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LINEAR OPERATORS THAT PRESERVE GRAPHICAL

PROPERTIES OF MATRICES: ISOLATION NUMBERS

LeRoy B. Beasley, Logan, Seok-Zun Song, Jeju, Young Bae Jun, Jinju

(Received July 18, 2013)

Abstract. Let A be a Boolean {0, 1} matrix. The isolation number of A is the maximum
number of ones in A such that no two are in any row or any column (that is they are
independent), and no two are in a 2 × 2 submatrix of all ones. The isolation number of A
is a lower bound on the Boolean rank of A. A linear operator on the set of m× n Boolean
matrices is a mapping which is additive and maps the zero matrix, O, to itself. A mapping
strongly preserves a set, S, if it maps the set S into the set S and the complement of the
set S into the complement of the set S. We investigate linear operators that preserve the
isolation number of Boolean matrices. Specifically, we show that T is a Boolean linear
operator that strongly preserves isolation number k for any 1 6 k 6 min{m,n} if and only
if there are fixed permutation matrices P and Q such that for X ∈ Mm,n(B) T (X) = PXQ

or, m = n and T (X) = PXtQ where Xt is the transpose of X.
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1. Introduction

The binary Boolean algebra consists of the set B = {0, 1} equipped with two binary

operations, addition and multiplication. The operations are defined as usual except

that 1 + 1 = 1.

Matrices with entries in B have the same arithmetic as for real matrices except

that the addition uses the Boolean sum. Matrices over more general semirings can

be studied by considering their patterns of 0’s and 1’s. The graphical properties

of matrices, those that are invariant under permutations of the rows and columns,

This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (No. 2012R1A1A2042193).
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usually are inherited from their patterns. Thus, we will limit our endeavors to

matrices whose entries are only 0’s and 1’s.

There are many papers on linear operators on a matrix space that preserve matrix

functions over an algebraic structure, see [2], [3], [4], [6] and [8]. Boolean matrices

also have been the subject of research by many authors, see [4], [5], [7] and [8].

Beasley and Pullman [4] obtained characterizations of rank-preserving operators of

Boolean matrices. Beasley, Kang and Song [6] characterized the linear operators

that preserve term rank of matrices over the binary Boolean algebra and semirings.

In this article we consider the isolation number of a matrix, and use the fact that

the isolation number is a lower bound on the Boolean rank to characterize the linear

operators that preserve sets defined by the isolation number.

2. Preliminaries

LetMm,n(B) be the set of allm×nmatrices with entries in the binary Boolean al-

gebra B. The usual definitions for adding and multiplying matrices apply to Boolean

matrices as well. The matrix A(m,n) denotes a matrix inMm,n(B), In is the n× n

identity matrix, O(m,n) is the m × n zero matrix, and J (m,n) is the m × n matrix

all of whose entries are 1. Let E
(m,n)
i,j be the m × n matrix whose (i, j)th entry is

1 and whose other entries are all 0, then we call E
(m,n)
i,j a cell. We will suppress

the superscripts or subscripts on these matrices when the orders are evident from

the context and we write A, I, O, J , and Eij , respectively. For a matrix A, #(A)

denotes the number of nonzero entries in A. Further, we let the set of all cells be

denoted by E . That is,

E = {Ei,j ∈ Mm,n(B) ; i = 1, . . . ,m and j = 1, . . . , n}.

Boolean rank and isolation numbers. The Boolean rank, β(A), of a nonzero

Boolean matrix A inMm,n(B) is the minimal number k such that there exist Boolean

matrices B ∈ Mm,k(B) and C ∈ Mk,n(B) such that A = BC. The Boolean rank

of the zero matrix is 0. It is well known that β(A) is the least k such that A is

the sum of k matrices of Boolean rank 1, see [4]. From now on we will assume that

2 6 m 6 n. It follows that 0 6 β(A) 6 m for all nonzero A ∈ Mm,n(B).

By considering a minimal sum of rank one matrices for A and B such as A =

A1+. . .+Ak and B = B1+. . .+Bl, we have that A+B = A1+. . .+Ak+B1+. . .+Bl,

so that A+B has rank at most k + l. This establishes the following lemma.
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Lemma 2.1. For matricesA andB inMm,n(B), we have β(A+B) 6 β(A)+β(B).

If A and B are matrices inMm,n(B), we say that B dominates A (written A 6 B

or B > A) if bi,j = 0 implies ai,j = 0 for all i and j. Equivalently, A 6 B if and only

if A+B = B. This provides a reflexive and transitive relation onMm,n(B).

