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DISTRIBUTIONAL PROPERTIES OF POWERS OF MATRICES
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Abstract. We apply the larger sieve to bound the number of 2×2 matrices not having large
order when reduced modulo the primes in an interval. Our motivation is the relation with
linear recursive congruential generators. Basically our results establish that the probability
of finding a matrix with large order modulo many primes drops drastically when a certain
threshold involving the number of primes and the order is exceeded. We also study, for
a given prime and a matrix, the existence of nearby non-similar matrices having large
order. In this direction we find matrices of large order when the trace is restricted to take
values in a short interval.

Keywords: larger sieve; pseudorandom number; finite field; special linear group of de-
gree 2; general linear group of degree 2
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1. Introduction and main results

The function k 7→ gk (mod p) with g a generator of F∗
p is employed in practice for

pseudorandom number generation. In general, the implementation of linear recursive

congruential generators [16] suggests that one should look for matrices in GLn(Fp)

having maximal order and there is some literature about the choice of these matrices

and the statistical properties of the corresponding generators [5], [22].

In computer science applications usually there is a single built-in pseudorandom

number generator function whose output is reduced modulo m to obtain a pseudo-

random number in the range [1,m). These ranges appear very often in run-time and

it is impossible to choose in advance a common high order element for all of the

corresponding moduli. From the mathematical point of view one expects that using

k 7→ nk (mod p) as a pseudorandom number generator, for p in a reasonably large

The first author is partially supported by the grant MTM2011-22851 from the Ministerio
de Ciencia e Innovación (Spain).
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range, gives good results for almost any choice of n. In other words, if expp(n) is

defined to be the order of n in F∗
p if p ∤ n and 0 if p | n, then it is very unlikely to

find n such that expp(n) is small for many consecutive primes. This fact was proved

by P.X.Gallagher as an application of his larger sieve.

Theorem 1.1 ([7], Theorem 2). Given ε > 0 the number of integers n 6 N for

which expp(n) 6 Nθ for all primes p 6 Nθ+ε is O(Nθ), uniformly for 0 6 θ 6 1.

In connection with this result, P. J. Stephens proved previously that Artin’s con-

jecture holds on average and gave a nontrivial bound for the number of possible

exceptions [25]. In practice there is no difference between maximal and large order

elements when generating pseudorandom numbers.

Although linear recursive congruential generators have been employed since the

80’s, it seems that Artin’s conjecture in GLn(Fp) has not received much attention

until recently. The case n = 2 seems to be a distinguished one. It was shown in [15]

and [14] (see also [13]) to be related with quantum ergodicity on flat tori (an instance

of arithmetic quantum chaos). In [23] it is also studied in connection with the order of

the reduction of units in quadratic fields. On the other hand, our knowledge about the

distribution of maximal order matrices in GL2(Fp) benefits from the recent uniform

proof [3] of Burgess’ inequality in Fp2 and a conjectural deterministic polynomial-

time search procedure [24] for primitive roots in Fp2 (meaning that the output is

a subset containing at least one primitive root).

Given N ∈ Z+ and an interval I = [1,M ], consider the probability PN (x) of

a positive integer n 6 N having exponent at most x for all primes in I. Of course,

if x > |I|, we trivially have PN (x) = 1. On the other hand, Theorem 1.1 implies

that if x is slightly smaller than |I| then this probability drops drastically. Namely,

Theorem 1.1 can be rephrased as

PN (x) ≪
|I|

N1+ε
whenever

x

|I|
< N−ε.

In some way, N−ε establishes a threshold to get a saving O(|I|N−1−ε) with respect

to the trivial bound PN (x) 6 1.

In this paper we study this phenomenon for nonsingular integral matrices, showing

that there is a value of x very close to the size of the interval such that there are

few matrices with order less than x. Furthermore, in the last section we study some

properties of high-order elements.

We extend the previous notation writing expp(A) to denote the order of the matrix

A in GL2(Fp) when reduced modulo p if p ∤ det(A) and expp(A) = 0 if p | det(A).
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We allow thin intervals of primes if they have positive density and are wide enough.

