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Abstract. Second order parabolic equations on Lipschitz domains subject to inhomoge-
neous Neumann (or, more generally, Robin) boundary conditions are studied. Existence
and uniqueness of weak solutions and their continuity up to the boundary of the parabolic
cylinder are proved using methods from the theory of integrated semigroups, showing in
particular the well-posedness of the abstract Cauchy problem in spaces of continuous func-
tions. Under natural assumptions on the coefficients and the inhomogeneity the solutions
are shown to converge to an equilibrium or to be asymptotically almost periodic.
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1. Introduction

Let Ω be a bounded Lipschitz domain in R
N . Our model problem is the heat

equation














ut(t, x) −∆u(t, x) = f(t, x), t > 0, x ∈ Ω

∂u(t, z)

∂ν
= g(t, z), t > 0, z ∈ ∂Ω

u(0, x) = u0(x), x ∈ Ω

subject to inhomogeneous Neumann boundary conditions. The above problem has

a unique weak solution in an L2-sense if f , g and u0 are square-integrable. We

are interested in its regularity on the boundary and its asymptotic behavior. Such

problems appear in a natural way for example in control theory [7], [8] or thermal

imaging [9].

We show the following: if u0 is continuous and f and g satisfy some integrability

conditions, then the solution u is continuous up to the boundary of the parabolic
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cylinder; if f and g converge to zero in a time-averaged sense, then u converges

to zero uniformly on Ω; finally, if f and g are almost periodic functions, then u is

asymptotically almost periodic with essentially the same frequencies.

For the particular case f = 0 and g = 0 the regularity assertion states that for

all initial values u0 ∈ C(Ω) there exists a unique mild solution u in the space C(Ω),

i.e., that the realization of ∆ in C(Ω) with Neumann boundary conditions gener-

ates a strongly continuous semigroup. In this sense our results continue the recent

struggle to study well-posedness of parabolic equations in the space of continuous

functions [23], [22], [14], [5], [26], [3].

Even though the heat equation will be our model case, we admit general strongly

elliptic operators with bounded coefficients subject to Robin boundary conditions in

all of our results, imposing only some additional structure conditions for the analysis

of the asymptotic behavior in order to prevent exponential blow-up and decay. For

homogeneous boundary conditions, i.e., if g = 0, these problems are well understood

and can be studied by semigroup methods. Inhomogeneous boundary conditions,

however, are more delicate. For smooth data, some existence and regularity results

can be found in [20], Theorem 5.18, or [12]. Existence of a weak solution is shown

in [21], §4.15.3. Here we proceed in the spirit of [1], where regularity and asymptotic

almost periodicity of the inhomogeneous Dirichlet problem have been studied.

In order to study the asymptotic behavior we follow a semigroup approach by

considering the equation as an abstract Cauchy problem in a suitable space, which

is adapted to the boundary data. To this end one could use spaces of distributions

that contain functionals arising from boundary integrals, a strategy which has been

pursued with negative exponent Sobolev spaces [18] and Sobolev-Morrey spaces [17].

This approach, however, has the disadvantage that a priori the solutions are no

more regular than generic elements of these spaces, whereas it would be favorable to

have continuous functions as solutions. The parabolic structure of the equation does

not immediately help because a gain in regularity is not obvious in presence of the

inhomogeneities. The regularity matters in particular in the limits t→ 0 and t→ ∞

since semigroup methods provide convergence in the norm of the underlying space.

In view of these considerations we aim towards results in the space C(Ω). Exis-

tence is however much more convenient in L2(Ω), which is why we will start out by

considering L2-solution. By using C(Ω) we are able to obtain uniform convergence

of u on Ω as t → 0 and as t → ∞, or more generally asymptotic almost periodicity.

This seems to be new for Neumann boundary conditions and is our main result.

Our strategy is the following. When formulating the initial-boundary value prob-

lem as an abstract Cauchy problem on L2(Ω) or C(Ω), we switch to a product space.

More precisely, we regard the inhomogeneous heat equation as an inhomogeneous ab-

stract Cauchy problem for the operator A given by A(u, 0) = (∆u,−∂u/∂ν) in the
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space L2(Ω)×L2(∂Ω). This operator A is not densely defined and hence it is not the

generator of a strongly continuous semigroup. In fact, it turns out that A does not

even satisfy the Hille-Yosida estimates. Still, the operator is resolvent positive and

hence generates a once integrated semigroup. This implies existence and uniqueness

of solutions for regular right hand sides f and g and gives information about the

asymptotic behavior of solutions. These results can be extended to a larger class of

less regular right hand sides once we obtain suitable a priori estimates.

The idea to consider a non-densely defined operator A on a product space in order

to treat inhomogeneous boundary conditions was first used by Arendt for the study

of the heat equation with inhomogeneous Dirichlet boundary conditions [1]. Here

we copy the skeleton of his proofs. The details are however quite different, the main

aspects being the following:

(1) We restrict ourselves to Lipschitz domains, which is the usual framework for

Neumann problems, whereas one of Arendt’s main points are the optimal bound-

ary regularity assumptions.

(2) In [1] the a priori estimate is a consequence of a version of the parabolic maxi-

mum principle, which is proved there. In our situation, on the other hand, we do

not have contractivity properties and thus need more sophisticated estimates.

(3) The Neumann problem has a smoothing effect with respect to the boundary

conditions, which allows us to obtain continuous solutions even for non-smooth

functions g, whereas for Dirichlet problems the boundary function has to be

continuous. This also explains why for the Neumann problem the solution is

asymptotically almost periodic in the sense of Bohr even if the right hand side

is almost periodic only in the sense of Stepanoff.

The article is organized as follows. In Section 2 we introduce the initial-boundary

value problem. We show existence and uniqueness of solutions and discuss the rela-

tionship between three different notions of solutions. Section 3 contains results and

pointwise estimates for the solutions as well as their continuity. The most technical

part of this section is however postponed to Appendix A in the hope that this im-

proves the readability of the article as a whole. In Section 4 we study the convergence

of solutions. More precisely, we give natural sufficient conditions for the solution to

be bounded or to converge to a constant function. Finally, in Section 5 we show

that for asymptotically almost period right hand sides in the sense of Stepanoff, the

solution is asymptotically almost periodic in the sense of Bohr.
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2. Solutions

Let Ω ⊂ R
N be a bounded Lipschitz domain, N > 2. For convenience we assume

throughout that Ω is connected; otherwise we could consider each connected compo-

nent separately. Let aij ∈ L∞(Ω), bj, ci ∈ Lq(Ω), d ∈ Lq/2(Ω) and β ∈ Lq−1(∂Ω) be

given, where q > N is arbitrary, and assume that there exists µ > 0 such that

(2.1)

N
∑

i,j=1

aijξiξj > µ|ξ|2 for all ξ ∈ R
N .

Throughout the article we will always refer to the inhomogeneous Robin problem

(2.2) (Pu0,f,g)















ut(t, x)−Au(t, x) = f(t, x), t > 0, x ∈ Ω,

∂u(t, z)

∂νA
+ βu(t, z) = g(t, z), t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

with given u0 ∈ L2(Ω), f ∈ L2((0,∞);L2(Ω)) and g ∈ L2((0,∞);L2(∂Ω)). Here, at

least on a formal level,

Au :=

N
∑

j=1

Dj

( N
∑

i=1

aijDiu+ bju

)

−

( N
∑

i=1

ciDiu+ du

)

,

∂u

∂νA
:=

N
∑

j=1

( N
∑

i=1

aijDiu+ bju

)

νj ,

where ν = (νj)
N
j=1 denotes the outer unit normal of Ω at the boundary ∂Ω. It is

convenient to introduce also the bilinear forms

(2.3) a0(u, v) :=

∫

Ω

N
∑

j=1

( N
∑

i=1

aijDiu+ bju

)

Djv dx+

∫

Ω

( N
∑

i=1

ciDiu+ du

)

v dx

and

(2.4) aβ(u, v) := a0(u, v) +

∫

∂Ω

βuv dσ

for u and v in H1(Ω), where H1(Ω) refers to the Sobolev space of all functions in

L2(Ω) whose first derivative also lies in L2(Ω).

We introduce and compare various notions for a solution of (Pu0,f,g), which are

based on the observation that on a formal level the divergence theorem gives

(2.5) a0(u, v) =

∫

∂Ω

∂u

∂νA
v dσ −

∫

Ω

Auv dx

for all v ∈ H1(Ω). A weak solution is now defined by testing against a smooth

function and formally integrating by parts.
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Definition 2.1. We say that a function u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

is a weak solution of (Pu0,f,g) on [0, T ] for some T > 0 if

(2.6) −

∫ T

0

∫

Ω

u(s)ψt(s) dxds+

∫ T

0

aβ(u(s), ψ(s)) ds

=

∫

Ω

u0ψ(0) dx+

∫ T

0

∫

Ω

f(s)ψ(s) dxds+

∫ T

0

∫

∂Ω

g(s)ψ(s) dσ ds

for all ψ ∈ H1(0, T ;H1(Ω)) that satisfy ψ(T ) = 0.

We say that a function u : [0,∞) → L2(Ω) is a weak solution of (Pu0,f,g) on [0,∞)

if for every T > 0 its restriction to [0, T ] is a weak solution on [0, T ].

In order to give two further definitions of a solution, we first introduce the L2-

realization A2 of A with Robin boundary conditions, which is also based on (2.5).

Definition 2.2.

(a) Let u ∈ H1(Ω). We say that Au ∈ L2(Ω) if there exists a (necessarily unique)

function f ∈ L2(Ω) satisfying a0(u, η) = −
∫

Ω
fη dx for all η ∈ H1

0 (Ω). In this

case we define Au := f .

(b) Let u ∈ H1(Ω) satisfy Au ∈ L2(Ω). We say that ∂u/∂νA ∈ L2(Ω) if there

exists a (necessarily unique) function g ∈ L2(∂Ω) which satisfies the relation

a0(u, η) =
∫

∂Ω
gη dσ −

∫

Ω
Auη dx for all η ∈ H1(Ω). In this case we define

∂u/∂νA := g.

(c) We define the operator A2 on the space L
2(Ω)× L2(∂Ω) by

D(A2) :=
{

(u, 0): u ∈ H1(Ω), Au ∈ L2(Ω),
∂u

∂νA
∈ L2(∂Ω)

}

A2(u, 0) :=
(

Au, −
∂u

∂νA
− βu|∂Ω

)

.

Remark 2.3. It is easily checked that (u, 0) ∈ D(A2) with −A2(u, 0) = (f, g) if

and only if

aβ(u, v) =

∫

Ω

fv dx+

∫

∂Ω

gv dσ

for all v ∈ H1(Ω).

It is an exercise in applying Hölder’s inequality, the Sobolev embedding theorems

and Young’s inequality to prove that there exists ω > 0 such that

(2.7) aβ(u, u) >
µ

2

∫

Ω

|∇u|2 dx− ω

∫

Ω

|u|2 dx

for all u ∈ H1(Ω). We leave the verification to the reader.
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Next we collect a few facts about A2.

Lemma 2.4. The operator A2 is resolvent positive. More precisely, the operator

λ−A2 : D(A2) → L2(Ω)×L2(∂Ω) is invertible for all λ > ω, where ω is as in (2.7),

and if A2(u, 0) = (f, g) with non-negative functions f ∈ L2(Ω) and g ∈ L2(∂Ω), then

u > 0 almost everywhere. Moreover, if D(A2) is equipped with the graph norm, then

D(A2) is continuously embedded into H
1(Ω)× {0}.

P r o o f. Let ω be as in (2.7) and fix λ > ω. Then

(2.8) λ

∫

Ω

|u|2 dx+ aβ(u, u) > α‖u‖2H1(Ω)

for all u ∈ H1(Ω) with α := min{λ − ω, µ/2} > 0. Hence by the Lax-Milgram

theorem [16], §5.8, for every f ∈ L2(Ω) and g ∈ L2(∂Ω) there exists a unique

function u ∈ H1(Ω) such that

(2.9) λ

∫

Ω

uv dx+ aβ(u, v) =

∫

Ω

fv dx+

∫

∂Ω

gv dσ

for all v ∈ H1(Ω). By Remark 2.3 this means precisely that there is a unique function

u ∈ H1(Ω) with (u, 0) ∈ D(A2) and

(λ−A2)(u, 0) = (λu, 0)−A2(u, 0) = (f, g).

We have seen that λ − A2 : D(A2) → L2(Ω) × L2(∂Ω) is a bijection for λ > ω.

