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Abstract

In this paper, generalized boundary value problems for nonlinear frac-
tional Langevin equations is studied. Some new existence results of so-
lutions in the balls with different radius are obtained when the nonlinear
term satisfies nonlinear Lipschitz and linear growth conditions. Finally,
two examples are given to illustrate the results.
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1 Introduction

Fractional derivatives provide a good tool for the description of memory and
hereditary properties of various materials and processes. In particular, frac-
tional differential equations appear naturally in a number of fields such as
electrical circuits, biophysics, blood flow phenomena, physics, polymer rheol-
ogy, geophysics, aerodynamics, nonlinear oscillation of earthquake, etc. Highly
remarkable monographs which provide the main theoretical tools for the qual-
itative analysis of fractional differential equations, and at the same time, show
the interconnection as well as the contrast between integer differential models
and fractional differential models, are [1, 2, 3, 4, 5, 6, 7, 8. Many research
on the existence, limit properties, stability, periodicity of solutions and optimal
controls for all kinds of fractional differential equations have been reported, see
for instance the contrbutions of Agarwal, O’'Regan and Stanék [9, 10, 11, 12, 13]
and other researchers [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]) and the references
therein.

On the other hand, all kinds of Langevin equations are widely used to de-
scribe the evolution of physical phenomena in fluctuating environments. For
instance, Brownian motion is well described by the Langevin equation (or gen-
eralized Langevin equation) when the random fluctuation force is assumed to
be white noise (or not white noise). For systems in complex media, ordinary
Langevin equation does not provide the correct description of the dynamics.
As a results, various generalizations of Langevin equations have been offered
to describe dynamical processes in a fractal medium. One such generaliza-
tion is the generalized Langevin equation which incorporates the fractal and
memory properties with a dissipative memory kernel into the Langevin equa-
tion. This gives rise to study fractional Langevin equation, see for instance
[24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] and the references therein.

Motivated by [31, 32, 33, 34, 35], we study the existence of solutions for the
following generalized boundary value problems for nonlinear fractional Langevin
equations:

az(0) + bz(l) = ¢, 2/(0)=2'(1) =0, (1)

{ D(eDE + Na(t) = f(t,z(t), teJ:=[0,1, l<a<2, 0<B<1,
where “D{* (or “Df ) is the Caputo fractional derivative of order a (or 8) with
the lower limit 0, f: J x R — R is a given continuous function, R denotes the
set of real numbers, a, b, A are real numbers and a+ b # 0. We mention that the
solution of the problem (1) is understood in the classical sense, i.e., a solution
x is taken to mean a function in C(J, R) for which the corresponding fractional
derivatives exist and which satisfies the first equation in the problem (1) and
prescribed boundary conditions identically.

In the present paper, we show existence and uniqueness results of solutions
for the problem (1) by virtue of fractional calculus and fixed point method.
Compared with the earlier results appeared in [31, 32, 33, 35], there are at least
three differences: (i) the boundary value conditions in the current model has
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more precise for physical measurements; (ii) the nonlinear term f satisfies non-
linear D-contraction (see Definition 2.3) and linear growth conditions; (iii) our
assumptions are weakened and easy to check. Compared with the model in [34],
the constants a, b and c are important and will guarantee us to extend the linear
Lipschitz condition to the nonlinear D-contraction condition. In particular, we
point that there exists an error in the Lemma 1 of [35] since the author assume
that 0 < o < 1 in the equation (3.1), which can not derive the formula (3.2) in
the Lemma 1 of [35] in anyway. In fact, the formula (3.2) in the Lemma 1 of
[35] holds for 1 < o < 2.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts.

Throughout this paper, let C(J, R) be the Banach space of all continuous
functions from J into R with the norm ||z|¢ := sup{|z(t)| : t € J}, for = €
C(J, R). For Lebesgue measurable functions [: J — R, define the norm

Wl = (/J Z<t>|Pdt) Cl<p<oo

We denote LP(J, R) the Banach space of all Lebesgue measurable functions [
with [|I|| L»(s,r) < oo

Let us recall the following known definitions. For more details, see Kilbas et
al. [3].