Namely, we consider intervals I = [a, b], 0 < a < b− 3, such that

(1.1)
∑

p∈I

log p≫ |I| and log |I| ≫ log b

when p runs over the primes. The prime number theorem implies that this is the

case for I = [1, x] in a stronger asymptotic form that extends to I = [x − xα, x]

for α > 7/12 using the unconditionally known density hypothesis [10]. In [2] (see

also [9]) sieve methods are pushed to prove (1.1) for α > 0.525. With the present

knowledge log |I| ≫ log b holds in every case in which the positive density condition

is known [18].

The natural analog of the interval [0, N ] in SL2(Z) is the set (of cardinality com-

parable to N2, see Lemma 2.8)

IN = {A ∈ SL2(Z) : 0 6 aij 6 N}.

We define the probability

PN(x) =
|MN (x)|

|IN |
whereMN (x) = {A ∈ IN : expp(A) 6 x for p ∈ I}

and we want to find a threshold function T = T(N, |I|) and a saving function S =

S(N, |I|) such that

(1.2) PN (x) 6 S whenever
x

|I|
6 T.

In the same way, we also consider arbitrary nonsingular integral matrices. We

introduce (see Lemma 2.8)

I∗
N = {A ∈ M2×2(Z) : det(A) 6= 0, 0 6 aij 6 N},

and define

P∗
N (x) =

|M∗
N(x)|

|I∗
N |

whereM∗
N (x) = {A ∈ I∗

N : 0 < expp(A) 6 x for p ∈ I}.

Again we look for a threshold function T∗ = T∗(N, |I|) and a saving function S∗ =

S∗(N, |I|) such that

(1.3) P∗
N (x) 6 S

∗ whenever
x

|I|
6 T

∗.

Our results prove that a logarithmic threshold is enough to get a substantial saving.
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Theorem 1.2. Let I be an interval satisfying (1.1) and N > 3. Then there exists

an absolute constant C > 0 such that (1.2) holds with

S =
|I|

N
logN(log logN)2 and T = L(logN log |I|)

where L(t) = Ct−1 log t.

Theorem 1.3. With the notation of Theorem 1.2, (1.3) holds with

S
∗ =

|I|2(log logN)2

N3 log log |I|
and T

∗ = L(logN log |I| log log |I|).

The meaning of these results is easier to appreciate when |I| is expressed as a power

of N .

Corollary 1.4. If |I| = N δ > 3, then the number of matrices in IN for which

expp(A) 6 CN δ log logN

δ(logN)2

for every p ∈ I is less than N δ+1 logN(log logN)2.

Corollary 1.5. If |I| = N δ > 3, then the number of matrices in I∗
N for which

0 < expp(A) 6 CN δ log logN

δ(logN)2 log logN δ

for every p ∈ I is less than N2δ+1(log logN)2(log logN δ)−1.

These results suggest that it is very unlikely to find a matrix with low exponent for

many primes. Keeping the analogy with the integral case, we have many possibilities

for good pseudorandom matrix generators.

2. Auxiliary results

Given m ∈ Z − {0} and an odd prime p ∤ m, we define f(n) to be the number

of distinct possible Jordan canonical forms (over Fp2) of the diagonalizable matrices

belonging to the set

{A ∈ GL2(Fp) : detA = m, expp(A) = n}.

We write henceforth e = expp(m). As the determinant is multiplicative, we have

trivially that f(n) = 0 if e ∤ n. The following lemma takes care of the rest of the

cases.
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Lemma 2.1. For e | n write k = n/e. Then

f(n) =






ϕ(k)e if n | p− 1,

ϕ(n)

ϕ(e)
if n ∤ p− 1 and k | p+ 1 and e or (p+ 1)/k is odd,

0 otherwise.

P r o o f. First suppose that the Jordan canonical form of the matrix is of

the form
(

α 0

0 β

)
with α, β ∈ F∗

p. Then we can write β = mα−1. Clearly

n = lcm(expp(α), expp(mα
−1)), and furthermore

expp(mα
−1) | lcm(e, expp(α

−1)),

which is a general fact of abelian groups, whence n = lcm(e, expp(α)).

For a given a | p − 1 there are ϕ(a) elements in F∗
p having order a, and there are

F (n, e) of them which give matrices of order n, where

F (n, e) =
∑

a : lcm(a,e)=n

ϕ(a).

It is easy to see that F (qr+s, qr) = ϕ(qs)qr for q prime. As ϕ is multiplicative,

denoting by eq and nq the maximal q-powers dividing e and n, respectively, we have

F (n, e) =
∏

q

F (nq, eq) =
∏

q

ϕ
(nq

eq

)
er = ϕ

(n
e

)
e,

which gives the first part of the result.