Assume now that f 6 0 and g 6 0. Let (u, 0) := (λ−A2)
−1(f, g) and set v := u+ =

ub{u>0}. Then

Djv = Djub{u>0} and v|∂Ω = u|∂Ωb{u|∂Ω>0}

and hence

0 >

∫

Ω

fv dx+

∫

∂Ω

gv dσ = λ

∫

Ω

uv dx+ aβ(u, v) = λ

∫

Ω

|v|2 dx+ aβ(v, v) > 0

by (2.9). By (2.8) this shows that v = 0, i.e., u 6 0 almost everywhere. We have

shown that the resolvent (λ − A2)
−1 is a positive operator. Since every positive

operator is continuous [4] we deduce that λ−A2 is in fact invertible.

In particular we have proved that A2 is closed. Hence D(A2) is a Banach space for

the graph norm of A2, and by definition of A2 we have D(A2) ⊂ H1(Ω)×{0}. Since

both of these spaces are continuously embedded into L2(Ω)×L2(∂Ω), we deduce from

the closed graph theorem that D(A2) is continuously embedded into H
1(Ω)× {0}.

�
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We always equip D(A2) with the graph norm.

Now we can define mild and classical solutions of (Pu0,f,g). The definition of

a classical solution is obtained by writing (Pu0,f,g) in terms of A2 in a straightforward

way, assuming smoothness in the time variable. The definition of a mild solution is

similar, but uses an integrated form of the equation. These two notions are the most

common ones in the study of abstract Cauchy problems.

Definition 2.5. Let I = [0, T ] for some T > 0, or let I = [0,∞).

(a) We say that a function u is a classical L2-solution of (Pu0,f,g) on I if u is in

C1(I;L2(Ω)), u(0) = u0, the mapping t 7→ (u(t), 0) is in C(I;D(A2)) and the

relation

(2.10) (ut(t), 0)−A2(u(t), 0) = (f(t), g(t))

holds for all t ∈ I.

(b) We say that a function u is a mild L2-solution of (Pu0,f,g) on I if u ∈

C(I;L2(Ω)), (
∫ t

0 u(s) ds, 0) ∈ D(A2) for all t > 0 and

(2.11) (u(t)− u0, 0)−A2

(
∫ t

0

u(s) ds, 0

)

=

(
∫ t

0

f(s) ds,

∫ t

0

g(s) ds

)

for all t > 0.

It will turn out later that weak solutions and mild L2-solutions are in fact the

same. Let us start with an easy relationship between the three notions of a solution.

Theorem 2.6. Let either I = [0, T ] with T > 0 or I = [0,∞).

(a) Every classical L2-solution of (Pu0,f,g) on I is a weak solution on I.

(b) Every weak solution of (Pu0,f,g) on I is a mild L
2-solution on I.

P r o o f. All three definitions depend only on the behavior of u on bounded

intervals, so it suffices to consider the case I = [0, T ].

(a) Let u be a classical L2-solution. Then u ∈ C([0, T ];H1(Ω)) by Lemma 2.4,

which shows that u has the regularity requested in Definition 2.1. Let ψ be in

H1(0, T ;H1(Ω)) and satisfy ψ(T ) = 0. From (2.10) and Remark 2.3 we obtain

that

∫

Ω

ut(t)ψ(t) + aβ(u(t), ψ(t)) =

∫

Ω

f(t)ψ(t) dx+

∫

∂Ω

g(t)ψ(t) dσ

for all t ∈ [0, T ]. Integrating over [0, T ] and integrating the first summand by

parts gives (2.6).
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(b) Let u be a weak solution. Fix functions ϕ ∈ H1(0, T ) and η ∈ H1(Ω), where

ϕ(T ) = 0. Define ψ(t) := ϕ(t) · η. Then ψ ∈ H1(0, T ;H1(Ω)) with ψ(T ) = 0

and hence

−

∫ T

0

(
∫

Ω

u(s)η dx

)

ϕt(s) ds =

(
∫

Ω

u0η dx

)

ϕ(0)

+

∫ T

0

(

−aβ(u(s), η) +

∫

Ω

f(s)η dx+

∫

∂Ω

g(s)η dσ

)

ϕ(s) ds

by (2.6). Hence t 7→
∫

Ω
u(t)η dx is weakly differentiable for all η ∈ H1(Ω) with

weak derivative

d

dt

∫

Ω

u(t)η dx = −aβ(u(s), η) +

∫

Ω

f(s)η dx+

∫

∂Ω

g(t)η dσ

and initial value
∫

Ω
u(0)η dx =

∫

Ω
u0η dx, hence u(0) = u0. We deduce that

∫

Ω

u(t)η dx =

∫

Ω

u0η dx+

∫ t

0

(

−aβ(u(s), η) +

∫

Ω

f(s)η dx+

∫

∂Ω

g(s)η dσ

)

ds

for all t ∈ [0, T ] and all η ∈ H1(Ω). Since u ∈ L2(0, T ;H1(Ω)) and v 7→ aβ(v, η)

is a continuous linear functional on H1(Ω), this implies that

∫

Ω

(u(t)− u0)η dx+ aβ

(
∫ t

0

u(s) ds, η

)

=

∫

Ω

(
∫ t

0

f(s) ds

)

η dx+

∫

∂Ω

(
∫ t

0

g(s) ds

)

η dσ

for all η ∈ H1(Ω). Hence by Remark 2.3 the function u is a mild solution. �

We want to establish the existence of a weak solution via the theory of resolvent

positive operators. Since L2(Ω) × L2(∂Ω) is a Banach lattice with order continu-

ous norm, the resolvent positive operator A2 generates a once integrated semigroup,

see [2], Theorem 3.11.7. This yields the following existence, uniqueness and compar-

ison results for L2-solutions.

Proposition 2.7. Let u0 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)) and g ∈ L2(0, T ;L2(∂Ω))

for some T > 0.

(a) Problem (Pu0,f,g) has at most one mild L
2-solution.

(b) Assume that

(i) (u0, 0) ∈ D(A2),

(ii) A2(u0, 0) + (f(0), g(0)) ∈ D(A2),
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(iii) f ∈ C2([0, T ];L2(Ω)) and

(iv) g ∈ C2([0, T ];L2(∂Ω)).

Then (Pu0,f,g) has a classical L
2-solution.

(c) Assume that u0 > 0, f(t) > 0 and g(t) > 0 almost everywhere for almost

every t ∈ (0, T ). If u is a mild L2-solution of (Pu0,f,g), then u(t) > 0 almost

everywhere for every t ∈ (0, T ).

P r o o f. By Definition 2.5 a function u is a mild (classical) L2-solution of (Pu0,f,g)

if and only if the mapping t 7→ (u(t), 0) is a mild (classical) solution of the ab-

stract Cauchy problem associated with A2 with inhomogeneity (f, g), confer [2],

§3.1. Hence, part (b) follows from [2], Corollary 3.2.11 b.

Let (S1(t))t>0 and (S2(t))t>0 denote, respectively, the once and twice integrated

semigroups generated by A2. As in the proof of [2], Theorem 3.11.11, the function S2

is convex. Since S1 is the strong derivative of S2, the function S1 is non-decreasing.

Under the assumptions of part (c), by [2], Lemma 3.2.9 a,

(2.12) v(t) := S1(t)(u0, 0) +

∫ t

0

S1(s)(f(t− s), g(t− s)) ds

defines a function v in C1([0,∞);L2(Ω)×L2(∂Ω)) with (u(t), 0) = v′(t) for all t > 0.

Thus in order to show (c) it suffices to show that v is non-decreasing in t. Since S1

is non-decreasing and u0 > 0, the first summand on the right hand side of (2.12)

is non-decraesing. For the second summand, note that with the convention that

S1(s) := 0 for s < 0 the function S1 is non-decreasing on all of R since S1(0) = 0,

hence
∫ t

0

S1(s)(f(t− s), g(t− s)) ds =

∫ ∞

0

S1(t− s)(f(s), g(s)) ds

is also non-decreasing in t. This concludes the proof of part (c).

Part (a) follows from (c) by linearity. �

Remark 2.8. The hypothesis in part (b) of Proposition 2.7 can be equivalently

stated as follows: the function u0 ∈ L2(Ω) satisfies Au0 ∈ L2(Ω), ∂u0/∂νA ∈ L2(∂Ω)

and ∂u0/∂νA+βu0 = g(0). Moreover, v := Au0+f(0) ∈ L2(Ω) satisfies Av ∈ L2(Ω)

and ∂v/∂νA ∈ L2(∂Ω).

We want to show that for all square-integrable functions u0, f and g we have

a unique weak solution. As the first step we prove a bound for classical L2-solutions

in the norm of C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).
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Lemma 2.9. If u is a classical L2-solution of (Pu0,f,g) on [0, T ] for some T > 0,

then

(2.13) sup
06t6T

∫

Ω

|u(t)|2 dx+

∫ T

0

∫

Ω

|∇u|2 dxds

6 c

∫

Ω

|u0|
2 dx+ c

∫ T

0

∫

Ω

|f(t)|2 dxds+ c

∫ T

0

∫

∂Ω

|g(t)|2 dσ ds

for a constant c > 0 that depends only on T , Ω and the values µ and ω in (2.7).

P r o o f. Let t ∈ [0, T ] be arbitrary. Then

1

2

∫

Ω

|u(t)|2 dx−
1

2

∫

Ω

|u0|
2 dx

=
1

2

∫ t

0

d

ds

∫

Ω

|u(s)|2 dxds =

∫ t

0

∫

Ω

u(s)ut(s) dxds

=

∫ t

0

∫

Ω

u(s)(Au(s) + f(s)) dxds

=

∫ t

0

∫

∂Ω

∂u(s)

∂νA
u(s) dσ ds−

∫ t

0

a0(u(s), u(s)) ds+

∫ t

0

∫

Ω

f(s)u(s) dxds

=

∫ t

0

∫

Ω

f(s)u(s) dxds+

∫ t

0

∫

∂Ω

g(s)u(s) dσ ds−

∫ t

0

aβ(u(s), u(s)) ds

6
1

2

∫ t

0

∫

Ω

|f(s)|2 dxds+
1

4ε

∫ t

0

∫

∂Ω

|g(s)|2 dσ ds

−
(µ

2
− εc21

)

∫ t

0

∫

Ω

|∇u(s)|2 dxds+
(

ω +
1

2
+ εc21

)

∫ t

0

∫

Ω

|u(s)|2 dxds,

where we have used Young’s inequality and (2.7). Here c1 > 0 is the norm of the

trace operator from H1(Ω) to L2(∂Ω). We pick ε := µ/(4c21) and vary over t to

deduce that

sup
06s6t

∫

Ω

|u(s)|2 dx+

∫ t

0

∫

Ω

|∇u(s)|2 dxds

6 c2

∫

Ω

|u0|
2 dx+ c2

∫ t

0

∫

Ω

|f(s)|2 dxds

+ c2

∫ t

0

∫

∂Ω

|g(s)|2 dσ ds+ c2

∫ t

0

∫

Ω

|u(s)|2 dxds

6 c2

∫

Ω

|u0|
2 dx+ c2

∫ t

0

∫

Ω

|f(s)|2 dxds

+ c2

∫ t

0

∫

∂Ω

|g(s)|2 dσ ds+ tc2 sup
06s6t

∫

Ω

|u(s)|2 dx
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for all t ∈ [0, T ] with a constant c2 > 0 that depends only on c1, µ and ω. This shows

that with t0 := 1/(2c2) we have

sup
06s6t

∫

Ω

|u(s)|2 dx+

∫ t

0

∫

Ω

|∇u(s)|2 dxds

6 2c2

∫

Ω

|u0|
2 dx+ 2c2

∫ t

0

∫

Ω

|f(s)|2 dxds+ 2c2

∫ t

0

∫

∂Ω

|g(s)|2 dσ ds

for all t ∈ [0, t0]. We split [0, T ] into finitely many intervals of length at most s0 and

apply the last inequality successively on these intervals. This gives (2.13). �

We also collect some results about the homogeneous problem (Pu0,0,0) for later

use. To this end we introduce the generator A2,h for the homogeneous problem,

which is the part of A2 in L
2(Ω) × {0}. All of the following results stem from the

semigroup theory.

Proposition 2.10. The operator A2,h given by

D(A2,h) =
{

u ∈ H1(Ω): Au ∈ L2(Ω),
∂u

∂νA
+ βu = 0

}

,

A2,hu = Au

is the generator of an analytic C0-semigroup (T2,h(t))t>0 on L
2(Ω). Given u0 ∈

L2(Ω), the function u defined by u(t) := T2,h(t)u0 is the unique mild L
2-solution of

(Pu0,0,0), and we have the following properties:

(i) There exist M > 0 and ω ∈ R depending only on N , Ω and the coefficients of

the equation such that ‖u(t)‖L∞(Ω) 6Meωt‖u0‖L∞(Ω) for all t > 0.

