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Abstract

In this article, we shall establish sufficient conditions for the asymp-
totic stability and boundedness of solutions of a certain third order non-
linear non-autonomous delay differential equation, by using a Lyapunov
function as basic tool. In doing so we extend some existing results. Ex-
amples are given to illustrate our results.
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1 Introduction

In this article, we establish the uniform asymptotic stability of the equation of
the form

[g(x(t))x′(t)]′′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = 0, (1.1)

and the boundedness of

[g(x(t))x′(t)]′′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = p(t), (1.2)
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where a(t), b(t), c(t), g(x), p(t), and f(x) continuous functions depending only
on the arguments shown and g′(x), f ′(x) exist and are continuous for all x,
f(0) = 0.
The author in [4, 5] based on the results in [8] have applied the method used

in [8] to construct some new Lyapunov functions to examine the asymptotic sta-
bility and boundedness of the solutions of non-linear delay differential equation
described by

x′′′ + a(t)x′′ + b(t)x′ + c(t)f(x(t− r)) = p(t), (1.3)

with p ≡ 0 and p �= 0, respectively.
The asymptotic stability and boundedness of solutions of this equation have

been studied by a variety of authors over the years, and we mention only a
sampling of such papers [1–15] and other references therein.
Obviously, the equation discussed in [4], Eq.(1), is a particular case of our

equation (1.1). We shall use appropriate Lyapunov function and impose suitable
conditions on the functions g and f.

2 Preliminaries

First, we will give the preliminary definitions and the stability criteria for the
general non-autonomous delay differential system. We consider

x′ = f(t, xt), xt(θ) = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : I × CH → R
n is a continuous mapping, f(t, 0) = 0, CH := {φ ∈

(C[−r, 0], R
n) : ‖φ‖ ≤ H}, and for H1 < H, there exists L(H1) > 0, with

|f(t, φ)| < L(H1) when ‖φ‖ < H1.

Definition 2.1 [2] An element ψ ∈ C is in the ω-limit set of φ, say Ω(φ), if
x(t, 0, φ) is defined on [0,+∞) and there is a sequence {tn}, tn → ∞, as n→ ∞,
with ‖xtn(φ)−ψ‖ → 0 as n→ ∞ where xtn(φ) = x(tn+θ, 0, φ) for −r ≤ θ ≤ 0.

Definition 2.2 [2] A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the
solution of (2.1), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3 [1] If φ ∈ CH is such that the solution xt(φ) of (2,1) with x0(φ) = φ
is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a non-
empty, compact, invariant set and

dist(xt(φ),Ω(φ)) → 0 as t→ ∞.

Lemma 2.4 [1] Let V (t, φ) : I ×CH → R be a continuous functional satisfying
a local Lipschitz condition. V (t, 0) = 0, and such that:
(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(‖φ‖) where W1(r), W2(r) are wedges.
(ii) V ′

(2,1)(t, φ) ≤ 0, for φ ∈ CH .
Then the zero solution of (2.1) is uniformly stable.
If Z = {φ ∈ CH : V ′

(2,1)(t, φ) = 0}, then the zero solution of (2.1) is asymp-
totically stable, provided that the largest invariant set in Z is Q = {0}.
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3 Assumptions and main results

We shall state here some assumptions which will be used on the functions that
appeared in equation (1.1), and suppose that there are positive constants a0,
b0, c0, d, A, B, C, and ε, such that the following conditions are satisfied:

i) 0 < a0 ≤ a(t) ≤ A; 0 < b0 ≤ b(t) ≤ B; 0 < c0 ≤ c(t) ≤ C.

ii) c(t) ≤ b(t), −L ≤ b′(t) ≤ c′(t) ≤ 0 for t ∈ [0,∞).

iii) 0 < m ≤ g(x) ≤M .

iv) f(0) = 0, f(x)x ≥ δ0 > 0 (x �= 0), and |f ′(x)| ≤ δ1 for all x.

v) Mδ1 < d < a0.

vi) 1
2da

′(t)− b0(d−Mδ1) ≤ −ε < 0.

vii)
∫ +∞
−∞ |g′(u)| du <∞.