Now, suppose that the Jordan canonical form of the matrix is
(

α 0

0 β

)
with distinct

α, β ∈ Fp2 \Fp. The Frobenius endomorphism generates the associated Galois group

which is isomorphic to S2, then it permutes the roots of the characteristic polynomial

and we have β = αp. As m is fixed, we can choose a generator g ∈ F∗
p2 such that m =

g(p
2−1)/e. Therefore, we seek elements in Fp2 of the form g(p

2−1)r/n with 0 6 r 6 n,

gcd(r, n) = 1, which do not belong to Fp and also satisfy (g
(p2−1)r/n)p+1 = g(p

2−1)/e.

The first condition is equivalent to n ∤ p− 1, and the second leads us to compute

(2.1) #
{
0 6 r 6 ke : gcd(r, ke) = 1,

p+ 1

k
r ≡ 1 (mod e)

}
.

Of course, necessarily gcd((p+ 1)/k, e) = 1, and noting that gcd (p+ 1, p− 1) = 2,

this is equivalent to saying that either (p+ 1)/k or e is odd. For gcd (a, n) = 1, let

S(a) = {0 6 r 6 ke : gcd(r, k) = 1 and r ≡ a (mod e)}.
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Clearly |S(a)| does not depend on the choice of a. Let {a = a1, . . . , aϕ(e)} be a com-

plete set of representatives of (Z/eZ)∗ with gcd (ai, k) = 1. Then (2.1) coincides

with

1

ϕ(e)

ϕ(e)∑

i=1

|S(ai)| =
1

ϕ(e)
#{0 6 r 6 ke : gcd (r, k) = 1, (r, e) = 1} =

ϕ(n)

ϕ(e)
,

which completes the proof. �

Define g(n) like f(n) but now considering non-diagonalizable matrices in the same

set. Again g(n) = 0 if e ∤ n. Moreover, the non-vanishing of g requires m to be

a quadratic residue or equivalently (p − 1)/e to be even because of the double root

of the characteristic polynomial. We have

Lemma 2.2. Let (p− 1)/e be even, then

g(n) =





1− (−1)e

2
if n = ep,

3 + (−1)e

2
if n = 2ep,

0 otherwise.

P r o o f. Since the matrix is not diagonalizable, it must be similar to one of the

form
(

α 1

0 α

)
with α ∈ F∗

p.

Let g be a generator of F∗
p such thatm = g(p−1)/e. As α2 = m, clearly 2 | (p− 1)/e,

and so α = g(p−1)/2e or g(p−1)/2e+(p−1)/2. In the first case, the order of α is 2e and

therefore the order of the matrix is 2ep, while in the second case the order of α can

be 2e or e, depending on whether e is even or not, in which case the order of the

matrix is 2ep or ep, respectively. �

Lemma 2.3. Let p be an odd prime, p ∤ m and x > 0. Consider

Sm,p(x) = {tr(A) : A ∈ GL2(Fp) with detA = m, expp(A) 6 x},

then

|Sm,p(x)| =
1

2

∑

k6x/e
k|(p−1)/e

ϕ(k)e +
1

2

∑

k6x/e
k|p+1

ϕ(ke)

ϕ(e)
+O(1).

P r o o f. First, note that the part coming from matrices with a double eigenvalue

contributes O(1).
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For the rest of the cases we apply Lemma 2.1, noting that swapping the eigenvalues,

a pair of diagonal Jordan canonical forms corresponds to a class of matrices under

similarity and hence to a value of the trace. Note that tr(A) = tr(B), detA =

detB = m defines uniquely the eigenvalues and hence the Jordan canonical form

(up to a permutation) when they are distinct. �

Lemma 2.4. For p an odd prime, p ∤ m and x > 0 we have

|Sm,p(x)| ≪ εm(p)
∑

n6x
n|p−1

ϕ(n) +
∑

n6x
n|p+1

ϕ(n),

where

εm(x) =

{
1 if m = ±1,

log log x otherwise.

P r o o f. This is a consequence of the previous lemma. The casem = ±1 is trivial.

For m > 1, using the definition of ϕ and [8], Theorem 328, we have

ϕ
(n
e

)
e 6 ϕ(n)

e

ϕ(e)
≪ ϕ(n) log log e.