(ii) For every t > 0 we have u(t) ∈ C(Ω).

(iii) If u0 ∈ C(Ω), then u ∈ C([0,∞); C(Ω)) for all T > 0.

P r o o f. The operator −A2,h is associated with the bounded, L
2(Ω)-elliptic

bilinear form aβ : H
1(Ω) × H1(Ω) → R defined in (2.4). Hence A2,h generates an

analytic C0-semigroup on L
2(Ω), see [11], Proposition XVII.A.6.3. By construction

a function u is a mild solution for the abstract Cauchy problem associated with A2,h

if and only if it is a mild L2-solution of (Pu0,0,0), which proves the assertion about the

mild L2-solutions [2], Theorem 3.1.12. Property (i) follows from [10], Proposition 7.1.

Properties (ii) and (iii) were proved in [23], Theorem 4.3, for bounded coefficients.

The same arguments work here, but compare also [24], [22], where unbounded (and

nonlinear) coefficients are considered. �

The following is our main existence theorem.
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Theorem 2.11. Let u0 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)) and g ∈ L2(0, T ;L2(∂Ω))

be given, where T > 0 is arbitrary. Then there exists a weak solution u of (Pu0,f,g)

on [0, T ], which is unique even within the class of mild L2-solutions.

P r o o f. Pick sequences (fn) ⊂ C2([0, T ];L2(Ω)) and (gn) ⊂ C2([0, T ];L2(∂Ω))

that satisfy fn(0) = 0, gn(0) = 0, fn → f in L2(0, T ;L2(Ω)) and gn → g in

L2(0, T ;L2(∂Ω)). Since A2,h is the generator of a C0-semigroup, there exists a se-

quence (un,0) ⊂ D(A2
2,h) satisfying un,0 → u0 in L

2(Ω), see [15], Proposition II.1.8.

By Proposition 2.7 there exists a classical L2-solution un of (Pun,0,fn,gn).

By Lemma 2.9 the sequence (un) is Cauchy in C([0, T ];L2(Ω)) ∩L2(0, T ;H1(Ω)).

Denote its limit by u. Using that un is a weak solution of (Pun,0,fn,gn) by Theo-

rem 2.6, we can pass in (2.6) to the limit and obtain that u is a weak solution of

(Pu0,f,g). Uniqueness has already been asserted in Proposition 2.7. �

Since being a solution is a local concept, we obtain the following corollary.

Corollary 2.12. For given functions u0 ∈ L2(Ω), f ∈ L2
loc([0,∞);L2(Ω)) and

g ∈ L2
loc([0,∞);L2(∂Ω)), equation (Pu0,f,g) has a weak solution on [0,∞), which is

unique even within the class of mild solutions.

We deduce the following from Theorem 2.6 and Theorem 2.11 or Corollary 2.12.

Corollary 2.13. For problem (Pu0,f,g) the notions of weak and mild solutions

coincide.

Let us have a glance on the regularity of the weak solution that exists by The-

orem 2.11. We can ask whether for all u0 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)) and

g ∈ L2(0, T ;L2(∂Ω)) the weak solution u of (Pu0,f,g) is in fact a strong solution,

i.e., u ∈ H1(0, T ;L2(Ω)) or, equivalently, t 7→ (u(t), 0) is in L2(0, T ;D(A2)). In

other words, we ask whether (Pu0,f,g) has maximal parabolic regularity.

One might expect maximal regularity at first because for g = 0 all weak solutions

are strong solutions, see [13], Theorem 4.1. We show, however, that for general g the

solution u is not in H1(0, T ;L2(Ω)).

Proposition 2.14. For every T > 0 there exists g ∈ L2(0, T ;L2(∂Ω)) such that

the weak solution u of (P0,0,g) is not in H
1(0, T ;L2(Ω)).

P r o o f. Assume the converse. Since (P0,f,0) has a strong solution for all f ∈

L2(0, T ;L2(Ω)) by [13], Theorem 4.1, we thus deduce that (P0,f,g) has a unique

strong solution for every f ∈ L2(0, T ;L2(Ω)) and every g ∈ L2(0, T ;L2(∂Ω)). Now

the proof of [13], Theorem 2.2, shows that

(2.14) sup
λ>λ0

‖λ(λ−A2)
−1‖ <∞
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for some λ0 > 0, for which we only have to note that the proof still works for non-

densely defined operators. But by [2], Proposition 3.3.8, estimate (2.14) contradicts

the fact that A2 is not densely defined. �

Remark 2.15. We can be more precise in Proposition 2.14 by relating the ex-

istence of strong solutions to the membership of g in some trace space. Namely,

(Pu0,f,g) has a strong solution if and only if there exists G ∈ H1(0, T ;L2(Ω)) such

that t 7→ (G(t), 0) is in L2(0, T ;D(A2)) and satisfies A2(G(t), 0) = (AG(t),−g(t)).

To see this, let G be a function with this property and let u denote the weak solu-

tion of (Pu0,f,g). Then u−G is a weak solution of (Pu0−G(0),f+AG−Gt,0) and hence

a strong solution of this problem thanks to maximal regularity in the case of homo-

geneous boundary conditions. Thus u is in H1(0, T ;L2(Ω)) and t 7→ (u(t), 0) is in

L2(0, T ;D(A2)), i.e., u is a strong solution of (Pu0,f,g). On the other hand, if u is

a strong solution of (Pu0,f,g), we may set G := u.

3. Regularity

The goal of this section is to show that for u0 ∈ C(Ω) the weak solution of (Pu0,f,g)

is continuous on the parabolic cylinder [0,∞)×Ω, so in particular continuous up to

the boundary. The main tool is the following pointwise a priori estimate, which we

will use also for the study of the asymptotic behavior.

Proposition 3.1. Fix T > 0. Let r1, r2, q1, q2 ∈ [2,∞) satisfy

(3.1)
1

r1
+

N

2q1
< 1 and

1

r2
+
N − 1

2q2
<

1

2
.

Let u0 ∈ L2(Ω), f ∈ Lr1(0, T ;Lq1(Ω)) and g ∈ Lr2(0, T ;Lq2(∂Ω)) be given and

denote by u the weak solution of (Pu0,f,g). Then

(3.2) ‖u‖2L∞(T/2,T ;L∞(Ω)) 6 c‖u‖2L2(0,T ;L2(Ω))

+ c‖f‖2Lr1(0,T ;Lq1(Ω)) + c‖g‖2Lr2(0,T ;Lq2(∂Ω)),

where c depends only on T , N , Ω, r1, q1, r2, q2 and the coefficients of the equation.

If we have u0 = 0, then we obtain the global estimate

(3.3) ‖u‖2L∞(0,T ;L∞(Ω)) 6 c‖u‖2L2(0,T ;L2(Ω))

+ c‖f‖2Lr1(0,T0;Lq1(Ω)) + c‖g‖2Lr2(0,T0;Lq2 (∂Ω)).

The proof of Proposition 3.1 is lengthy and technical. We postpone it to Ap-

pendix A in order not to interrupt the train of thought. We will use mainly the
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following consequence of Proposition 3.1, which arises from combining it with Propo-

sition 2.10.

Theorem 3.2. Let T > 0 be arbitrary, let f and g satisfy the conditions of

Proposition 3.1 and let u0 ∈ L∞(Ω) be given. Then the weak solution u of (Pu0,f,g)

satisfies

(3.4) ‖u‖L∞(0,T ;L∞(Ω)) 6 c‖u0‖L∞(Ω) + c‖f‖Lr1(0,T ;Lq1(Ω)) + c‖g‖Lr2(0,T ;Lq2 (Ω)),

where c depends on the same parameters as in Proposition 3.1.

P r o o f. By linearity we have u(t) = T2,h(t)u0 + v(t), where (T2,h(t))t>0 has

been introduced in Proposition 2.10 and v is the weak solution of (P0,f,g). Hence we

deduce from (3.3) and Proposition 2.10 that

‖u‖2L∞(0,T ;L∞(Ω)) 6 2 sup
06t6T

‖T2,h(t)u0‖
2
L∞(Ω) + 2‖v‖2L∞(0,T ;L∞(Ω))

6 2M2e2|ω|T‖u0‖
2
L∞(Ω) + 2c‖v‖2L2(0,T ;L2(Ω)

+ 2c‖f‖2Lr1(0,T ;Lq1(Ω)) + 2c‖g‖2Lr2(0,T ;Lq2(Ω)).

In addition, by Lemma 2.9 and Hölder’s inequality we have

‖v(s)‖2L2(Ω) 6 c‖u0‖
2
L∞(Ω) + c‖f‖2Lr1(0,T ;Lq1(Ω)) + c‖g‖2Lr2(0,T ;Lq2(Ω))

for all s ∈ [0, T ], where we note that by the proof of Theorem 2.11 the lemma is valid

for all weak solutions, not only classical solutions. Combining these two estimates

we have proved (3.4). �

We use (3.4) to deduce continuity of the solution up to the boundary of the

parabolic cylinder, which is our main regularity result.

Theorem 3.3. Let T > 0 be arbitrary, let f and g satisfy the conditions of

Proposition 3.1 and let u0 ∈ C(Ω) be given. Then the weak solution u of (Pu0,f,g) is

in C([0, T ]; C(Ω)). So in particular u(t) → u0 uniformly on Ω as t→ 0.

P r o o f. Let AX denote the realization of A in X := Lq1(Ω)×Lq2(∂Ω) with the

same boundary conditions as A2, i.e.,

D(AX) :=
{

(u, 0) ∈ D(A2) : Au ∈ Lq1(Ω),
∂u

∂νA
∈ Lq2(∂Ω)

}

,

AX(u, 0) :=
(

Au, −
∂u

∂νA
− βu|∂Ω

)

.

716



Thus (u, 0) ∈ D(AX) if and only if there exist f ∈ Lq1(Ω) and g ∈ Lq2(∂Ω) such

that u solves






Au = f on Ω,

∂u

∂νA
+ βu = g on ∂Ω

in the weak sense. Since by (3.1) we have in particular q1 > N/2 and q2 > (N − 1)/2,

the elliptic regularity theory shows that in this case u ∈ C(Ω), compare [23], Theo-

rem 3.14, for bounded coefficients or [24], Example 4.2.7, for the general case. Hence

D(AX) ⊂ C(Ω) × {0} and in particular D(AX) ⊂ X . Hence AX is the part of

the resolvent positive operator A2 in X , and hence is resolvent positive. Thus AX

generates a once integrated semigroup on X by [2], Theorem 3.11.7.

Pick sequences (fn) ⊂ C2([0, T ];L∞(Ω)) and (gn) ⊂ C2([0, T ];L∞(∂Ω)) that

satisfy fn(0) = 0, gn(0) = 0, fn → f in Lr1(0, T ;Lq1(Ω)) and gn → g in

Lr2(0, T ;Lq2(∂Ω)), and let vn denote the weak solution of (P0,fn,gn).

By [2], Corollary 3.2.11, the abstract Cauchy problem

{

Ẇn(t) = AXWn(t) + (fn(t), gn(t)),

W (0) = (0, 0)

has a unique solutionWn = (wn, 0) ∈ C1([0, T ];X)∩C([0, T ];D(AX)), and in particu-

lar we have wn ∈ C([0, T ]; C(Ω)); we could call wn a classical X-solution of (P0,fn,gn)

in analogy to Definition 2.5. The function wn is in particular a classical L
2-solution

of (2.5), hence wn = vn by uniqueness. We have shown that vn ∈ C([0, T ]; C(Ω)).

Now, since by Theorem 3.2 we have vn → v uniformly on [0, T ] × Ω, where v

denotes the weak solution of (P0,f,g), we deduce that v ∈ C([0, T ]; C(Ω)). Hence,

since u(t) = T2,h(t)u0+ v(t) with (T2,h(t))t>0 defined in Proposition 2.10, continuity

of u follows from Proposition 2.10. �

Remark 3.4. If in Theorem 3.3 we only have u0 ∈ L2(Ω) instead of u0 ∈ C(Ω),

we still obtain that u|[t0,T ] ∈ C([t0, T ]; C(Ω)) for all t0 ∈ (0, T ). In fact, this can

be seen easily from the proof since by Proposition 2.10, t 7→ T2,h(t)u0 is continuous

from [t0,∞) to C(Ω) for every t0 > 0.

In particular, u0 ∈ C(Ω) is a necessary condition for the convergence u(t) → u0 as

t→ 0 to be uniform on Ω. Theorem 3.3 shows that it is also sufficient if f and g do

not behave too badly.

We close this section by a comparison with the situation for Dirichlet boundary

conditions.