To simplify the notation in what follows, we let

θ(t) =
g′(x(t))
g2(x(t))

x′(t).

Theorem 3.1 Suppose that assumptions (i) through (vii) hold. Then the solu-
tion x(t) of (1.1) and their derivatives x′(t) and x′′(t) are uniformly asymptot-
ically stable, provided that there exists r satisfying

r < min

{
2(a0 − d)

MCδ1
,

2m3ε

Cδ1M2(d+ dm2 +m)

}
.

Proof We note that equation (1.1) is equivalent to the following system of
differential equation

x′ =
1

g(x)
y

y′ = z (3.1)

z′ = − a(t)

g(x)
z +

a(t)g′(x)
g3(x)

y2 − b(t)y

g(x)
− c(t)f(x) + c(t)

∫ t

t−r

y(s)
f ′(x(s))
g(x(s))

ds.

We define the Lyapunov functional U = U(t, xt, yt, zt) as

U(t, xt, yt, zt) = exp

(
−γ(t)

μ

)
V (t, xt, yt, zt) = exp(−γ(t)

μ
)V, (3.2)

where γ(t) =
∫ t

0
|θ(s)| ds, and

V = dc(t)F (x) + c(t)f(x)y +
b(t)

2g(x)
y2 +

1

2
z2 +

d

g(x)
yz

+
1

2

da(t)

g2(x)
y2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ) dξds, (3.3)
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such that F (x) =
∫ x

0
f(u)du, μ and λ are positives constants which will be

determined later. From the definition of V in (3.3), we observe that the above
Lyapunov functional can be rewritten as follows

V = V1 + V2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ) dξds,

with

V1 = dc(t)F (x) + c(t)f(x)y +
b(t)

2g(x)
y2,

and

V2 =
1

2
z2 +

d

g(x)
yz +

da(t)

2g2(x)
y2.

We shall write the above expression as

V2 =
1

2

{
z2 +

2d

g(x)
yz +

da(t)

g2(x)
y2
}

=
1

2

(
z +

d

g(x)
y

)2

+
d(a(t)− d)

2g2(x)
y2.

By (v),
d(a(t)− d)

2g2(x)
≥ d(a0 − d)

2g2(x)
> 0.

Thus there exist positive constants such that

V2 ≥ δ2y
2 + δ3z

2. (3.4)

On the other hand, using the assumptions (i)–(v), and a rearranged V1, we
obtain,

V1 = dc(t)F (x) +
b(t)

2g(x)

{
y +

c(t)f(x)g(x)

b(t)

}2

− c2(t)g(x)f2(x)

2b(t)

≥ dc(t)F (x)− c2(t)g(x)f2(x)

2b(t)

≥ dc(t)[F (x)− M

2d
f2(x)]

≥ dc(t)

∫ x

0

(1− Mδ1
d

)f(u) du

≥ δ4

∫ x

0

f(u) du,

where

δ4 = dc0(1−
Mδ1
d

) > dc0(1−
d

d
) = 0.

Thus from (iv) we obtain,

V1 ≥ δ4δ0
2
x2. (3.5)
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Clearly, from (3.5), (3.4) and (3.3), we have

V ≥ δ2y
2 + δ3z

2 +
δ4δ0
2
x2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ) dξds.

Hence, it is evident, from the terms contained in the last inequality, that there
exist sufficiently small positive constant k, such that

V ≥ k(x2 + y2 + z2), (3.6)

since the integral
∫ t

t+s
y2(ξ) dξ is positive, where k = min{δ2; δ3; δ4δ02 }.