For the second sum, note that gcd (k, e) | 2 because k | p+ 1, and therefore

ϕ(ke)

ϕ(e)
6 2ϕ(k)

follows easily. �

We need the larger sieve inequality [7]:

Theorem 2.5 ([7], Theorem 1). If all but g(p) residue classes (mod p) are re-

moved for each prime p in a finite set S, then the number of integers which remain

in any interval of length N is at most

(∑

p∈S

log p− logN

)/(∑

p∈S

log p

g(p)
− logN

)

provided the denominator is positive.

We remark that in [7] this result is stated in a slightly more general form allowing

S to contain prime powers (see Proposition 9.13 of [6] for a flexible version). Of

course, the upper bound increases when we sieve with less elements.
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Lemma 2.6. Consider

Tm(x) = {1 6 t 6 2N : t ∈ Sm,p(x) for every p ∈ I},

with Sm,p as in Lemma 2.3. For x = |I|M−1 logM with M > C′εm(|I|) log |I| logN

where C′ is a constant, we have

|Tm(x)| ≪ εm(|I|)M−1|I| log |I|.

P r o o f. The proof is similar to that of Theorem 1.1 (see [7]). From the Cauchy-

Schwarz inequality we obtain

(∑

p∈I

log p

|Sm,p(x)|

)(∑

p∈I

|Sm,p(x)| log p

)
>

(∑

p∈I

log p

)2
≫ |I|2.

On the other hand, the Brun-Titchmarsh theorem [21] gives the bound

π(y0 + y1; q, c)− π(y0; q, c) <
2y1

ϕ(q) log(y1/q)
, 1 6 q < y1

which, together with Lemma 2.4, gives

∑

p∈I

|Sm,p(x)| log p≪
∑

p∈I

(
εm(p)

∑

n6x
n|p−1

ϕ(n) +
∑

n6x
n|p+1

ϕ(n)

)
log p

≪ |I| log |I|εm(|I|)
∑

n6x

(
log

|I|

n

)−1

≪ εm(|I|)M−1|I|2 log |I|

where in the second inequality we have changed the order of summation to

∑

n6x

ϕ(n)

(
∑

p∈I
p≡1 (n)

εm(p) log p+
∑

p∈I
p≡−1 (n)

log p

)

before applying the Brun-Titchmarsh inequality.

Thus, it follows that

∑

p∈I

log p

|Sm,p(x)|
≫

M

εm(|I|) log |I|
.
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Now, by Theorem 2.5 we obtain the result

|Tm(x)| ≪

(∑

p∈I

log p

)/(∑

p∈I

log p

|Sm,p(x)|

)
≪ εm(|I|)M−1|I| log |I|.

The size of M ensures that the denominator in the statement of Theorem 2.5 is

positive and, indeed, for a suitably chosen C′ it is greater than c logN with c > 0.

�

Lemma 2.7. Let

Am = sup
t

#{A ∈ I∗
N : detA = m, tr(A) = t},

then

Am ≪ N(logN)2(log logN)2, for every m.

P r o o f. The problem is reduced to counting the number of solutions of





0 6 a11, a12, a21, a22 6 N,

a11 + a22 = t,

a11a22 − a12a21 = m.

Writing h(n) = n(t − n) − m, we have h(a11) = a12a21, and then the number of

solutions is bounded by

∑

n6N

∑

k|h(n)

1 =
∑

k6N

∑

n6N
h(n)≡0 (k)

1 ≪
∑

k6N

̺(k)
N

k

where ̺(k) represents the number of solutions of h(n) ≡ 0 (mod k). Since ̺ is

multiplicative, we have

∑

k6N

̺(k)

k
6
∏

p6N

(
1 +

̺(p)

p
+
̺(p2)

p2
+ . . .

)
.

We separate the product in two parts. In the former one we consider the primes

which satisfy ̺(p) = 0, 2 and thus by [19], Lemma 6.1, verify ̺(pk) 6 2, and in the

latter part those with ̺(p) = 1, equivalently p | ∆ = t2 − 4m, in which case ([19],

Lemma 6.1) ensures ̺(pk) 6 p[k/2] for k > 1. Thus, the product is bounded by

∏

p6N
̺(p)=0,2

(
1 +

2

p
+

2

p2
+ . . .

) ∏

p6N
p|∆

(
1 +

1

p
+

p

p2
+ . . .