Remark 3.5. For the Dirichlet initial-boundary value problem studied in [1] one

has to work with a realizationAc,D ofA with Dirichlet boundary conditions in a space
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of continuous functions because Lp-regularity conditions on the boundary data do

not suffice in order to obtain continuous solutions, which contrasts the situation in

Theorem 3.3 for Neumann boundary data. This leads to a minor difficulty. More

precisely, since C(∂Ω) does not have order continuous norm, it is not immediately

clear that Ac,D is the generator of a once integrated semigroup. In fact, this is even

false since if Ac,D were the generator of a once integrated semigroup, then by [2],

Corollary 3.2.11, there would exist a mild solution of the corresponding abstract

Cauchy problem










ut(t) = ∆u(t),

u(t)|∂Ω = ϕ(t),

u(0) = u0,

regardless of any compatibility assumptions between ϕ ∈ C1([0,∞); C(∂Ω)) and

u0 ∈ C(Ω). This contradicts the simple observation that the existence of a mild

solution enforces the condition ϕ(0) = u0|∂Ω, see [1], Proposition 3.2. Still, Ac,D

generates a twice integrated semigroup, see [2], Theorem 3.11.5, which is sufficient

for the results in [1].

The situation is different for Neumann boundary conditions, as we can already

expect from the fact that no compatibility condition appears in Theorem 3.3. In

fact, we have a once integrated semigroup in that case. In order to see this, consider

the realization Ac in C(Ω) × C(∂Ω) of A with Robin boundary conditions and set

Z := C(Ω) × {0}. Then D(Ac) ⊂ Z, the space Z is invariant under the resolvent

of Ac, and the part of Ac in Z is the generator of a strongly continuous semigroup,

see [23], Theorem 4.3. Hence by [2], Theorem 3.10.4, the operator Ac generates

a once integrated semigroup on C(Ω)× C(∂Ω).

4. Convergence

In this section we study boundedness of the solution u of (Pu0,f,g) as t→ ∞. We

are not interested in (exponential) blow-up or decay, but want to consider the border

case only. Inspired by our model case, i.e., A = ∆ and β = 0, a natural condition

that helps with this issue is to assume conservation of total energy, i.e.,

(4.1)

∫

Ω

u(t) dx =

∫

Ω

u0 dx+

∫ t

0

∫

Ω

f(s) dxds+

∫ t

0

∫

∂Ω

g(s) dσ ds

for all t > 0. We restrict ourselves to this situation, which can be characterized as

follows.
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Proposition 4.1. The following assertions are equivalent:

(i) for every T > 0, f ∈ L2(0, T ;L2(Ω)), g ∈ L2(0, T ;L2(∂Ω)) and u0 ∈ L2(Ω)

relation (4.1) holds for all t ∈ [0, T ], where u is the weak solution of (Pu0,f,g);

(ii) for every u0 ∈ L2(Ω) we have
∫

Ω u(t) dx =
∫

Ω u0 dx for all t > 0, where u is the

weak solution of (Pu0,0,0);

(iii) the relation

(4.2)

{

div c = d on Ω,

c · ν = −β on ∂Ω

holds in the weak sense, i.e.,

N
∑

i=1

∫

Ω

ciDiη dx+

∫

Ω

dη dx+

∫

∂Ω

βη dσ = 0 for all η ∈ H1(Ω).

P r o o f. Assume (iii) and let u be the weak solution of (Pu0,f,g), which is a mild

L2-solution by Theorem 2.6. By Remark 2.3 we have

(4.3) aβ

(
∫ t

0

u(s) ds, v

)

=

∫ t

0

∫

Ω

f(s)v dxds+

∫ t

0

∫

∂Ω

g(s)v dσ ds−

∫

Ω

(u(t)−u0)v dx

for all v ∈ H1(Ω). Picking v := bΩ|Ω and using that by (4.2) we have aβ(η, bΩ|Ω) = 0

for all η ∈ H1(Ω), we obtain (4.1).

It is trivial that (i) implies (ii). So now assume that (ii) holds, i.e., that
∫

Ω
T2,h(t)u0 dx =

∫

Ω
u0 dx for all t > 0 and all u0 ∈ L2(Ω), where (T2,h(t))t>0

is defined in Proposition 2.10. Then bΩ|Ω is a fixed point of the adjoint semigroup

(T ∗
2,h(t))t>0, which implies A

∗
2,hbΩ|Ω = 0, i.e., aβ(η, bΩ|Ω) = 0 for all η ∈ H1(Ω).

This is (4.2). �

We aim at a bound of the solution of (Pu0,f,g) in L
∞(0,∞;L∞(Ω)). As the first

step, we consider the homogeneous problem (Pu0,0,0).

Lemma 4.2. Under condition (4.2) we have ‖u‖L∞(0,∞;L∞(Ω)) 6 ‖u0‖L∞(Ω) for

the weak solution u of (Pu0,0,0) if and only if

(4.4)















N
∑

j=1

bj = d on Ω,

N
∑

j=1

bjνj = −β on ∂Ω

in the weak sense.
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P r o o f. Relation (4.4) is equivalent to aβ(bΩ|Ω, η) = 0 for all η ∈ H1(Ω), i.e.,

A2,hbΩ = 0. Hence (4.4) is equivalent to bΩ|Ω being a fixed point of (T2,h(t))t>0,

where (T2,h(t))t>0 is defined in Proposition 2.10.

Since (T2,h(t))t>0 is positive, T2,h(t)bΩ|Ω = bΩ|Ω for all t > 0 implies that the

semigroup is contractive with respect to the norm of L∞(Ω), which is precisely

the bound for u. On the other hand, if (T2,h(t))t>0 is L
∞(Ω)-contractive and

∫

Ω T2,h(t)u0 dx =
∫

Ω u0 dx for all t > 0, which is satisfied by Proposition 4.1, then

bΩ|Ω is a fixed point of (T2,h(t))t>0. �

We will see in Corollary 4.8 that (4.4) implies that also the inhomogeneous problem

(Pu0,f,g) has bounded solutions under the additional assumption that
∫

Ω f(t) dx +
∫

∂Ω
g(t) dσ = 0 for all t > 0 and that the functions f and g are not too irregular. The

first step in this direction is an L2-bound on bounded time intervals, Proposition 4.4,

for which we need the following lemma.

Lemma 4.3. If (4.2) and (4.4) hold, then aβ(v, v) > µ
∫

Ω
|∇v|2 dx for all v ∈

H1(Ω).

P r o o f. By virtue of continuity of aβ it suffices to prove the estimate for all

v ∈ H1(Ω) ∩ L∞(Ω). For such v we have by (2.1) and the chain rule that

aβ(v, v) > µ

∫

Ω

|∇v|2 dx+
1

2

N
∑

j=1

∫

Ω

bjDj(v
2) dx+

1

2

N
∑

i=1

∫

Ω

ciDi(v
2) dx

+

∫

Ω

dv2 dx+

∫

∂Ω

βv2 dσ = µ

∫

Ω

|∇v|2 dx,

where in the second step we used the weak formulations of (4.2) and (4.4) with

η := v2 ∈ H1(Ω). �

Proposition 4.4. Let u be the weak solution of (Pu0,f,g) on [0, T ] for u0 ∈ L2(Ω),

f ∈ L2(0, T ;L2(Ω)) and g ∈ L2(0, T ;L2(∂Ω)). Assume that
∫

Ω u0 dx = 0 and

(4.5)

∫

Ω

f(t) dx+

∫

∂Ω

g(t) dσ = 0 for all t > 0.

If (4.2) and (4.4) hold, then there exist τ > 0 and c > 0 depending only on µ and Ω

such that

(4.6)

∫

Ω

|u(t)|2 dx 6 e−t/τ

∫

Ω

|u0|
2 dx

+ c

∫ t

0

e(s−t)/τ

(
∫

Ω

|f(s)|2 dx+

∫

∂Ω

|g(s)|2 dσ

)

ds

for all t ∈ [0, T ].
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P r o o f. Since u can be approximated by classical L2-solutions of equations with

right hand sides close to f and g, compare the proof of Theorem 2.11, we can assume

without loss of generality that u is a classical L2-solution of (Pu0,f,g).

By (4.5) and Proposition 4.1 we have
∫

Ω
u(t) dx =

∫

Ω
u0 dx = 0 for all t ∈ [0, T ].

Recall that Ω was assumed to be connected throughout the article. Hence by

Poincaré’s inequality and the Sobolev embedding theorems there exists c1 > 0 de-

pending only on Ω such that

(4.7)

∫

Ω

|u(t)|2 dx+

∫

∂Ω

|u(t)|2 dσ 6 c1

∫

Ω

|∇u(t)|2 dx

for all t > 0. Using Remark 2.3, Lemma 4.3, Young’s inequality and estimate (4.7)

we obtain that

d

dt

1

2

∫

Ω

|u(t)|2 dx =

∫

Ω

u(t)ut(t) dx =

∫

Ω

u(t)(Au(t) + f(t)) dx

=

∫

Ω

f(t)u(t) dx+

∫

∂Ω

g(t)u(t) dσ − aβ(u(t), u(t))

6
c1
2µ

(
∫

Ω

|f(t)|2 dx+

∫

∂Ω

|g(t)|2 dσ

)

+
µ

2c1

(
∫

Ω

|u(t)|2 dx+

∫

∂Ω

|u(t)|2 dx

)

− µ

∫

Ω

|∇u(t)|2 dx

6 c2

(
∫

Ω

|f(t)|2 dx+

∫

∂Ω

|g(t)|2 dσ

)

−
µ

2

∫

Ω

|∇u(t)|2 dx,

with c2 := c1(2µ). Define τ := c2/µ. Then by (4.7) and the above inequality

1

2

∫

Ω

|u(t)|2 dx− e−t/τ 1

2

∫

Ω

|u0|
2 dx =

∫ t

0

d

ds

(

e(s−t)/τ 1

2

∫

Ω

|u(s)|2 dx
)

ds

6
1

2τ

∫ t

0

e(s−t)/τ

∫

Ω

|u(s)|2 dxds

+

∫ t

0

e(s−t)/τ

(

c2

∫

Ω

|f(s)|2 dx+ c2

∫

∂Ω

|g(s)|2 dσ −
µ

2

∫

Ω

|∇u(s)|2 dx

)

ds

6 c2

∫ t

0

e(s−t)/τ

(
∫

Ω

|f(s)|2 dx+

∫

∂Ω

|g(s)|2 dσ

)

ds,

where in the last step we have used that c2/(2τ) = µ/2. �

We want to find a condition on f and g which would ensure that the right hand

side of (4.6) remains bounded as t → ∞. To this end we introduce some function

spaces.
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Definition 4.5. Let r1 and q1 be in [1,∞), and let T > 0. For a strongly

measurable function f : (0,∞) → Lq1(Ω) we define

Rr1,q1
f,T (t) := ‖f |(t,t+T )‖Lr1(t,t+T ;Lq1(Ω)) =

(
∫ ∞

0

‖f(s)‖r1Lq1(Ω)b(t,t+T )(s) ds

)1/r1

and introduce the spaces

Lr1,q1
m (Ω) := {f : (0,∞) → Lq1(Ω); Rr1,q1

f,T ∈ L∞(0,∞)}

and

Lr1,q1
m,0 (Ω) := {f ∈ Lr1,q1

m ; lim
t→∞

Rr1,q1
f,T (t) = 0}

of uniformly mean integrable functions, where we identify functions that coincide

almost everywhere. Similarly, for r2 and q2 in [1,∞) and g : (0,∞) → Lq2(∂Ω) we

set
Rr1,q1

g,T (t) := ‖g|(t,t+T )‖Lr2(t,t+T ;Lq2(∂Ω)),

Lr2,q2
m (∂Ω) := {g : (0,∞) → Lq2(∂Ω); Rr2,q2

g,T ∈ L∞(0,∞)},

Lr2,q2
m,0 (∂Ω) := {g ∈ Lr2,q2

m ; lim
t→∞

Rr2,q2
g,T (t) = 0}.

Let us collect a few properties of the spaces introduced in Definition 4.5.