Observe that by (iii) and (vii), we get

γ(t) =

∫ t

0

|θ(s)| ds =
∫ α2(t)

α1(t)

|g′(u)|
g2(u)

du ≤ 1

m2

∫ +∞

−∞
|g′(u)| du ≤ N <∞,

where α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}.
Therefore we can find a continuous function W1(|Φ(0)|) with

W1(|Φ(0)|) ≥ 0 and W1(|Φ(0)|) ≤ U(t,Φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality
U(t, φ) ≤W2(‖φ‖), is easily verified.
For the time derivative of the Lyapunov functional V , along the trajectories

of the system (3.1), we have

d

dt
V = dc′(t)F (x) + c′(t)yf(x) +

b′(t)
2g(x)

y2 +
1

g(x)
(d− a(t))z2

+
g′(x)x′

g2(x)

[
(a(t)− d)zy − b(t)

2
y2
]

+

[
da′(t) + 2c(t)g(x)f ′(x)− 2db(t)

2g2(x)

]
y2 + λry2

+ c(t)(z +
d

g(x)
y)

∫ t

t−r

y(s)
f ′(x(s))
g(x(s))

ds− λ

∫ t

t−r

y2(ξ) dξ.

Consequently by the hypothesis (i)–(vi), we get

d

dt
V ≤ dc′(t)F (x) + c′(t)yf(x) +

b′(t)
2g(x)

y2

+ |θ(t)|
[
(A− d) |zy|+ B

2
y2
]
−
( ε

M2
− λr

)
y2 − 1

M
(a0 − d)z2

+ c(t)(z +
dy

g(x)
)

∫ t

t−r

y(s)
f ′(x(s))
g(x(s))

ds− λ

∫ t

t−r

y2(ξ) dξ.

We define the function H as

H(t, x, y) = dc′(t)F (x) + c′(t)yf(x) +
b′(t)
2g(x)

y2,
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for all x, y and t ≥ 0. If c′(t) = 0, then

H(t, x, y) =
b′(t)
2g(x)

y2 ≤ 0.

If c′(t) < 0, the quantity H(t, x, y) can be written as,

H(t, x, y) = dc′(t)H1(t, x, y),

where

H1(t, x, y) ≡
[
F (x) +

b′(t)
2dg(x)c′(t)

{
y +

c′(t)g(x)
b′(t)

f(x)

}2

− c′(t)g(x)
2db′(t)

f2(x)

]
,

by assumption (ii) we have 0 < c′(t)
b′(t) ≤ 1, this implies

H1(t, x, y) ≥ F (x)− g(x)

2d
f2(x) ≥ F (x)− M

2d
f2(x)

≥
∫ x

0

(1− Mδ1
d

)f(u) du ≥ δ4
dc0

∫ x

0

f(u) du ≥ 0.

It follows immediately that

H(t, x, y) = dc′(t)H1(t, x, y) ≤ 0.

Hence, on combining the two cases, we have H(t, x, y) ≤ 0 for all t ≥ 0, x and
y. Using the Schwartz inequality |uv| ≤ 1

2 (u
2 + v2), we obtain

|θ(t)|
[
(A− d) |zy|+ B

2
y2
]
≤ |θ(t)|

[
A− d

2
z2 +

A− d+B

2
y2
]

≤ k1 |θ(t)| (y2 + z2),

where k1 = A−d+B
2 . Since |f ′(x)| ≤ δ1, we obtain the following inequalities

dc(t)

g(x)
y

∫ t

t−r

y(s)

g(x(s))
f ′(x(s)) ds ≤ Cδ1dr

2m
y2 +

Cdδ1
2m3

∫ t

t−r

y2(ξ) dξ,

and

c(t)z

∫ t

t−r

y(s)

g(x(s))
f ′(x(s))ds ≤ Cδ1r

2
z2 +

Cδ1
2m2

∫ t

t−r

y2(ξ)dξ.