)

≪
∏

p6N

(
1 +

2

p

) ∏

p6N
p|∆

(
1 +

2

p

)
≪ (logN)2

∏

p6N
p|∆

(
1 +

2

p

)
.
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Now, using [8], Theorem 323, the last product is bounded by (log logN)2, hence

Am ≪ N(logN)2(log logN)2

and the result follows. �

Lemma 2.8. We have

|IN | =
12

π
2
N2 +O(N(logN)2) and |I∗

N | = (N + 1)4 +O(N2(logN)3).

P r o o f. Let Ncd be the number of matrices in IN having (c, d) as the lower row.

Of course c and d must be coprime and it is easy to see

|IN | =
∑

0<d<c6N

Ncd +
∑

0<c<d6N

Ncd +O(N).

If 0 < d < c 6 N then the possible upper rows of a matrix counted in Ncd are

(x0 + ct, y0 + dt) with 0 6 t 6 (N − x0)/c where x0d− y0c = 1 and x0 = d̄, defined

as the solution of dx ≡ 1 (mod c) with 0 6 x < c.

The case 0 < c < d 6 N is very similar but now 0 6 t 6 (N −y0)/c and y0 = d− c̄

where c̄ is the solution of cx ≡ −1 (mod d) with 0 6 x < d.

Then we have

|IN | =
∑

d<c6N
gcd(c,d)=1

([N − d̄

c

]
+ 1
)
+

∑

c<d6N
gcd(c,d)=1

([N − c+ d̄

c

]
+ 1
)
+O(N)

where [·] denotes the integral part. Exchanging c and d in the last sum and in-

troducing the function ψ(x) = x − [x] − 1/2, we can write the previous formula

as

(2.2) |IN | =
∑

d<c6N
gcd(c,d)=1

2N

c
−

∑

d<c6N
gcd(c,d)=1

(
ψ
(N − d̄

c

)
+ ψ

(N + d̄

c

))
+O(N).

The first sum gives the main term plus an admissible error terms by partial sum-

mation of
∑
n6x

ϕ(n) = 3x2/π
2 +O(x log x) that is well known ([8], Theorem 330). It

remains to prove that the second sum is O(N(logN)2).

Given a positive integer M , there exist real numbers a±m ≪ m−1 and a±0 ≪ M−1

such that (see for instance Vaaler’s lemma in [20], §1.2)

∑

|m|6M

a−me(mx) 6 ψ(x) 6
∑

|m|6M

a+me(mx) with e(t) = e2πit.
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Using the evaluation of the Ramanujan sums and ϕ(ab) 6 aϕ(b), we arrive at

∣∣∣∣∣

c∑

d=1
gcd(c,d)=1

e
(
m
d̄

c

)∣∣∣∣∣ 6 gcd(c,m).

Hence the second sum in (2.2) is bounded by

N2

M
+
∑

c6N

∑

m6M

gcd(c,m)

m
6
N2

M
+
∑

d6M

d
∑

d|c6N

∑

d|m6M

1

m
.

Choosing M = N(logN)−2 one gets the result.

The second formula in the statement reduces to proving that the number of sin-

gular matrices with entries 0 6 a, b, c, d 6 N is O(N2(logN)3). It is easy to see that

there are only O(N2) of them with abcd = 0, hence we assume a, b, c, d > 0. These

singular matrices are clearly overcounted by

∑

a6N

∑

d6N

∑

b|ad

1 6
∑

m6N2

∑

d|m

∑

b|m

1 =
∑

m6N2

τ2(m)

where τ(m) is the divisor function. Using elementary arguments ([4], page 140) we

deduce that the last sum has the expected order of magnitude. �

3. Proof of the main results

P r o o f of Theorem 1.2. Recall that we defined

MN (x) = {A ∈ IN : expp(A) 6 x for every p ∈ I}.

Clearly, with the same notation as in Lemma 2.6, we have

|MN(x)| 6
∑

t∈T1(x)

|{A ∈ IN : tr(A) = t}|.

Hence |MN (x)| 6 |T1(x)|A1, with A1 as in Lemma 2.7, and the bounds in Lem-

mas 2.6, 2.7 and 2.8 give, choosing M comparable to logN log |I|,

PN (x) ≪ CS for x = |I|T.