Definition 2.1 The fractional integral of order v with the lower limit zero for
an integrable function f: [0,00) — R is defined as

1 t
A =
Jf() F(7)/0 s ds, t>0,v>0,

provided the right side is point-wise defined on [0, 00), where I'(+) is the gamma
function.

Definition 2.2 For a n-times differentiable function f: [0,00) — R, the Ca-
puto derivative of fractional order -y is defined as

‘D] f(t) = L /t(t = s)”fvflf(”)(s) ds, n—1<~vy<n.
7) Jo o

I'(n—

Definition 2.3 Let X be a Banach space with the norm | - ||. A mapping
T: X — X is called D-Lipschitzian if there exists a continuous nondecreasing
function ¢p: RT — RT satisfying

[Tz =Tyl < or(llz—yl)

for all z,y € X with ¢r(0) = 0. Here RT denotes the set of nonnegative
real numbers. Sometime we call the function ¢ a D-function of 7" on X. If
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¢r(r) = ar for some constant o > 0, then T is called a Lipschitzian with a
Lipschitz constant o and further if & < 1, then T is called a contraction with
the contraction constant «. Again if ¢r satisfies ¢r(r) < r,r > 0, then T is
called a nonlinear D-contraction on X.

Define a class @ of function ¢: Rt — R™ satisfying properties: (i) ¢ is
continuous, (ii) ¢ is nondecreasing, and (iii) ¢(x + y) < ¢(x) + ¢(y) for all
x,y € RT. Obviously, if ¢ € @, then |¢(z) — d(y)| < ¢(|Jz —y|) for all z,y € RT.

Now consider the function f: J x R — R defined by

__Ho(s)
60 = N ey )

where ¢ € ® satisfying ¢(r) < r, and N is a positive constant such that H < N.
It is clear that

Hlo(«)) —¢(yDl _ _Hlz —yl
N+o(jz)) +o(ly) — N+lz—yl’

[f(t,x) = ft,y)| < 3)

which implies f is nonlinear D-contraction on the second variable. There do
exist function ¢ given in (2), such as:

¢(r) = kr,

¢(r) = (2 +7),
¢(r) = Vi+r-1,
o(r) = arctanr.

In order to study the problem (1), we introduce the following linear problem

{CDE(CD?—F)\)x(t):h(t), teJ, 1<a<2, 0<B<1, @

azx(0) +bx(1) =¢, 2'(0)=2/(1)=0, a+b#0,
where h € C(J, R).

Lemma 2.4 A unique solution of the equation (4) satisfies the following integral
equation

z(t) = /Ot (t _F(uoz;_l (/Ou (u ;(Sﬁ))ﬂ_l h(s)ds — Ax(u)) du

_ aib/ol ( F(“(j)al (/Ou (ursﬁ))ﬁlh(s)ds}\x(u)> du

P [ ([ )

c
a+b

+
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Proof Applying Definitions 2.1 and 2.2, one can find the general solution of
DY (°DE + N)a(t) = hit)

can be written as

x(t) = /Ot % (/O“ %h(s) ds — )\x(u)) du

t(l(
= — ot 6
Tlat1) 0 7" (6)

Using the conditions for the equation (4), we find that

7‘2:0,

o= _l:_ i /01 (1 F(uof)"‘l (/OU (ul_‘(sﬁ))ﬁlh(s)ds — /\a:(u)) du
o | Ty () s - et du - 2

ro = D(a) /01 M </Ou Wr(‘?;lh(s)ds - Ax(u)) du.

Substituting the values of rg,7r1,72 in (6), we obtain the solution (5). This
completes the proof. O

Now, we state a known result due to Krasnoselskii (see [38]) which is needed
to prove the existence of at least one solution of the problem (1).

Theorem 2.5 Let M be a closed convex and nonempty subset of a Banach
space X. Let A, B be two operators such that

(i) Ax + By € M whenever z,y € M,

(71) A is a compact and continuous,

(#i1) B is a contraction mapping.
Then there ezists a z € M such that z = Az + Bz.

3 Main results

In this section, we firstly apply Banach fixed point theorem to show the existence
and uniqueness of solutions of the problem (1).
For brevity, set sup,c; |f(¢,0)| = M.