With some rearrangements, we get

d

dt
V ≤ −

[
ε

M2
− (λ+

dCδ1
2m

)r

]
y2 −

[
a0 − d

M
− Cδ1r

2

]
z2

+ k1 |θ(t)| (y2 + z2) +

[
Cδ1
2m2

(1 +
d

m
)− λ

] ∫ t

t−r

y2(ξ) dξ.
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If we take Cδ1
2m2 (1 +

d
m) = λ, the last inequality becomes

d

dt
V ≤ −

[
ε

M2
− Cδ1

2m
(d+

1

m
+

d

m2
)r

]
y2 −

[
a0 − d

M
− Cδ1r

2

]
z2

+ k1 |θ(t)| (y2 + z2).

Using (3.2), (3.6) and taking μ = k
k1
yields

d

dt
U = exp

(
−k1γ(t)

k

)(
d

dt
V − k1|θ(t)|

k
V

)

≤ exp

(
−k1γ(t)

k

)[
−
(

ε

M2
− Cδ1

2m

(
d+

1

m
+

d

m2

)
r

)
y2

−
(
a0 − d

M
− Cδ1r

2

)
z2
]
. (3.7)

Therefore, if

r < min

{
2(a0 − d)

MCδ1
,

2m3ε

Cδ1M2(d+ dm2 +m)

}
,

the inequality (3.7) becomes

d

dt
U(t, xt, yt, zt) ≤ −β exp

(
−k1N

k

)
(y2 + z2), for some β > 0.

It is clear that the largest invariant set in Z is Q = {0}, where

Z =

{
φ ∈ CH :

d

dt
U(φ) = 0

}
.

Namely, the only solution of system (3.1) for which d
dtU(t, xt, yt, zt) = 0 is the

solution x = y = z = 0. Thus, under the above discussion, we conclude that the
trivial solution of equation (1.1) is uniformly asymptotically stable. This fact
completes the proof. �

4 Example

In this section, we give example to illustrate our main results.
We consider the following third order non-autonomous delay differential equa-
tion [(

sin x

1 + x2
+ 2

)
x′
]′′

+

(
1

4
sin t+

1

2
)x′′ + (

1

2 + t2
+ 1

)
x′

+
1

28

(
1

3 + t2
+

1

4

)(
x(t− r) +

x(t− r)

1 + x2(t− r)

)
= 0. (4.1)
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Now, it is easy to see that

1

4
= a0 ≤ a(t) =

1

4
sin t+

1

2
≤ 3

4
,

a′(t) =
1

4
cos t ≤ 1

4
for all t ≥ 0,

1 = b0 ≤ b(t) =
1

2 + t2
+ 1 ≤ 3

2
,

1

4
≤ c(t) =

1

3 + t2
+

1

4
≤ 7

12
= C,

1 ≤ g(x) =
sinx

1 + x2
+ 2 ≤ 3 =M,

1

28
≤ f(x)

x
=

1

28

(
1 +

1

1 + x2

)
with x �= 0, and |f ′(x)| ≤ 1

14
= δ1,

Mδ1 =
3

14
< d <

1

4
= a0,

1

2
a′(t) =

1

8
cos t < b0

(
1− Mδ1

d

)
<

1

7
.

A sample calculation shows∫ +∞

−∞
|g′(u)| du ≤

∫ +∞

−∞

[ ∣∣∣∣ cosu

1 + u2

∣∣∣∣+
∣∣∣∣ 2u sinu

(1 + u2)2

∣∣∣∣
]
du ≤ π + 2.

All the assumptions (i) through (vii) are satisfied, we can conclude using The-
orem 3.1 that every solution of (4.1) is uniformly asymptotically stable.

In the case p(t) �= 0 we establish the following result:

Theorem 4.1 In addition to the assumptions of Theorem 3.1, If we assume
that p(t) is continuous in R and∫ t

0

p(s)ds <∞ for all t ≥ 0,

then all solutions of the perturbed equation (1.2) are bounded.

Proof The proof of this theorem is similar to that of the proof of Theorem 2
in [5] and hence it is omitted. �
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