Choosing C small enough we obtain the result. �
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P r o o f of Theorem 1.3. In this case we are interested in the set

M∗
N (x) = {A ∈ I∗

N : 0 < expp(A) 6 x for every p ∈ I}.

As the determinant is multiplicative, if A ∈ GL2(Fp) has order n, then the order of

detA, seen as an element of Fp, divides n. Hence

|M∗
N(x)| 6

∑

m∈Z

|{A ∈ I∗
N : detA = m, 0 < expp(A) 6 x for every p ∈ I}|

where Z = {m : 1 6 |m| 6 N2, 0 < expp(m) 6 x for every p ∈ I}.

The number of elements of order than less or equal to x in F∗
p is

∑
ϕ(n) where the

sum runs over n 6 x with n | p−1, which is majorized by 2|S1,p(x)| (see Lemma 2.3).

Then proceeding as in Lemma 2.6, we get a bound for |Z| similar to that for |T1(x)|,

|Z| ≪M−1|I| log |I| ≪
C|I|

logN log log |I|

with M comparable with C−1 logN log |I| log log |I| that corresponds to x = |I|T∗.

Writing

|{A ∈ I∗
N : detA = m, 0 < expp(A) 6 x for every p ∈ I}| 6

∑

t∈Tm(x)

Am

and using Lemmas 2.6, 2.7 and 2.8 (see the proof of Theorem 1.2), we conclude

P∗
N (x) ≪ CS∗

and again it is enough to choose C small enough. �

4. Some other questions about the distribution

We are interested in knowing whether we can always get large order matrices with

small perturbations. To do this, we can restrict ourselves to the study of traces, and

then translate the results to matrices through the following lemma.
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Lemma 4.1. Let A be an element of SL2(Z). Fixing a generator g of F∗
p and

a prime factor q of p− 1, we have that expp(A) = q if and only if

tr(A) = gk(p−1)/q + g−k(p−1)/q

for some 1 6 k < q.

P r o o f. The condition imposed on the order of the matrix forces its Jordan canon-

ical form to be diagonal with entries α, α−1 ∈ Fp. The result is proved by writing

α = gk(p−1)/q since expp(A) = q. �

Identifying matrices with the same trace and taking the distance (between classes)

to be the distance between traces, we can obtain results about a kind of discrepancy

of matrices. The proofs are provided later in this section.

Theorem 4.2. Let J be an interval of length greater than 6p3/2(q − 1)−1 log p,

where q is a prime divisor of p − 1. Then there exists a matrix A ∈ SL2(Fp) such

that tr(A) ∈ J and expp(A) = q.

R.C.Baker and G.Harman proved in [1] that for infinitely many primes p the

largest factor of p − 1 is greater than p0.677. In fact, this is actually proved for

a positive proportion of the primes (see [9], §8.1, specially 8.1.7, and the nearby

formulas). Using this result, we obtain the following corollary:

Corollary 4.3. There exist positive constants C1 and C2 such that for at least

C1N/ logN prime numbers p ∈ [N, 2N ], there are matrices with expp(A) > N0.677

in any interval of length greater than C2N
0.823 logN .

Now, we change our point of view. We fix a matrix of large order and proceed to

study the distribution of its powers. Observe that the maximum order of a diagonal-

izable matrix in SL2(Fp) is p − 1, so we expect a matrix of this order to be a good

random vector generator. The next result shows that the powers of these matrices

are well distributed.

Theorem 4.4. Let A ∈ SL2(Z) be such that expp(A) = p− 1. Then

#{Ak, 1 6 k 6 N : tr(Ak) ∈ J} =
N |J |

p
+O(p1/2(log p)2),

where J is an interval contained in [1, p] and N < p.

For every pair of integers m and n, with p ∤ m, we define the trigonometric sum

S(N) =
N∑

k=1

e
(m
p
(gk + g−k)

)
e
( nk

p− 1

)
where e(t) = e2πit.
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To prove the previous theorems we address before the following lemmas.

Lemma 4.5. We have

a) |S(p− 1)| 6 2p1/2 and b) |S(N)| 6 7p1/2 log p

where p ∤ m and N < p.

P r o o f. In the former case, apply the change of variable x = gk to obtain

S(p− 1) =

p−1∑

x=1

e
(m
p
(x+ x̄)

)
χ(x)

where χ is a certain Dirichlet character, and x̄ denotes the inverse of x modulo p.