Lemma 4.6. Let r1 and q1 be in [1,∞). Then

(a) for every T > 0, the expression ‖f‖Lr1,q1
m (Ω) := sup

t>0
Rr1,q1

f,T (t) defines a complete

norm on Lr1,q1
m (Ω);

(b) the norms in (a) are pairwise equivalent for different values of T ;

(c) for every f ∈ Lr1,q1
m (Ω) and every T > 0 the function Rr1,q1

f,T is continuous on

[0,∞);

(d) the space Lr1,q1
m,0 (Ω) is a closed subspace of Lr1,q1

m (Ω);

(e) if 1 6 r′1 6 r1 and 1 6 q′1 6 q1, then

Lr1,q1
m (Ω) ⊂ L

r′1,q
′

1
m (Ω) and Lr1,q1

m,0 (Ω) ⊂ L
r′1,q

′

1
m,0 (Ω)

with continuous embeddings;

(f) we have L∞(0,∞;Lq1(Ω)) ⊂ Lr1,q1
m (Ω) and C0([0,∞);Lq1(Ω)) ⊂ Lr1,q1

m,0 (Ω) with

continuous embeddings;

(g) for f ∈ Lr1,q1
m (Ω) and every non-increasing function h ∈ L1(0,∞) ∩ L∞(0,∞)

we have

∫ t

0

h(t− s)‖f(s)‖r1Lq1(Ω) ds 6
(

‖h‖L∞(0,∞) +
2

T
‖h‖L1(0,∞)

)

‖Rr1,q1
f,T ‖r1L∞(0,∞)

for all T > 0 and t > 0;
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(h) for f ∈ Lr1,q1
m,0 (Ω) and every non-increasing function h ∈ L1(0,∞) ∩ L∞(0,∞)

we have

lim
t→0

∫ t

0

h(t− s)‖f(s)‖r1Lq1(Ω) ds = 0.

Analogous assertions hold for the spaces Lr2,q2
m (∂Ω) and Lr2,q2

m,0 (∂Ω) with r2, q2 ∈

[1,∞).

Part (b) justifies that we suppress the dependence on T in the notation for

Lr1,q1
m (Ω) and its norm.

P r o o f. Part (a) is routinely checked and we leave the verification to the reader.

Now let T > 0 and T ′ > 0 be given and pick a natural number n > T ′/T . Then

by Hölder’s inequality

Rr1,q1
f,T ′ (t) 6 Rr1,q1

f,nT (t) =

(n−1
∑

k=0

Rr1,q1
f,T (t+ kT )r1

)1/r1

6

n−1
∑

k=0

Rr1,q1
f,T (t+ kT ) 6 n sup

s>0
Rr1,q1

f,T (s)

for all t > 0, which implies (b).

By the reverse triangle inequality we have

|Rr1,q1
f,T (t+ h)−Rr1,q1

f,T (t)| 6

(
∫ ∞

0

‖f(s)‖r1Lq1(Ω)|b(t+h,t+T+h)(s)− b(t,t+T )(s)| ds

)1/r1

.

Since moreover b(t+h,t+T+h) → b(t,t+T ) almost everywhere as h→ 0, part (c) follows

from the dominated convergence theorem, where as dominating function we may

take ‖f‖r1Lq1(Ω)b(0,t+2T ) ∈ L1(0,∞).

By (c) and the definition of the norm the mapping f 7→ Rr1,q1
f,T is Lipschitz contin-

uous from Lr1,q1
m (Ω) to Cb([0,∞)) for every T > 0. Hence the preimage of C0([0,∞))

under this function is closed, which proves (d).

For 1 6 r′1 6 r1 and 1 6 q′1 6 q1 we obtain from Hölder’s inequality that

R
r′1,q

′

1

f,T (t) 6 T (r1−r′1)/(r1r
′

1)|Ω|(q1−q′1)/(q1q
′

1)Rr1,q1
f,T

for all t > 0. This implies (e), and (f) is proved similarly.

For (g) let f ∈ Lr1,q1
m (Ω), t > 0 and T > 0 be fixed and define nt ∈ N by

(nt − 1)T 6 t < ntT . Let h ∈ L1(0,∞) ∩ L∞(0,∞) be non-increasing and assume

without loss of generality that h(0) = ‖h‖L∞(0,∞). Since for t 6 T the estimate

in (g) is trivial, we may assume that t > T , i.e., nt > 2. Then

(4.8)

nt−1
∑

k=0

h
((nt − k)t

nt

)

6
nt

t

nt−1
∑

k=0

∫ (nt−k)t/nt

(nt−k−1)t/nt

h(s) ds 6
2

T

∫ t

0

h(s) ds.
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Moreover,

(4.9)

∫ t

0

h(t− s)‖f(s)‖r1Lq1(Ω) ds 6

nt
∑

k=1

h
(

t−
k

nt
t
)

∫ kt/nt

(k−1)t/nt

‖f(s)‖r1Lq1(Ω) ds

6

nt
∑

k=1

h
((nt − k)t

nt

)(

Rr1,q1
f,T

( (k − 1)t

nt

))r1
.

The estimate in (g) is an immediate consequence of (4.8) and (4.9).

Now assume in addition that f ∈ Lr1,q1
m,0 (Ω). Let ε > 0 be given and pick k1 ∈ N so

large that Rr1,q1
f,T (s)r1 6 ε for all s > k1T . Let k2 ∈ N be so large that h(s) 6 ε/(2k1)

for all s > k2T , set k0 := max{4k1, 2k2} and define t0 := k0T . Let t > t0 be fixed,

so nt > k0. Then for k 6 2k1 we have

(nt − k)t

nt
=

(

1−
k

nt

)

t >
(

1−
2k1
k0

)

t >
t

2
> k2T,

whereas for k > 2k1 + 1 we have

(k − 1)t

nt
>

2k1t

2(nt − 1)
> k1T.

Hence from (4.8) and the definitions of k1 and k2 we obtain for t > k0T that

nt
∑

k=1

h
( (nt − k)t

nt

)(

Rr1,q1
f,T

((k − 1)t

nt

))r1

6
ε

2k1

2k1
∑

k=1

(

Rr1,q1
f,T

((k − 1)t

nt

))r1
+ ε

nt
∑

k=2k1+1

h
( (nt − k)t

nt

)

6 ε(‖Rr1,q1
f,T ‖r1L∞(0,∞) + h(0) + ‖h‖L1(0,∞)).

We have shown that

lim
t→0

nt
∑

k=1

h
((nt − k)t

nt

)(

Rr1,q1
f,T

((k − 1)t

nt

))r1
= 0,

which by (4.9) implies (h). �

We can now formulate our criterion for boundedness and convergence of solutions

of (Pu0,f,g), which together with its corollary is the main result of this section.

Theorem 4.7. If (4.2) and (4.4) hold, then for all u0 ∈ L2(Ω), f ∈ L2,2
m (Ω) and

g ∈ L2,2
m (∂Ω) that satisfy (4.5) the weak solution u of (Pu0,f,g) is bounded in L

2(Ω),

and more precisely,
∫

Ω

|u(t)|2 dx 6 c

∫

Ω

|u0|
2 dx+ c‖f‖2

L2,2
m (Ω)

+ c‖g‖2
L2,2

m (∂Ω)
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for all t > 0 with a constant c > 0 that depends only on Ω and the coefficients. If

even f ∈ L2,2
m,0(Ω) and g ∈ L2,2

m,0(∂Ω), then lim
t→∞

u(t) = |Ω|−1 ∫

Ω u0 in L
2(Ω).

P r o o f. Write u0 = û0 + k with k := |Ω|−1 ∫

Ω u0. Then u(t) = û(t) + k by

Lemma 4.2, where û denotes the weak solution of (Pû0,f,g). Proposition 4.4 and

part (g) of Lemma 4.6 applied with h(r) := e−r/τ show that

∫

Ω

|û(t)|2 dx 6 c

∫

Ω

|û0|
2 dx+ c‖f‖2

L2,2
m (Ω)

+ c‖g‖2
L2,2

m (∂Ω)
,

whereas part (h) shows that lim
t→∞

û(t) = 0 in L2(Ω) if f ∈ L2,2
m,0(Ω) and g ∈ L2,2

m,0(∂Ω).

�

Under slightly stronger assumptions on u0, f and g we obtain even uniform bound-

edness and uniform convergence.

Corollary 4.8. Let r1, q1, r2 and q2 be numbers in [2,∞) that satisfy (3.1).

If (4.2) and (4.4) hold, then for all u0 ∈ L∞(Ω), f ∈ Lr1,q1
m (Ω) and g ∈ Lr2,q2

m (∂Ω)

which satisfy (4.5) the weak solution u of (Pu0,f,g) is bounded in L
∞(Ω), and more

precisely,

(4.10) ‖u(t)‖2L∞(Ω) 6 c‖u0‖
2
L∞(Ω) + c‖f‖2

L
r1,q1
m (Ω)

+ c‖g‖2
L

r2,q2
m (∂Ω)

for all t > 0. Moreover, if f ∈ Lr1,q1
m,0 (Ω) and g ∈ Lr2,q2

m,0 (∂Ω), then lim
t→∞

u(t) =

|Ω|−1 ∫

Ω
u0 dx in L

∞(Ω).

P r o o f. By Theorem 4.7 and part (e) of Lemma 4.6 we have

‖u‖2L2(Ω) 6 c‖u0‖
2
L∞(Ω) + c‖f‖2Lr1,q1

m (Ω) + c‖g‖2Lr2,q2
m (∂Ω).

On the other hand, inequality (3.2) applied to the interval [t− 2, t] shows that

(4.11) ‖u(t)‖2L∞(Ω) 6 2c sup
s>t−2

‖u(s)‖2L2(Ω) + c(Rr1,q1
f,2 (t− 2))2 + c(Rr1,q1

g,2 (t− 2))2

for every t > 2. Using in addition Theorem 3.2 to bound u on [0, 2], we have

shown (4.10).

Let now f ∈ Lr1,q1
m,0 (Ω) ⊂ L2,2

m,0(Ω) and g ∈ Lr2,q2
m,0 (∂Ω) ⊂ L2,2

m,0(∂Ω), see Lemma 4.6.

Write u(t) = û(t) + k with k := |Ω|−1 ∫

Ω
u0 dx as in the proof of Theorem 4.7.

Then lim
t→∞

‖û(t)‖L2(Ω) = 0 by Theorem 4.7. Using the definitions of Lr1,q1
m,0 (Ω) and

Lr1,q1
m,0 (∂Ω), this gives lim

t→∞
‖û(t)‖L∞(Ω) = 0 by (4.11) applied to û. The additional

claim is proved. �
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Remark 4.9. Remark 3.4 shows that if in the situation of Corollary 4.8 we

only have u0 ∈ L2(Ω) instead of u0 ∈ L∞(Ω), the assertions remain valid with the

exception that u will not be bounded in L∞(Ω) as t→ 0, i.e., estimate (4.10) holds

only for t > t0 > 0 with a constant c > 0 that depends in addition on t0.

5. Periodicity

We are going to study the periodic behavior of solutions of (Pu0,f,g) under peri-

odicity assumptions on f and g. This relies on the spectral theory, which is why in

this section (and only in this section) we assume our Banach spaces to be complex.

Thus u0, f and g are complex-valued functions, and hence also the solution u will

be complex-valued. For the theory developed in the other sections this makes no

difference since we can always treat the real and the imaginary part separately as

long as the coefficients of the equation are real-valued, which we still assume. Thus

we will neglect this detail in the notation and reuse the symbols for the real spaces

for their complex counterparts.

We start this section with a short summary on almost periodic functions in the

sense of Harald Bohr, i.e., uniformly almost periodic functions. For further details

and proofs we refer to [2], §4.5–4.7, or [6].

Definition 5.1. Let X be a complex Banach space. A function f : (0,∞) → X

is called τ -periodic (for some τ > 0) if f(t+ τ) = f(t) for all t > 0. Set eiη(t) := eiηt

for η ∈ R and t > 0. The members of the space

AP([0,∞);X) := span{eiηx : η ∈ R, x ∈ X}

are called uniformly almost periodic functions, where the closure is taken in the space

of bounded, uniformly continuous functions BUC([0,∞);X), which is a Banach space

for the uniform norm. The direct topological sum

AAP([0,∞);X) := AP([0,∞);X)⊕ C0([0,∞);X) ⊂ BUC([0,∞);X)

is called the space of uniformly asymptotically almost periodic functions. For all

f ∈ AAP([0,∞);X) and η ∈ R the Cesàro limit

Cηf := lim
T→∞

1

T

∫ T

0

e−iηsf(s) ds

exists in X . We let

Freq(f) := {η ∈ R : Cηf 6= 0}
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denote the set of frequencies of f . For f ∈ AAP([0,∞);X) the set Freq(f) is count-

able. The function f can be decomposed into its frequencies in the sense that

f ∈ span{eiηx : η ∈ Freq(f), x ∈ X} ⊕ C0([0,∞);X).

In particular, f ∈ C0([0,∞);X) if and only if Freq(f) = ∅. Moreover, Freq(f) ⊂

2πτ−1
Z if and only if there exists a τ -periodic function g such that f − g ∈

C0([0,∞);X).

