexes ι : A→ X, the square

map(X,Y ) f∗ //

ι∗

����

map(X,Z)

ι∗

����

map(A, Y )
f∗

// map(A,Z)

is also (d−n)-cartesian. In particular, when n ≤ d and A = 0, we obtain a surjection
on the components of the spaces at the top, i.e. f∗ : [X,Y ]→ [X,Z] is surjective.
For n < d, it is a bijection (and the induced map on π1 is still surjective). �

4. Examples

We will now show how to produce examples of collections of excisive objects.
a) Spaces. In the category of simplicial sets, D = {∆0}, i.e. the collection contai-

ning only the standard 0-simplex (the one point space), consists of excisive
objects. The resulting notions of d-equivalences and n-dimensional objects are
the standard ones.

In the following examples, we assume that D ⊆M is a collection of excisive objects
in a right proper model category M.
b) Diagram categories. Let C be a small (simplicial) category. When M is

cofibrantly generated, then the diagram category MC, i.e. the category of
(simplicial) functors C →M, admits a projective model structure. The collection

D′ def= {C(c,−)⊗D | c ∈ C, D ∈ D}

also consists of excisive objects – this follows from the Yoneda lemma

map(C(c,−)⊗D,Y ) ∼= map(D,Y c)

and the fact that homotopy colimits in MC are computed pointwise.
In this way, a map p : Y → Z in MC is a d-equivalence if and only if each

component pc : Y c→ Zc is a d-equivalence.
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c) Equivariant categories. Let G be a group and M = sSet the model category
of simplicial sets or, more generally, a model category satisfying the conditions of
[8]. These conditions provide a model structure on the category MG of objects
of M equipped with a G-action and a Quillen equivalence MO

op
G 'QMG so

that the equivariant case reduces to that of the diagram categories. The resulting
collection of excisive objects is

D′ def= {G/H ⊗D | H ≤ G, D ∈ D} .

In this way, a map p : Y → Z in MG is a d-equivalence if and only if all
fixed point maps pH : Y H → ZH are d-equivalences. In sSetG, dimension has
the usual meaning.

d) Fibrewise categories. Let B ∈M be an object. Then in the category M/B,
the collection

D′ def= {f : D → B | D ∈ D, f arbitrary}
also consists of excisive objects. This follows from the fact that for a homotopy
pushout square Y of fibrant objects over B, the resulting homotopy pushout
square map(D,Y−) maps to the constant square map(D,B) and the correspon-
ding square of fibres mapB(D,Y−), i.e. the square of mapping spaces in M/B,
is a homotopy pushout by Mather’s cube theorem, see [6].

In this way, a map p : Y → Z in M/B is a d-equivalence if and only if it is a
d-equivalence in M. Also, dimX ≤ n in M/B if and only if the same is true in
M.

e) Relative categories. Let A ∈ M be an object. Then in the category A/M,
the collection

D′ def= {in : A→ A tD | D ∈ D}
of coproduct injections also consists of excisive objects. This follows from the
fact that mapA(A t D,Y ) ∼= map(D,Y ) and homotopy pushouts in A/M
are computed essentially as in M (more precisely, the homotopy pushout of
X1 ← X0 → X2 in A/M is obtained from that in M by collapsing the copy of
I ⊗A to A; the identification map is a weak equivalence).

In this way, a map p : Y → Z in A/M is a d-equivalence if and only if it is a
d-equivalence in M. The dimension of an object X ∈ A/M equals dimAX.

5. The Spanier–Whitehead category of spectra

With the unpointed suspension and loop space as a tool, we will outline a
construction of a category SpM of spectra. For simplicity, and since we do not have
any particular applications in mind, we will only deal with finite spectra in the
spirit of Spanier and Whitehead.

As before, we assume that M is right proper. We say that X ∈ M is a finite
complex if it is a finite

(⋃
n≥0 In

)
-cell complex.

The objects of SpM are formal (de)suspensions Σ`X – these are simply pairs
(`,X) such that
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• ` ∈ Z is an arbitrary integer,
• for some k ≥ −`, X ∈ ∂IIk/Mfin is an arbitrary finite complex.

We say that X is of degree d = `+ k ≥ 0. If Σ`0X0, Σ`1X1 are two objects of the
same degree d, we define the set [Σ`0X0,Σ`1X1] as the colimit

colim
i≥max{−`0,−`1}

[Σ`0+iX0,Σ`1+iX1]∂II
d+i
.

There are obvious functors Jk : Ho(∂IIk/Mfin)→ SpM given by X 7→ Σ0X. We
have the following diagram that commutes up to a natural isomorphism

Ho(∂IIk/Mfin) Jk //

LΣ
��

SpM

Σ
��

Ho(∂IIk+1/Mfin)
Jk+1

// SpM

where LΣ denotes the total left derived functor of Σ and where the suspension
functor on the right is Σ`X 7→ Σ`+1X; it is clearly an equivalence onto its image.
Thus, the suspension functor in Mfin is turned into an equivalence in SpM.

Acknowledgement. I am very grateful to Martin Čadek for carefully reading a
draft of this paper.
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