Now the result follows from [17], Theorem 10. To prove the bound b), we can employ

the completing technique (see Lemma 12.1 in [11], §12.2). Let S̃ be given by

S̃
(a
p

)
=

∑

0<k6p−1

e
( (m− a)gk +mg−k

p

)
e
( nk

p− 1

)
,

so that

S(N) =
1

p

∑

a (mod p)

λ
(a
p

)
S̃
(a
p

)

where

λ
(a
p

)
=

∑

0<y6N

e
(ay
p

)
.

On the one hand λ(0) = N , while on the other hand, for 0 < |a| 6 p/2 we have

|λ(a/p)| 6 p|a|−1 (note that λ(a/p) is the sum of a geometric progression). Therefore,

using these observations and the bound a), we conclude

|S(N)| 6
N

p
|S̃(0)|+

∑

0<|a|6p/2

|a|−1
∣∣∣S̃
(a
p

)∣∣∣

6 2p1/2 + 4p1/2(1 + log(p/2)) 6 7p1/2 log p.

�
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Lemma 4.6. We write S(m,n;N) instead of S(N) to emphasize the dependance

on the parameters. Then

q∑

k=1

e
(m
p
(gk(p−1)/q + g−k(p−1)/q)

)
=

q

p− 1

(p−1)/q∑

h=1

S(m,hq; p− 1).

P r o o f. By the definition of S(N), the sum on the right-hand side is

p−1∑

s=1

e
(m
p
(gs + g−s)

) (p−1)/q∑

h=1

e
( hqs

p− 1

)

where the inner sum is (p− 1)/q if (p− 1)/q divides s and zero otherwise. After the

change of variables s→ k(p− 1)/q, we obtain the result. �

P r o o f of Theorem 4.2. We can assume q − 1 > ep1/2 log p, where here and

in the rest of the proof “e” is the base of the natural logarithm, because otherwise

the result is trivial. In particular we can assume p > 211 (note that for p 6 211,

p < (e log p)2 and hence q − 1 < ep1/2 log p because q 6 p− 1).

Let g be a generator of F∗
p. Consider α = g(p−1)/q and let tk = (αk + α−k)p−1 be

the normalized traces modulo p in [0, 1]. Then

#{k 6 q − 1: tk ∈ [a, b]} > (b− a)(q − 1)−D(q − 1)(q − 1),

where

D(N) = sup
06a<b61

∣∣∣
#{k 6 N : a 6 tk 6 b}

N
− (b − a)

∣∣∣

is the discrepancy of the sequence {tk}. On the one hand, by Lemmas 4.6 and 4.5,

∣∣∣∣
q−1∑

k=1

e(mtk)

∣∣∣∣ 6
q

p− 1

(p−1)/q∑

h=1

|S(m,hq; p− 1)| 6 2p1/2.

On the other hand, the Erdős-Turán inequality ([20], Corollary 1.1) yields

D(q − 1) 6
1

M + 1
+

3

q − 1

M∑

m=1

1

m

∣∣∣∣
q−1∑

k=1

e(mtk)

∣∣∣∣

6
1

M + 1
+

6p1/2

q − 1
(1 + log(M + 1)),

and choosingM to be the integral part of (q−1)/ep1/2 log p, we get (q−1)D(q−1) 6

6p1/2 log p because 1/(M + 1) 6 ep1/2 log p/(q − 1) and (recall that p > 211)

log(M + 1) 6 log
( p− 1

ep1/2 log p
+ 1
)
6 log

p1/2

e
= −1 +

1

2
log p.

We conclude that the interval J = J(p, q) satisfies |J | > 6p3/2(q − 1)−1 log p. �
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P r o o f of Theorem 4.4. In this case, the matrix is similar to one of the form(
g 0

0 g−1

)
with g a generator of F∗

p, so tr(A
k) = gk + g−k.

Let tk = (gk+g−k)p−1 be the normalized traces modulo p in [0, 1]. By Lemma 4.5,

∣∣∣∣
N∑

k=1

e
(m
p
(gk + g−k)

)∣∣∣∣ 6 7p1/2 log p,

and we can apply the Erdős-Turán inequality again to obtain

D(N) 6
1

M + 1
+

21p1/2 log p

N
(1 + log(M + 1)).