Theorem 3.1 Assume that f: Jx R — R be a jointly continuous function and
satisfies nonlinear D-contraction on the second variable. Then the problem (1)
has a unique solution in B, = {x € C(J,R) : ||z||c < r}, where

(la + 0| +2m)a+mp c
ala+bT(a+ B+1) a+b
- 1_A 9
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provided that

2
A= (atdf+ m)a+mﬁ+|)\|

la + 0] + 2m
<1
ala+b'(a+B+1)

la +bT'(a+ 1) ’

and m = max{|al, |b|}.

Proof Letting Q = J x B,, then  is a compact set. Since f a jointly
continuous function, we can define sup; ,)cq [f(t,7)| = fmax-

Define an operator F': B, — C(J, R) by

(Fz)(t) = /Ot (t}ﬁ (/Ou Mf(s,x(s))ds - Ax(u)) du

(o) I(5)
b [P —we Y (u—s) !
Ca+b /0 [(a) (/0 T(3) f(s,z(s))ds — )\x(u)) du
b—t(a+0b) [P (1—w)2 ([ (u—s)""" B c
T alar) /o I(a—1) </0 T'(B) f(s,2(s))ds A~’C(U)> dut .

It is easy to verify that F' is well defined. In fact for every z € B, and any
0>0,0<t<t+ 6, we get

(Fz)(t +6) — (Fz)(t)]

Y (u—s)Pt
/0 ¥f(s,:r(s))d57)\x(u) du

()

< oo [Tt = e
0
/0“ Mf(s, x(s))ds — Az(u)| du

1 t+46 o1

1 « a ! (1 — u)a—Q “ (U — S)B_l
+a\t —(t+6)7]  Ta-1 (/0 T(5) f(s,a:(s))ds—)\x(u)) du

< e ()

" </ot[(t +3— )™ = () du + /tt+6(t +d - u)“du)

1 fmax o g
+F(a+1) (F(6+1)+>\T>[(t+5) ]

- T(a+1) (F(B—&—l)Jr/\") [(t+6)*—t*] =0, asd—0.
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Step 1. We show that FB, C B,. For x € B,., t € J, we have

t a—1
(t—w)

Fz|lc <su —
|Falle < tE? { /0 ['(a)

U (u—s)Pt 3
x /0 (If(s,2(5)) = f(5,0)[ + £ (5,0)[)ds + [Az(u)| |du

1 (1 —w)ot
I'(«)

b
a+b 0

. (/ (=T | fs,a(s)) — F(s,0)] + (5, 0) s + IMW))du
o T Ve B

b—t*(a+b) /1 (1—u)*2

a@to) || T@-1
([ D1 (5,2(5)) — £(5,0)] + £ (5, 0) s + el
a—f—b}
<bup{ - ([ f ds) } & (zlc) + M)

t— u
+sup / ( dulzc
ted Jo ['(a)

0 ([ autatiste) + a1

-
S| [ O e
b—t*(a+b)

ala+b) /0 (;(au 1)2 </0u . F(Sﬁ))ﬁld8> du(®(||z|c) + M)

- b—t*(a+0b)| (1 (1—u)?
e ety / I'(a)

;su f —u)* P du
<o a0 gy s

aer

+ sup
teJ

C
du| —
ulllllc +| ——

m 1 — ) "Pdu
|a+b|F(a)F(ﬂ+ 1) /0 (1 ) d

* TG SOTETD U, - “”_Q“Bdu}
e [ iy [ Sy

L_m /1 (1—u)°‘_2du+ c
ala+0bl Jy T(a—1) a+blf
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Using the relation for Beta function B(-,-):

B(B+1,0) = /0 (1 —w)* P du= 7{1((2)5_(5111))7

la+p8+1)
we find that
(la +b] +2m) a +mp3 la+ b +2m ¢
F < M <.
1Edle <t M) i+ 510 W erararn tazs| =

Step 2. We show that F' is a contraction mapping.
For z,y € B, and for each t € J, we get

t a—1
(t—uw)
Fx—F <su
| vlle < te?{/o I(a)