Let A ∈ Mm,n(B). A set, IN (A), of indices is called a set of independent ones

of A if (1) the first coordinates are distinct, (2) the second coordinates are distinct

and (3) if (i, j) ∈ IN (A), then ai,j = 1. A set, IS(A), of independent ones is called

a set of isolated ones of A if for any pair, (i, j), (k, l) ∈ IS(A), the submatrix of A

on rows i and k and on columns j and l is not
[

1 1

1 1

]

. The isolation number of A,

ι(A), is the maximum cardinality of any set of isolated ones in A.

In [1] it was shown that the set of matrices of Boolean rank one and the set of

matrices whose isolation number is one are the same set. It was also shown that the

set of matrices of Boolean rank two and the set of matrices whose isolation number

is two are the same set.

Since no two isolated ones can lie in any single Boolean rank one submatrix, we

have:

Lemma 2.2. Let A ∈ Mm,n(B). Then ι(A) 6 β(A).

However, as the following example shows, unless ι(A) = 1, 2, or min(m,n) the only

obvious relationship between isolation number and Boolean rank is that the isolation

number never exceeds the Boolean rank of a matrix.

Example 2.3. Let n > 3 and let Dn be the matrix J \ I, that is, Dn is the

matrix all of whose entries are ones except that all diagonal entries are zero. Then

ι(Dn) = 3, for any n > 3. However, β(A) = k where k = min
{

k ; n 6
(

k
⌊k/2⌋

)}

,

see [5]. So ι(D20) = 3 while β(D20) = 6.

Let A,B ∈ Mm,n(B). Since those indices in any set of isolation numbers for A+B

whose corresponding entries in A (or B) are ones in a set of isolation numbers for A

(or B, respectively), it follows:

Lemma 2.4. For matrices A and B inMm,n(B), we have ι(A+B) 6 ι(A)+ ι(B).

In [1] the structure of a matrix A ∈ Mm,n(B) whose isolation number is min{m,n}

was provided. Thus, the set of matrices with isolation number min{m,n} can be

systematically described, while the set of matrices of Boolean rank min{m,n} can-

not.

Upper ideals. A subset, U , of Mm,n(B) is called an upper ideal if X ∈ U im-

plies X + Y ∈ U for every Y ∈ Mm,n(B). A set, S, is bigraphical if X ∈ S
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implies PXQ ∈ S for all permutation matrices P and Q of appropriate orders.

The reason for this name is that the bipartite graph associated with a matrix has

the same properties as any other bipartite that has only relabeling of the bipartite

sets.

An upper ideal U is said to separate cells if for any two distinct cells E and F in

Mm,n(B), there is some X 6∈ U such that X + E ∈ U while X + F 6∈ U .

Let F be a subset of Mm,n(B). The upper ideal generated by F , U(F), is the

set of matrices not dominated by any element of F , i.e., U(F) = {A ∈ Mm,n(B) ;

for all B ∈ Mm,n(B), A+B 6∈ F}.

In [3] it was shown that if F is the set of Boolean rank k matrices, k > 2, then

U(F) separates cells.

Lemma 2.5. Let F be the set of matrices in Mm,n(B) whose isolation number

is k, for some 2 6 k 6 m. Then U(F) separates cells.

P r o o f. Let E and F be cells in Mm,n(B). Then by permuting we can assume

that E = E1,1 and F = Ei,j for some (i, j) 6= (1, 1). If j 6= 1 interchange the jth

column with the nth column, so that F = Ei,n. If j = 1 so that i 6= 1 interchange the

ith row with the mth row, so that F = Em,1. In either case, since k 6 min{m,n},

we have F = Er,s with r + s > k + 1. Let A = (ai,j) where ai,j = 0 if i+ j 6 k and

ai,j = 1 otherwise. Then {(i, j) ; i + j = k + 1} is a set of isolated ones of size k.

Further, A > F so ι(A + F ) = k but ι(A + E) = k − 1. So A + F 6∈ U(F) while

A+ E ∈ U(F). That is, U(F) separates cells. �

Boolean linear operators. A mapping T : Mm,n(B) → Mm,n(B) is called

a Boolean linear operator if for any X,Y ∈ Mm,n(B), T (X + Y ) = T (X) + T (Y ),

and T (O) = O.