Taking

M =
⌈ N

p1/2(log p)2

⌉

where ⌈x⌉ is the smallest integer not less than x, we get D(N) ≪ N−1p1/2(log p)2

and the result follows by the definition of discrepancy [12]. �

Acknowledgment. We are grateful to M. Z.Garaev for insightful comments on

Lemma 4.5. We thank the anonymous referee for careful reading of the manuscript

and useful comments.

References

[1] R.C. Baker, G.Harman: Shifted primes without large prime factors. Acta Arith. 83
(1998), 331–361.

[2] R.C. Baker, G.Harman, J. Pintz: The difference between consecutive primes II. Proc.
Lond. Math. Soc. (3) 83 (2001), 532–562.

[3] M.-C.Chang: Burgess inequality in Fp2 . Geom. Funct. Anal. 19 (2009), 1001–1016.
[4] H.Davenport: Multiplicative Number Theory (2nd rev. ed.). Graduate Texts in Math-
ematics 74, Springer, New York, 1980.

[5] J.Eichenauer-Herrmann, H.Grothe, J. Lehn: On the period length of pseudorandom
vector sequences generated by matrix generators. Math. Comput. 52 (1989), 145–148.

[6] J. Friedlander, H. Iwaniec: Opera de Cribro. American Mathematical Society Collo-
quium Publications 57, Providence, 2010.

[7] P.X.Gallagher: A larger sieve. Acta Arith. 18 (1971), 77–81.
[8] G.H.Hardy, E.M.Wright: An Introduction to the Theory of Numbers (6th rev. ed.).
Oxford University Press, Oxford, 2008.

[9] G.Harman: Prime-Detecting Sieves. London Mathematical Society Monographs Se-
ries 33, Princeton University Press, Princeton, 2007.

[10] M.N.Huxley: On the difference between consecutive primes. Invent. Math. 15 (1972),
164–170.

[11] H. Iwaniec, E.Kowalski: Analytic Number Theory. American Mathematical Society Col-
loquium Publications 53, Providence, 2004.

[12] L.Kuipers, H.Niederreiter: Uniform Distribution of Sequences. Pure and Applied Math-
ematics, John Wiley & Sons, New York, 1974.

816



[13] P.Kurlberg: On the order of unimodular matrices modulo integers. Acta Arith. 110
(2003), 141–151.

[14] P.Kurlberg, L. Rosenzweig, Z. Rudnick: Matrix elements for the quantum cat map: fluc-
tuations in short windows. Nonlinearity 20 (2007), 2289–2304.

[15] P.Kurlberg, Z. Rudnick: On quantum ergodicity for linear maps of the torus. Commun.
Math. Phys. 222 (2001), 201–227.

[16] P.L’Ecuyer: Uniform random number generation. Ann. Oper. Res. 53 (1994), 77–120.
[17] W.C.W.Li: Number Theory with Applications. Series on University Mathematics 7,

World Scientific, River Edge, 1996.
[18] H.Maier: Primes in short intervals. Michigan Math. J. 32 (1985), 221–225.
[19] R.A.Mollin: Advanced Number Theory with Applications. Discrete Mathematics and

Its Applications, CRC Press, Boca Raton, 2010.
[20] H.L.Montgomery: Ten Lectures on the Interface between Analytic Number Theory

and Harmonic Analysis. CBMS Regional Conference Series in Mathematics 84, AMS,
Providence, 1994.

[21] H.L.Montgomery, R. C.Vaughan: The large sieve. Mathematika, Lond. 20 (1973),
119–134.

[22] H.Niederreiter: Statistical independence properties of pseudorandom vectors produced
by matrix generators. J. Comput. Appl. Math. 31 (1990), 139–151.

[23] H.Roskam: A quadratic analogue of Artin’s conjecture on primitive roots. J. Number
Theory 81 (2000), 93–109.

[24] V.Shoup: Searching for primitive roots in finite fields. Math. Comput. 58 (1992),
369–380.

[25] P. J. Stephens: An average result for Artin’s conjecture. Mathematika, Lond. 16 (1969),
178–188.

Authors’ address: Fe r n a n d o Ch am i z o, D u l c i n e a R a b o s o, Department of
Mathematics and ICMAT, Faculty of Science, Universidad Autónoma de Madrid, Fran-
cisco Tomás y Valiente 7, 280 49 Madrid, Spain, e-mail: fernando.chamizo@uam.es,
dulcinea.raboso@uam.es.

817


		webmaster@dml.cz
	2020-07-03T21:14:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