We show that for uniformly asymptotically almost periodic data, the solution is

uniformly asymptotically almost periodic with essentially the same frequencies. In

fact, this is a general phenomenon for mild solutions of abstract Cauchy problems

and we merely have to check the assumptions of [2], Corollary 5.6.9. We are going

to improve this result later, which is why we call this preliminary result a lemma.

Lemma 5.2. Assume (4.2) and (4.4) and let u0 ∈ L2(Ω), f ∈ AAP([0,∞);L2(Ω))

and g ∈ AAP([0,∞);L2(∂Ω)) satisfy (4.5). Then the weak solution u of (Pu0,f,g) is

in AAP([0,∞);L2(Ω)).

P r o o f. Define uh(t) := u(t + h), fh(t) := f(t + h) and gh(t) := g(t + h) for

h > 0 and t > 0. Then by uniform continuity of f , for every ε > 0 there exists δ > 0

such that ‖fh − f‖L2,2
m (Ω) 6 ε holds whenever 0 6 h < δ, see part (f) of Lemma 4.6.

A similar assertion holds for g. Applying Theorem 4.7 to u and uh − u, which is the

weak solution of (Pu(h)−u(0),fh−f,gh−g), and using in addition that u is continuous

by Definition 2.1 we thus obtain that u ∈ BUC([0,∞);L2(Ω)).

Let A2 be as in Definition 2.2. By Lemma 2.4 the operator A2 generates a once

integrated semigroup (S(t))t>0 on L
2(Ω) × L2(∂Ω), see [2], Theorem 3.11.7, which

by [2], Lemma 3.2.9, satisfies S(t)(v, 0) = (
∫ t

0
T2,h(s)v ds, 0) for all v ∈ L2(Ω), where

(T2,h(t))t>0 is defined in Proposition 2.10. By Proposition 4.1 the closed subspace

X0 :=

{

(v, 0): v ∈ L2(Ω),

∫

Ω

v dx = 0

}

of L2(Ω) × L2(∂Ω) is invariant under the action of (S(t))t>0, which by [2], Defini-

tion 3.2.1, implies that X0 is invariant under the resolvent of A2. Hence for the part

A2|X0 of A2 in X0 we have σ(A2|X0) ⊂ σ(A2) and in particular ̺(A2|X0) 6= ∅. We

obtain from Lemma 2.4 and the compactness of the embedding H1(Ω) →֒ L2(Ω) that

A2|X0 has a compact resolvent.

We now show that σ(A2|X0) ∩ iR = ∅. Assume to the contrary that there exists

η ∈ R such that iη ∈ σp(A2|X0) = σ(A2|X0). Then there exists 0 6= v0 ∈ L2(Ω) sat-

isfying
∫

Ω
v0 dx = 0 and A2(v0, 0) = (iηv0, 0). Then v(t) := eiηtv0 defines a classical
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L2-solution of (Pv0,0,0). This contradicts Proposition 4.4 because ‖v(t)‖
2
L2(Ω) 6→ 0 as

t→ ∞.

Write u0 = û0 + k with k := |Ω|−1 ∫

Ω u0 dx. Then u(t) = û(t) + k by Lemma 4.2,

where û is the weak (and hence mild) solution of (Pû0,f,g). Since in addition
∫

Ω u(t) dx = 0 for all t > 0 by Proposition 4.1, we deduce that (u, 0) is a mild

solution of the abstract Cauchy problem associated with A2|X0 for the inhomogene-

ity (f, g). Since û ∈ BUC([0,∞);L2(Ω)) we now obtain from [2], Corollary 5.6.9,

that û ∈ AAP([0,∞);L2(Ω)), which shows u ∈ AAP([0,∞);L2(Ω)). �

Via an approximation argument we can relax the assumptions of Lemma 5.2. For

this we introduce Stepanoff almost periodic functions. We omit the proofs of the

implicit statements about this class of functions, which are similar to the ones for

uniformly almost periodic functions. The interested reader may consult [6], §99,

and [25] for the scalar-valued case.

Definition 5.3. Let X be a complex Banach space. For r ∈ [1,∞) the members

of the space

APr([0,∞);X) := span{eiηx : η ∈ R, x ∈ X}

are called Stepanoff almost periodic functions (with the exponent r), where the clo-

sure is taken with respect to the norm

‖f‖Lr
m(X) := sup

t>0

(
∫ t+1

t

‖f(s)‖rX ds

)1/r

.

The space of Stepanoff asymptotically almost periodic functions is defined as

AAPr([0,∞);X) := APr([0,∞);X)⊕ Lr
m,0(X),

where we set Lr
m,0(X) := {f ∈ Lr

m(X) : lim
t→∞

∫ t+1

t ‖f(s)‖r ds → 0}. The Cesàro

limit

Cη := lim
T→∞

1

T

∫ T

0

f(s) ds

exists for all η ∈ R and f ∈ AAPr([0,∞);X). We define the set of frequencies of f

as

Freq(f) := {η ∈ R : Cηf 6= 0}

and remark that Freq(f) ⊂ 2πτ−1
Z if and only if there exists a τ -periodic function g

such that f − g ∈ Lr
m,0(X).
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Now we improve the statement of Lemma 5.2 by showing that for Stepanoff asymp-

totically almost periodic data we obtain uniformly asymptotically almost periodic

solutions with a precise description of their frequencies. We start with the result in

the L2-framework.

Theorem 5.4. Assume that (4.2) and (4.4) hold. We assume that u0 ∈ L2(Ω),

f ∈ AAP2([0,∞);L2(Ω)) and g ∈ AAP2([0,∞);L2(∂Ω)) satisfy (4.5). Then the

weak solution u of (Pu0,f,g) is in AAP([0,∞);L2(Ω)). For η 6= 0 we have η ∈ Freq(u)

if and only if η ∈ Freq(f) ∪ Freq(g). Moreover, 0 ∈ Freq(u) if and only if 0 ∈

Freq(f) ∪ Freq(g) or
∫

Ω
u0 dx 6= 0.

P r o o f. Write f = fP +fC with fP ∈ AP([0,∞);L2(Ω)) and fC ∈ L2
m,0(L

2(Ω)),

g = gP + gC with gP ∈ AP([0,∞);L2(∂Ω)) and gC ∈ L2
m,0(L

2(∂Ω)) and u0 = û0 + k

with k := |Ω|−1 ∫

Ω
u0 dx. Then u = uP + uC + k by Lemma 4.2, where uP denotes

the solution of (Pû0,fP ,gP ) and uC is the solution of (P0,fC ,gC ).

Pick fn ∈ span{eiηv : η ∈ R, v ∈ L2(Ω)} and gn ∈ span{eiηw : η ∈ R, w ∈

L2(∂Ω)} such that fn → f in the norm of L2
m(L2(Ω)) = L2,2

m (Ω) and gn → g in the

norm of L2
m(L2(∂Ω)) = L2,2

m (∂Ω). Let un denote the weak solution of (Pû0,fn,gn).

Then un → uP in L
∞(0,∞;L2(Ω)) by Theorem 4.7 and un ∈ AAP([0,∞);L2(Ω))

by Lemma 5.2. Hence uP ∈ AAP([0,∞);L2(Ω)). Since (un, 0) is a mild solution of

the abstract Cauchy problem associated with A2|X0 for the inhomogeneity (fn, gn),

see the proof of Lemma 5.2, we obtain from [2], Proposition 5.6.7 that Cηun =

(iη − A2|X0)
−1(Cηfn, Cηg) for all η ∈ R. Passing to the limit we have the relation

CηuP = (iη −A2|X0)
−1(Cηf, Cηg). Thus Freq(uP ) = Freq(f) ∪ Freq(g).

Since uC ∈ C0([0,∞);L2(Ω)) by Theorem 4.7 and uP (t) ⊥ k for all t > 0 by

Proposition 4.1, we deduce that u ∈ AAP([0,∞);L2(Ω)) and

Freq(u) = Freq(uP ) + Freq(k) = Freq(f) ∪ Freq(g) ∪ Freq(k),

which is a different way to write down the description of Freq(u). �

We can also obtain an analogue of Theorem 5.4 in the more regular setting of

continuous solutions.

Theorem 5.5. Let r1, q1, r2 and q2 be numbers in [2,∞) that satisfy rela-

tion (3.1). Assume that (4.2) and (4.4) hold and let u0 ∈ L∞(Ω), f ∈ AAPr1([0,∞);

Lq1(Ω)) and g ∈ AAPr2([0,∞);Lq2(∂Ω)) satisfy (4.5). Then the weak solution u of

(Pu0,f,g) is in AAP([0,∞);L∞(Ω)). For η 6= 0 we have η ∈ Freq(u) if and only if

η ∈ Freq(f) ∪ Freq(g). Moreover, 0 ∈ Freq(u) if and only if 0 ∈ Freq(f) ∪ Freq(g) or
∫

Ω
u0 dx 6= 0. If u0 ∈ C(Ω), then u ∈ AAP([0,∞); C(Ω)).
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P r o o f. This theorem can be proved in precisely the same way as Theorem 5.4.

We have to use Corollary 4.8 instead of Theorem 4.7 and the realization of A in

Lq1(Ω) × Lq2(∂Ω) instead of A2 like in Theorem 3.3, where from we also obtain the

continuity of u if u0 ∈ C(Ω). We leave the details to the reader. �

As an immediate consequence of the previous two theorems, we see that for pe-

riodic data the solution is asymptotically periodic. This formulation is simpler, but

we lose the precise information about the frequencies.

Corollary 5.6. Assume that (4.2) and (4.4) hold. Fix functions u0 ∈ L2(Ω),

f ∈ L2(0, τ ;L2(Ω)) and g ∈ L2(0, τ ;L2(∂Ω)) for some τ > 0. We identify f and g

with their τ -periodic extensions to (0,∞). Then there exists a τ -periodic function

uP such that the weak solution u of (Pu0,f,g) satisfies lim
t→∞

‖u(t)− uP (t)‖L2(Ω) = 0.

If u0 ∈ C(Ω), f ∈ L∞(0, τ ;L∞(Ω)) and g ∈ L∞(0, τ ;L∞(∂Ω)), then u and uP are in

Cb([0,∞); C(Ω)) and lim
t→∞

‖u(t)− uP (t)‖L∞(Ω) = 0.

Appendix A. Pointwise estimates via De Giorgi’s techniques

In this section we prove Proposition 3.1. The proof is similar to what can be found

in [19], §III.7–8, which in turn is a refined version of De Giorgi’s famous technique.

We need, however, the following improvements over [19]:

(i) the presence of the inhomogeneity g in (Pu0,f,g), makes it necessary to keep

track of the measure of the sublevel sets of u|∂Ω;

(ii) we need a precise dependence of the constants on f and g. More precisely, these

quantities have to enter linearly into the right hand side. This is not obvious

from the proofs in [19], but can be asserted after some small modifications;

(iii) we need an estimate that is local in time but global in space, whereas the

results in [19] are either global in both variables or local. This requires only

trivial modifications.

Another motivation to give the details is that the relevant parts in [19] contain

some misprints, for example the relations between n, r̂ and q̂ in the proof of [19],

Theorem III.7.1, as can be seen by taking n = 2, r = q = 4 and κ = 1/2.

This is another subtle mistake in the claim that the constant in [19], II.6.11, does

not depend on τ0 and ̺0. In fact, the explicit constant given in [19], II.6.25, still

contains θ = τ0̺
−2
0 . And indeed, otherwise, we could apply estimate [19], II.6.11, to

the solution u of the heat equation with initial datum u0 ∈ L2(RN ) \ L∞(RN ) like

in [19], §III.8, and deduce that given a ball B ⊂ R
N we have

sup
T/26t6T

‖u(t)‖2L∞(B) 6 c‖u0‖
2
L2(RN )
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for all T > 0 with a constant c > 0 that depends only on the radius of the ball. This

contradicts that u(t) → u0 in L
2(RN ).

For these reasons, we give a complete proof of Proposition 3.1. The only part of

the argument that we copy from [19] without change is the following lemma, which

is easily proved by induction.

Lemma A.1 ([19], Lemma II.5.7). Let (yn)n∈N0 and (zn)n∈N0 be sequences of

non-negative real numbers such that

yn+1 6 cbn(y1+δ
n + z1+ε

n yδn) and zn+1 6 cbn(yn + z1+ε
n )

for all n ∈ N0 with positive constants c, b, ε and δ, where b > 1. Define

d := min
{

δ,
ε

1 + ε

}

and λ := min{(2c)−1/δb−1/(δd), (2c)−(1+ε)/εb−1/(εd)}

and assume that

y0 6 λ and z0 6 λ1/(1+ε).

Then

yn 6 λb−n/d and zn 6 (λb−n/d)1/(1+ε)

for all n ∈ N0.