Let f : Mm,n(B) → S be a mapping where S is any set. Let S be a subset of

Mm,n(B). For a Boolean linear operator T : Mm,n(B) → Mm,n(B), we say that T

(1) preserves f if for any k ∈ S, f(T (X)) = k whenever f(X) = k for all X ∈

Mm,n(B);

(2) preserves S if T (X) ∈ S whenever X ∈ S for all X ∈ Mm,n(B);

(3) strongly preserves f if, for any k ∈ S, f(T (X)) = k if and only if f(X) = k for

all X ∈ Mm,n(B);

(4) strongly preserves S if T (X) ∈ S if and only if X ∈ S for all X ∈ Mm,n(B).

A Boolean linear operator T : Mm,n(B) → Mm,n(B) is called a (P,Q)-operator

if there are permutation matrices P and Q such that T (X) = PXQ for all X ∈

Mm,n(B), or when m = n, T (X) = PXtQ for all X ∈ Mm,n(B), where X
t is the

transpose of X .
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A Boolean linear operator T : Mm,n(B) → Mm,n(B) is said to be nonsingular if

T (X) = O only if X = O. Unlike linear operators over a field, nonsingular operators

need not be invertible.

A line is a matrix of the form Ri =
n
∑

j=1

Ei,j or of the form Cj =
m
∑

i=1

Ei,j . That

is, a line is a matrix which includes all the ones in a row or column, and all other

entries are 0.

In the following lemma we will use the notation: Ri =
n
∑

l=1

Ei,l is the i
th full row

matrix and Cj =
m
∑

k=1

Ek,j is the j
th full column matrix.

Lemma 2.6. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If T

is bijective and maps lines to lines, then T is a (P,Q)-operator.

P r o o f. Let L = {Ri ; 1 6 i 6 m}∪ {Cj ; 1 6 j 6 n}. Then, since T is bijective,

T is bijective on L. If m 6= n, since T is bijective, the image of each Ri must be

some Rk, and the image of each Cj must be some Cl. This is easily seen by a counting

argument.

If m = n then either the image of every row is a row and hence the image of every

column is a column, or the image of every row is a column and hence the image of

every column is a row, since T is bijective on L. If the image of every row is a column

and the image of every column is a row, composing T with the transpose operator

gives an operator that maps rows to rows and columns to columns. In these cases,

letting σ be a permutation such that T (Ri) = Rσ(i) and τ be a permutation such

that T (Cj) = Cτ(j), we have that T is a (P,Q)-operator where P is the permutation

matrix corresponding to σ and Q is the permutation matrix corresponding to τ .

Now, if m = n and the image of one row is a row and the image of another row

is a column, we say without loss of generality that T (R1) = R1 and T (R2) = C1.

Then, #(R1 + R2) = 2n while #(R1 + C1) = 2n − 1, an impossibility since T is

bijective. Therefore T is a (P,Q)-operator. �

3. Preservers of isolation number of matrices

In [4] it was shown that if T : Mm,n(B) → Mm,n(B) preserves Boolean ranks one

and two, then T is a (P,Q)-operator. Since the Boolean rank and isolation number of

a matrix agree when their Boolean ranks are 1 and 2 we have the following theorem.
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Theorem 3.1. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. Then

the following assertions are equivalent:

(1) T preserves the isolation number of matrices,

(2) T preserves isolation numbers one and two,

(3) T is a (P,Q)-operator.

Now, consider the Boolean linear operators that preserve upper ideals.

Lemma 3.2. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If an

upper ideal U separates cells and T strongly preserves U then T is bijective on the

set of cells.

P r o o f. SinceMm,n(B) is finite, there is a power of T , say T
q which is idempo-

tent. Let L = T q. Then L strongly preserves U since T does, and L2 = L.

Suppose that T (X) = O. If a cell E 6 X then T (E) = O. Let F be any other cell.

Since U separates cells, there is some N ∈ Mm,n(B) which separates F from E. That

is, N 6∈ U , N +F ∈ U but N +E 6∈ U . But then T (N)+T (E) = T (N) 6 T (N +F )

and since N + F ∈ U , T (N) = T (N + F ) ∈ U , contradicting that T strongly

preserves U . Thus, T , and hence L, is nonsingular.

Now, let E be any cell and suppose that F 6 L(E). If F 6= E, let N separate

F from E. That is, N 6∈ U , N + F ∈ U but N + E 6∈ U . Then L(N + E) =

L(N) + L(E) = L(N) + L2(E) > L(N) + L(F ), the inequality is seen by the fact

that L is idempotent and F 6 L(E). Thus, L(N + E) > L(N + F ), and hence

L(N + E) ∈ U , contradicting that L strongly preserves U . Thus, L(E) = E.