We partially adopt the notation of [19] here. More precisely, let Ω ⊂ R
N be

a bounded Lipschitz domain and T > 0. It will be convenient to work with functions

defined for negative times, so we will always assume that u ∈ L∞(−T, 0;L2(Ω)) ∩

L2(−T, 0;H1(Ω)). In that case we write

‖u‖2Q(τ) := sup
−τ6t60

∫

Ω

|u(t)|2 dx+

∫ 0

−τ

∫

Ω

|∇u(t)|2 dx,

and for k > 0 we define

u(k)(t) := (u(t)− k)+.

For a fixed function u, we set

Ak(t) := {x ∈ Ω: u(t) > k}

and

Bk(t) := {x ∈ ∂Ω: u(t) > k}

and denote by |Ak(t)| and |Bk(t)| their volumes with respect to the Lebesgue measure

or the surface measure of ∂Ω, respectively.
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In what follows we will frequently need that for r1 ∈ [2,∞], q1 ∈ [2, 2N/(N − 2)],

r2 ∈ [2,∞] and q2 ∈ [2, 2(N − 1)/(N − 2)] satisfying

1

r1
+

N

2q1
=
N

4
and

1

r2
+
N − 1

2q2
=
N

4

we have

(A.1) ‖u‖Lr1(−τ,0;Lq1(Ω)) + ‖u‖Lr2(−τ,0;Lq2(∂Ω) 6 c‖u‖Q(τ),

where c > 0 depends only on Ω, r1, q1, r2 and q2. This anisotropic Sobolev inequality

follows from the multiplicative Sobolev inequalities on Ω, see [19], §II.3.

We start with a modified version of [19], Theoerem II.6.2.

Theorem A.2. Let Ω ⊂ R
N be a bounded Lipschitz domain, N > 2. Fix

T > 0 and u ∈ L∞(−T, 0;L2(Ω)) ∩ L2(−T, 0;H1(Ω)). Let r1,l ∈ [2,∞), q1,l ∈

[2, 2N/(N − 2)], r2,l ∈ [2,∞) and q2,l ∈ [2, 2(N − 1)/(N − 2)] satisfy

(A.2)
1

r1,l
+

N

2q1,l
=
N

4
(1 6 l 6 L1) and

1

r2,l
+
N − 1

2q2,l
=
N

4
(1 6 l 6 L2).

Assume that there exist k̂ > 0, γ > 0 and numbers κ1,l > 0 and κ2,l > 0 such that

for all τ ∈ (0, T ], σ ∈ (0, 1/2) and k > k̂ we have

(A.3) ‖u(k)‖2Q((1−σ)τ) 6
γ

στ

∫ 0

−τ

∫

Ω

|u(k)(t)|2 dxdt

+ γk2
L1
∑

l=1

(
∫ 0

−τ

|Ak(t)|
r1,l/q1,l dt

)2(1+κ1,l)/r1,l

+ γk2
L2
∑

l=1

(
∫ 0

−τ

|Bk(t)|
r2,l/q2,l dt

)2(1+κ2,l)/r2,l

.

Then

(A.4) ess sup
(t,x)∈[−T/2,0]×Ω

u(t, x) 6 c

(
∫ 0

−T

∫

Ω

|u(t)|2 dxdt+ k̂2
)1/2

,

where the constant c > 0 is independent of u and k̂.

P r o o f. In the proof the constants c, c0, c1 and c2 never depend on u and k̂.

Moreover, c is a generic constant in the sense that it may change its numeric value

between occurrences.
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Since |Ak(t)| 6 |Ω| and |Bk(t)| 6 |∂Ω|, estimate (A.3) remains valid if we replace

all the κ1,l and κ2,l by their least member

κ := min{κ1,1, . . . , κ1,L1, κ1,L1 , κ2,1, κ2,L2} > 0

provided we replace γ by a larger constant γ′ that depends on κ1,l, κ2,l, r1,l, q1,l r2,l,

q2,l, T , γ, |Ω| and |∂Ω|. Thus we may assume without loss of generality that κ1,l = κ

for all 1 6 l 6 L1 and κ2,l = κ for all 1 6 l 6 L2.

Let M > k̂ be arbitrary and define

τn := (1 + 2−(n+1))
T

2
∈
[T

2
, T

]

,

kn := (2 − 2−n)M > k̂,

yn :=
1

M2

∫ 0

−τn

∫

Ω

|u(kn)(t)|2 dxdt,

zn :=

L1
∑

l=1

(
∫ 0

−τn

|Akn(t)|
r1,l/q1,l dt

)2/r1,l

+

L2
∑

l=1

(
∫ 0

−τn

|Bkn(t)|
r2,l/q2,l dt

)2/r2,l

for all n ∈ N0. We prove that the sequences (yn) and (zn) satisfy the inequalities in

Lemma A.1.

To this end, let n ∈ N0 be fixed. From (A.1) and the trivial estimate

|u(kn)(t)|2 > (kn+1 − kn)
2
bAkn+1

(t)

we obtain that

(A.5) M2yn+1 6 c

(
∫ 0

−τn+1

|Akn+1(t)| dt

)2/(N+2)

‖u(kn+1)‖2Q(τn+1)

6 c((kn+1 − kn)
−2M2yn)

2/(N+2)‖u(kn+1)‖2Q(τn+1)

6 c22(n+1)y2/(N+2)
n ‖u(kn+1)‖2Q(τn+1)

.

Similarly,

(A.6) 2−2(n+1)M2zn+1 = (kn+1 − kn)
2zn+1

6

L1
∑

l=1

(
∫ 0

−τn+1

(

∫

Ω

|u(kn)(t)|q1,l dx

)r1,l/q1,l

dt

)2/r1,l

+

L2
∑

l=1

(
∫ 0

−τn+1

(
∫

∂Ω

|u(kn)(t)|q2,l dσ

)r2,l/q2,l

dt

)2/r2,l

6 c‖u(kn)‖2Q(τn+1)
.
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Moreover, from (A.3) applied with τ = τn and σ = 1 − τn+1/τn > 2−(n+3) we get

that

(A.7) ‖u(kn+1)‖2Q(τn+1)
6 ‖u(kn)‖2Q(τn+1)

6
γ

στn
M2yn + γk2nz

1+κ
n

6 γM22n+4(T−1 + 1)(yn + z1+κ
n ).

Combining (A.5), (A.6) and (A.7) we obtain with δ := 2/(N + 2) that

(A.8)

{

yn+1 6 c02
3n(y1+δ

n + z1+κ
n yδn),

zn+1 6 c02
3n(yn + z1+κ

n )

for all n ∈ N0.

Next we want to estimate y0 and z0 for large M . On the one hand, we have

(A.9) y0 6
1

M2

∫ 0

−T

∫

Ω

|u(t)|2 dxdt.

On the other hand, similarly to (A.6) and (A.7), we have

(M − k̂)2z0 6

L1
∑

l=1

(
∫ 0

−τ0

(
∫

Ω

|u(k̂)(t)|q1,l dx

)r1,l/q1,l

dt

)2/r1,l

+

L2
∑

l=1

(
∫ 0

−τ0

(
∫

∂Ω

|u(k̂)(t)|q2,l dσ

)r2,l/q2,l

dt

)2/r2,l

6 c‖u(k̂)‖2Q(τ0)
6

4γ

T

∫ 0

−T

∫

Ω

|u(k̂)(t)|2 dxdt

+ γk̂2(T |Ω|r1/q1)2(1+κ)/r1 + γk̂2(T |∂Ω|r2/q2)2(1+κ)/r2 ,

so that

(A.10) z0 6
c1

(M − k̂)2

(
∫ 0

−T

∫

Ω

|u(t)|2 dxdt+ k̂2
)

for all M > k̂. Define d := min{δ, κ/(1 + κ)} and

λ := min{(2c0)
−1/δ2−3/(δd), (2c0)

−(1+κ)/κ2−3/(κd)}.

Then for

(A.11) M := max

{

λ−1/2

(
∫ 0

−T

∫

Ω

|u(t)|2 dxdt

)1/2

,

k̂ + λ−1/(2(1+κ))c
1/2
1

(
∫ 0

−T

∫

Ω

|u(t)|2 dxdt+ k̂2
)1/2}

6 c2

(
∫ 0

−T

∫

Ω

|u(t)|2 dxdt+ k̂2
)1/2
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we obtain from (A.9) and (A.10) that

(A.12) y0 6 λ, z0 6 λ1/(1+κ).

Estimates (A.8) and (A.12) show in view of Lemma A.1 that zn → 0 as n → ∞,

which implies that u(t) 6 lim
n→∞

kn = 2M almost everywhere on Ω for almost every

t ∈
⋂

n∈N

[−τn, 0] = [−T/2, 0] if we define M as in (A.11). This is (A.4). �

Theorem A.2 is a local estimate in time, hence it allows us to estimate the solution

of (Pu0,f,g) independently of the initial value u0. The price is that we obtain estimates

only away from t = 0. We also need the following modification of Theorem A.2 that

gives good estimates for small t.

Corollary A.3. In the situation of Theorem A.2, assume that instead of (A.3)

we even have

‖u(k)‖2Q(T ) 6 γ

∫ 0

−T

∫

Ω

|u(k)(t)|2 dxdt+ γk2
L1
∑

l=1

(
∫ 0

−T

|Ak(t)|
r1,l/q1,l dt

)2(1+κ1,l)/r1,l

+ γk2
L2
∑

l=1

(
∫ 0

−T

|Bk(t)|
r2,l/q2,l dt

)2(1+κ2,l)/r2,l

for all k > k̂. Then

ess supt∈[−T,0],x∈Ω u(t, x) 6 c

(
∫ T

0

∫

Ω

|u(t)|2 dxdt+ k̂2
)1/2

for all t ∈ [−T, 0], where the constant c > 0 is independent of u and k̂.

P r o o f. The proof is very similar to the one of Theorem A.2. In fact, we only

have to notice that after changing the definition of τn to τn := T for all n ∈ N the

rest of the proof is carried over verbatim with the mere exception that this time we

have
⋂

n∈N

[−τn, 0] = [−T, 0], which gives the result. �

Before we can check that Theorem A.2 applies to the solutions of (Pu0,f,g), we

have to supply the following tool for the calculations.
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Lemma A.4. Let T > 0, u ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and k > 0.

Define u(k)(t) := (u(t)−k)+ for t > 0. Then u(k) ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H1(Ω))

with derivative (u(k))t(t) = ut(t)b{u(t)>k} and ∇u
(k)(t) = ∇u(t)b{u(t)>k}. Moreover,

u(k)(t)|∂Ω = (u|∂Ω(t)− k)+.

P r o o f. After identifying H1(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) with H1((0, T )×Ω)

up to equivalent norms in the obvious way, the formulas for the derivatives follow

from the chain rule for weakly differentiable functions, see for example [16], Theo-

rem 7.8. The assertion about the trace is true for continuous functions and thus by

approximation for all functions under consideration. �

We now prove Proposition 3.1 for classical L2-solutions. Basically, we will check

that every solution of (Pu0,f,g) satisfies (A.3).

Lemma A.5. Proposition 3.1 holds if in addition we assume that u is a classical

L2-solution and T 6 T0, where T0 > 0 depends only on N , Ω, r1, q1, r2, q2 and the

coefficients of the equation.

P r o o f. After a linear substitution in the time variable we may consider problem

(Pu0,f,g) on [−T, 0] instead of [0, T ], the initial value now being u0 = u(−T ). We

check the conditions of Theorem A.2 with

(A.13) k̂2 := ‖f‖2Lr1(−T,0;Lq1(Ω)) + ‖g‖2Lr2(−T,0;Lq2(Ω)).

Fix 0 < τ 6 T and let ζ be a function in H1(−τ, 0) satisfying 0 6 ζ(t) 6 1 for all

t ∈ [−τ, 0]. Assume either that ζ(−τ) = 0 or that τ = T and u(k)(−T ) = 0. Then

for t ∈ [−τ, 0] we have

(A.14) ζ(t)2 ·
1

2

∫

Ω

|u(k)(t)|2 dx =

∫ t

−τ

d

ds

(

ζ(s)2 ·
1

2

∫

Ω

|u(k)(s)|2 dx

)

ds

=

∫ t

−τ

ζ(s)ζ′(s)

∫

Ω

|u(k)(s)|2 dxds+

∫ t

−τ

ζ(s)2
∫

Ω

u
(k)
t (s)u(k)(s) dxds.

From Lemma A.4 and the fact that u is a classical L2-solution of (Pu0,f,g) we obtain

that for all s ∈ [−τ, 0] we have

(A.15)

∫

Ω

u
(k)
t (s)u(k)(s) dx =

∫

Ω

ut(s)u
(k)(s) dx =

∫

Ω

(Au(s) + f(s))u(k)(s) dx

=

∫

Ω

f(s)u(k)(s) dx+

∫

∂Ω

(

g(s)u(k)(s)− aβ(u(s), u
(k)(s))

)

dσ.