Now, suppose that T (E) = T (F ) for two cells E and F . Then, L(E) = T q(E) =

T q(F ) = L(F ), and from the above, E = F . That is, T is injective on the set of

cells. Since E is finite, T is bijective on E (and hence is bijective onMm,n(B)). �

Definition 3.3. A two-claw in a bipartite graph is a pair of edges incident with

one vertex. InMm,n(B), a two-claw matrix is a sum of two cells, the ones are both

in the same row or column. And a matrix A with all its k = #(A) nonzero entries

in one row or column is called a k-claw.

Lemma 3.4. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If T

is bijective on the set of cells and T preserves two-claws, then T is a (P,Q)-operator.

P r o o f. If T preserves two-claws and is bijective, then T preserves k-claws for

all k. That is, T preserves lines. By Lemma 2.6, T is a (P,Q)-operator. �
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Theorem 3.5. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator and

let U be an upper ideal that separates cells. If T strongly preserves U and T preserves

two-claws, then T is a (P,Q)-operator.

P r o o f. This is immediate by applying Lemma 3.2 to Lemma 3.4. �

Lemma 3.6. Let F be a family of matrices in Mm,n(B) such that O 6∈ F and

J 6∈ F . Then we have the following assertions:

(a) U(F) is an upper ideal.

(b) If T strongly preserves F , then T strongly preserves U(F).

(c) If F is bigraphical, then U(F) is bigraphical.

P r o o f. (a) It follows from the definition of U(F).

(b) If A 6∈ U(F), then there is some N such that A+N ∈ F . Then T (A)+T (N) =

T (A+N) ∈ F and hence T (A) 6∈ U(F).

For the converse implication, let L = T q be idempotent (as in Lemma 3.2). Sup-

pose that T (A) 6∈ U(F). Then T (A) + Y ∈ F for some Y . Let Z = T q−1(Y ).

Then T q−1(T (A) + Y ) = L(A) + Z ∈ F . But then L(A + Z) = L(A) + L(Z) =

L2(A) + L(Z) = L(L(A) + Z) ∈ F . Thus, A + Z ∈ F since L strongly preserve F .

That is, A 6∈ U(F).

(c) It follows from the fact that F is bigraphical, and if A ∈ F then PAQ ∈ F for

any permutation matrices P and Q. �

Lemma 3.7. Let T : Mm,n(B) → Mm,n(B) be a bijective Boolean linear opera-

tor that strongly preserves isolation number k. Then T preserves two-claws.

P r o o f. If k = 1, 2 then T is a (P,Q)-operator by Lemma 3.1 and the fact that

if T strongly preserves isolation number 1 it preserves isolation number 2, and if it

strongly preserves isolation number 2 it preserves isolation number 1. Thus, suppose

that k > 3.

Since T is bijective and Mm,n(B) is finite, it follows, because of the Boolean

arithmetic, that T is bijective on the set of cells. Suppose that E + F is a two claw

and T (E+F ) is not. Then T (E+F ) is a matrix containing exactly two ones which are

not collinear. Without loss of generality, we may assume that T (E+F ) = E1,1+E2,2.

Let E3, . . . , Ek be cells such that T (Ei) = Ei,i, i = 3, . . . , k. Since E + F is a two-

claw, ι(E +F ) = 1. Thus, ι(E +F +E3 + . . .+Ek) < k. Since T strongly preserves

isolation number k, ι(T (E+F +E3+ . . .+Ek)) < k, but T (E+F +E3+ . . .+Ek) =

E1,1 +E2,2 +E3,3 + . . .+Ek,k which has isolation number k, a contradiction. Thus,

T preserves two-claws. �

Our main theorem is:
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Theorem 3.8. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator.

Then T strongly preserves isolation number k for any 1 6 k 6 min{m,n} if and only

if T is a (P,Q)-operator.

P r o o f. If T is a (P,Q)-operator, then clearly, T strongly preserves isolation

number k.

Now, suppose that T strongly preserves isolation number k. If k = 1, 2, then T is

a (P,Q)-operator as observed in the proof of Lemma 3.7. Thus suppose that k > 3.

Let Fk be the set of all matrices in Mm,n(B) with isolation number k. So T

strongly preserves Fk. By Lemma 3.6 (b), T strongly preserves U(Fk). By Lem-

ma 2.5, U(Fk) separates cells. By Lemma 3.2, T is bijective on the cells, and by

Lemma 3.7, T preserves two-claws. Therefore the theorem now follows by Theo-

rem 3.5. �

Thus we have obtained a characterization of linear operators that preserve the

isolation number of Boolean matrices.
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