�
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We now estimate the right hand side of (A.15). From Lemma A.4, (2.7) and

Young’s inequality we obtain that

aβ(u(s), u
(k)(s)) = aβ(u

(k)(s), u(k)(s)) +

N
∑

j=1

∫

Ω

bjkDju
(k)(s) dx

+

∫

Ω

dku(k)(s) dx+

∫

∂Ω

βku(k)(s) dσ

>
µ

2

∫

Ω

|∇u(k)(s)|2 dx− ω

∫

Ω

|u(k)(s)|2 dx

−
k2

µ

N
∑

j=1

∫

Ak(s)

|bj|
2 dx−

µ

4

∫

Ω

|∇u(k)(s)|2 dx

−

∫

Ak(s)

|d|(|u(k)(s)|2 + k2) dx−

∫

Bk(s)

|β|(|u(k)(s)|2 + k2) dσ.

Using (A.15) and again Young’s inequality this gives

(A.16)

∫

Ω

u
(k)
t (s)u(k)(s) dx 6 −

µ

4

∫

Ω

|∇u(k)(s)|2 dx

+

∫

Ak(s)

(1

k
|f(s)|+D0

)

(|u(k)(s)|2 + k2) dx

+

∫

Bk(s)

(1

k
|g(s)|+ |β|

)

(|u(k)(s)|2 + k2) dσ

with

D0 := ω +
1

µ

N
∑

j=1

|bj |
2 + |d| ∈ Lq/2(Ω),

where q > N . Plugging (A.16) into (A.14) and varying over t we arrive at the

estimate

(A.17) min
{1

2
,
µ

4

}

‖ζu(k)‖2Q(τ)

6 sup
−τ6t60

(

ζ(t)2 ·
1

2

∫

Ω

|u(k)(t)|2 dx

)

+
µ

4

∫ 0

−τ

ζ(s)2
∫

Ω

|∇u(k)|2 dxds

6 ‖ζ′‖L∞(−τ,0)

∫ 0

−τ

∫

Ω

|u(k)(s)|2 dxds

+

∫ 0

−τ

∫

Ak(s)

(1

k
|f(s)|+D0

)

· (ζ(s)2|u(k)(s)|2 + k2) dxds

+

∫ 0

−τ

∫

Bk(s)

(1

k
|g(s)|+ |β|

)

· (ζ(s)2|u(k)(s)|2 + k2) dσ ds.
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We estimate the right hand side of (A.17). Define κ1 > 0 and κ2 > 0 by

(A.18)
1

r1
+

N

2q1
= 1−

κ1N

2
and

1

r2
+
N − 1

2q2
=

1

2
−
κ2N

2
.

With r̄1 := 2r1/(r1 − 1) and q̄1 := 2q1/(q1 − 1) we obtain from Hölder’s inequality

that

∫ 0

−τ

∫

Ak(s)

|f(s)| · ζ(s)2|u(k)(s)|2 dxds

6 ‖f‖Lr1(−τ,0;Lq1(Ω))‖ζu
(k)‖2Lr̄1(−τ,0;Lq̄1(Ω))

6 k̂‖ζu(k)‖2L(1+κ1)r̄1 (−τ,0;L(1+κ)q̄1 (Ω))‖bAk
‖2L(κ1+1)/κ1 r̄1(−τ,0;L(κ1+1)/κ1 q̄1 (Ω)).

The last factor tends to zero as τ → 0. As moreover

1

(1 + κ1)r̄1
+

N

2(1 + κ1)q̄1
=
N

4

by (A.18), we deduce from (A.1) that

∫ 0

−τ

∫

Ak(s)

|f(s)| · ζ(s)2|u(k)(s)|2 dxds 6
k̂

8
min

{1

2
,
µ

4

}

‖ζu(k)‖2Q(τ)

if τ is sufficiently small, say τ 6 T0, where T0 depends on µ, N , Ω, κ1, r1, q1.

Similarly, since 2q/(q − 2) < 2N/(N − 2) we obtain that

∫ 0

−τ

∫

Ak(s)

D0 · ζ(s)
2|u(k)(s)|2 dxds 6 ‖D0‖Lq/2(Ω)‖ζu

(k)‖2L2(−τ,0;L2q/(q−2)(Ω))

6
1

8
min

{1

2
,
µ

4

}

‖ζu(k)‖2Q(τ)

for τ 6 T0 with some possibly smaller T0 > 0 that depends in addition on D0 and q.

Analogously, with r̄2 := 2r2/(r2 − 1) and q̄2 := 2q2/(q2 − 1) we have

∫ 0

−τ

∫

Bk(s)

|g(s)| · ζ(s)2|u(k)(s)|2 dσ ds

6 k̂‖ζu(k)‖2L(1+κ2)r̄2 (−τ,0;L(1+κ2)q̄2 (∂Ω))‖bBk
‖2L((κ1+1)/κ1)r̄2 (−τ,0;L((κ1+1)/κ1)q̄2 (∂Ω))

6
k̂

8
min

{1

2
,
µ

4

}

‖ζu(k)‖2Q(τ)
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and since 2(q − 1)/(q − 2) < 2(N − 1)/(N − 2) also

∫ 0

−τ

∫

Bk(s)

|β| · ζ(s)2|u(k)(s)|2 dσ ds 6 ‖β‖Lq−1(∂Ω)‖ζu
(k)‖2L2(−τ,0;L2(q−1)/(q−2)(∂Ω))

6
1

8
min

{1

2
,
µ

4

}

‖ζu(k)‖2Q(τ)

for τ 6 T0, where this new T0 depends also on r2, q2, κ2 and β.

Combining the above estimates with (A.17) we obtain that

(A.19) ‖ζu(k)‖2Q(τ) 6 cµ‖ζ
′‖L∞(−τ,0)

∫ 0

−τ

∫

Ω

|u(k)(s)|2 dxds

+ cµk
2

∫ 0

−τ

∫

Ak(s)

(1

k
|f(s)|+D0

)

dxds

+ cµk
2

∫ 0

−τ

∫

Bk(s)

(1

k
|g(s)|+ |β|

)

dσ ds

if τ 6 T0 and k > k̂, where cµ depends only on µ.

Now we estimate for k > k̂

∫ 0

−τ

∫

Ak(s)

1

k
|f(s)| dxds 6

1

k
‖f‖Lr1(−τ,0;Lq1(Ω))‖bAk

‖Lr1/(r1−1)(−τ,0;Lq1/(q1−1)(Ω))

6 ‖bAk
‖Lr1/(r1−1)(−τ,0;Lq1/(q1−1)(Ω))

= ‖bAk
‖
2(1+κ1,1)

Lr1,1(−τ,0;Lq1,1(Ω)),

with κ1,1 := κ1, r1,1 := 2(1 + κ1)r1/(r1 − 1) and q1,1 := 2(1 + κ1)q1/(q1 − 1), and

similarly

∫ 0

−τ

∫

Ak(s)

D0 dxds 6 ‖D0‖Lq/2(Ω)‖bAk
‖L1(−τ,0;Lq/(q−2)(Ω))

= ‖D0‖Lq/2(Ω)‖bAk
‖
2(1+κ1,2)

Lr1,2(−τ,0;Lq1,2(Ω))

with κ1,2 := (2(q −N) + (q − 2)N)/(qN), r1,2 := 2(1+κ1,2) and q1,2 := 2(1+κ1,2)×

q/(q − 2). Analogously,

∫ 0

−τ

∫

Bk(s)

1

k
|g(s)| dσ ds 6 ‖bBk

‖
2(1+κ2,1)

Lr2,1(−τ,0;Lq2(∂Ω))

with κ2,1 := κ2, r2,1 := 2(1+ κ2,1)r2/(r2 − 1) and q2,1 := 2(1+ κ2,1)q2/(q2 − 1), and

∫ 0

−τ

∫

Bk(s)

|β| dσ ds 6 ‖β‖Lq−1(∂Ω)‖bBk
‖
2(1+κ2,2)

Lr2,2(−τ,0;Lq2,2(∂Ω))
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with κ2,2 := (N(q −N) + 2(N − 1))/((q − 1)N), r2,2 := 2(1 + κ2,2) and q2,2 :=

2(1 + κ2,2)(q − 1)/(q − 2). Thus (A.19) yields

(A.20) ‖ζu(k)‖2Q(τ) 6 cµ‖ζ
′‖L∞(−τ,0)

∫ 0

−τ

∫

Ω

|u(k)(s)|2 dxds

+ ck2
2

∑

l=1

(
∫ 0

−τ

|Ak(s)|
r1,l/q1,l ds

)2(1+κ1,l)/r1,l

+ ck2
2

∑

l=1

(
∫ 0

−τ

|Bk(s)|
r2,l/q2,l ds

)2(1+κ2,l)/r2,l

.

Moreover, (A.18) implies that the parameters ri,l and qi,l satisfy (A.2) for i = 1, 2

and l = 1, 2 as elementary calculations show.

If we pick ζ(t) := (t+ τ)/(στ) for t ∈ [−τ,−(1 − σ)τ ] and ζ(t) := 1 for t ∈

[−(1− σ)τ, 0] with some given σ ∈ (0, 12 ), we have

‖u(k)‖2Q((1−σ)τ) 6 ‖ζu(k)‖2Q(τ)

and ‖ζ′‖L∞(−τ,0) 6 1/(στ) if T 6 T0, where c depends only on µ, D0 and β.

Thus (A.20) implies (A.3). Hence by Theorem A.2 applied to u and −u, the latter

being a classical solution of (P−u0,−f,−g), we obtain (3.2).

If in addition u(−T ) = 0, then we can set τ := T and choose ζ(t) := 1 for

all t ∈ [−T, 0]. Now using Corollary A.3 instead of Theorem A.2, we obtain (3.3)

from (A.20) like above. �

We finally make the step from classical L2-solutions to weak solutions and drop

the assumption that T be small enough, thus proving Proposition 3.1.

P r o o f of Proposition 3.1. Let u be the weak solution of (Pu0,f,g). Pick a se-

quence (u0,n) in D(A2
2,h) that satisfies u0,n → u0 in L

2(Ω), which exists since by

Proposition 2.10 the operator A2,h is a generator of a strongly continuous semigroup

and hence densely defined. Pick sequences (fn) and (gn) in C2([0, T ];L∞(Ω)) and

C2([0, T ];L∞(∂Ω)), respectively, that satisfy fn → f in Lr1(0, T ;Lq1(Ω)) and gn → g

in Lr2(0, T ;Lq2(∂Ω)), while fn(0) = 0 and gn(0) = 0 for all n ∈ N. Then problem

(Pu0,n,fn,gn) has a unique classical L
2-solution un by Proposition 2.7, and as in the

proof of Theorem 2.11 we see that un → u in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Pick T0 > 0 as in Lemma A.5. Shrinking T0 if necessary, we can assume that

T0 6 T . Let I ⊂ [T0/2, T0] be an interval of length at most T0/2. Applying (3.2) to

the classical L2-solutions un and un − um on I, which is allowed by Lemma A.5, we
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obtain that

‖un‖
2
L∞(I;L∞(Ω)) 6 c

∫ T

0

∫

Ω

|un(s)|
2 dxds(A.21)

+ c‖fn‖
2
Lr1(0,T ;Lq1(Ω)) + c‖gn‖

2
Lr2(0,T ;Lq2(Ω))

and that (un|I) is a Cauchy sequence in L∞(I;L∞(Ω)). Hence un → u in

L∞(I;L∞(Ω)), and passing to the limit in (A.21) we have

‖u‖2L∞(I;L∞(Ω)) 6 c

∫ T

0

∫

Ω

|u(s)|2 dxds(A.22)

+ c‖f‖2Lr1(0,T ;Lq1 (Ω)) + c‖g‖2Lr2(0,T ;Lq2(Ω)).

Covering [T/2, T ] by finitely many intervals of length at most T0/2 and using (A.22)

for each of these intervals we obtain (3.2).

If in addition u0 = 0, then we can pick u0,n := 0 and the same strategy as above

yields that

‖u‖2L∞(0,T0;L∞(Ω)) 6 c

∫ T

0

∫

Ω

|u(s)|2 dxds+ c‖f‖2Lr1(0,T ;Lq1 (Ω)) + c‖g‖2Lr2(0,T ;Lq2(Ω)).

Using in addition (3.2) to estimate ‖u‖L∞(I;L∞(Ω)) for finitely many intervals I of

length T0/2 that cover [T0, T ], we have proved also (3.3). �
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