Y (u—s)Bt
< ( | o) — S pteh s + o) - y<u>|)du

[
x ( = D (1 (s,2(5)) — Fs, () e+ M) — y<u>|)du
[ty
x ( |5 D (s ()) — (s () s+ Nrar) — y<u>|)du
o [ S ([ O
Flatd / . iU)M (/ . r(?;lds)d“
i | (/u<“E<?f_1d8)d“}+'A'“w—y”
x{/o (1}1; \a—i—b\/ a|a+b|/ _a—l }
§ (|a+b|+2m>a+m5 |a+b|+2m)>” i

- ( ala+bT(a+5+1) a+ bl (a+
= Allz —yl|

+ a+b

g

‘b—t“(a—i—b)‘
a(a+b)

}

+\||
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Thus, F is a contraction mapping on B, due to the condition (7). By applying
the well-known Banach’s contraction mapping principle we know that the oper-
ator F' has a unique fixed point on B,.. Therefore, the problem (1) has a unique
solution. O

Secondly, we will apply Krasnoselskii fixed point theorem to show another ex-
istence result in another ball where f: Jx R — R will be weaken a Carathéodory
function and the condition (7) is weakened in some sense.

Theorem 3.2 Assume that f: Jx R — R be a Carathéodory function and sat-
isfies nonlinear D-contraction on the second variable. In addition, there exists a
constant L > 0 such that | f(t,x)| < L(1+|x|) for eacht € J and allz € R. Then
the problem (1) has at least one solution in B, = {x € C(J,R) : ||z|lc <r'}
where

(la+ 0| +2m)a+mp c
o> ala+ b (a+5+1) a—l—b’ (8)
_17(|a+b|+2m)a+mﬂLi|)\| la + bl +2m ’
ala+bl'(a+ B+1) la + bl (a+ 1)

provided that

2ma + mp 2m| Al
A 1
maX{a|a+b|F(a+ﬁ+1)+|a+b|F(a+1)’ Lps<® )
and
(la+0| +2m)a+ mp la + b +2m
Ap =1L A .
L ala+bT(a+pB+1) + ||a+b\1“(a+1)

Proof We define two operators P and () on B, as

(o)) = [ el ([ (W= a(s))ds — pa(w ) du

(a) L(3)
_ b 1(1_u)a71 u(u_s),é’fl vt :
(Qz)(t) = a+b/0 T(a) (/0 T(3) f(s,2z(s))ds — Ax( )) d
b—t*(a+b) [P (1—u)*2 [ [*(u—s)" VNS
+ ala+b) /0 T(a—1) (/0 T'(B) f(s,z(s))ds — Ax( )> d
a+b

It is not difficult to verify that Pz + Qy € C(J, R) for any x,y € B, according
to the linear growth condition on f. Moreover, for any x,y € B,» we find that
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[(Pz)(t) + (Qu)(®))]

< [ ([ s atslds + Dt )

0
m 0wt ()
+ la + 0| /O ') (/0 r'(8) |f(s,2(s))|ds + |/\x(u)> du

m 1 (1 _ u)a72 u (U _ 8)571
+a\a+b| /0 Tla—1) (/0 T(5) |f(5,x(5))|d5+/\x(u)|> du-+

< % /Ot(t — )t (/Ou(u - s)ﬁlds) du

e [

+ % /01(1 — )t (/Ou(u - s)/“ds) du

1 _ . \a—1
mbllsle 10w,
la+b Jo I'a)

+ Mfiﬁ@”—gj |1§3(6) /01(1 A </o<“ - swds) a

m\zlle [+ (1 —wu)?
ala+bl J, T(a—1)

c
a+b

du +

c
a+b
Al
I'a+1)

LAY ' s
< T J, ¢ W

mL(1+1")
la + 0T (a)T(B+ 1

m|Alr!
la + 0T (a4 1)

] /01(1 —u)* P du +

c
a+b

mL(1+1") ! 5 m|A|r!
1 —u)*2uPd
e T a—1T(B+1) /O (L =) et e )

(la + bl +2m)a+ mp c

<
~ ala+bl(a+8+1) a+b
<(|a—|—b|—|—2m)a+mﬁ la + b| + 2m |)\>r'
ala+bT(a+B+1) la + bl (a4 1)

’
<,

which implies that Px + Qy € B,.
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For z,y € Q2 and for each t € J, by the analogous argument to the proof of
Theorem 3.1, we obtain

(Qz)(t) — (Qy) (D)

: aiby/lu;ifkl(Aum;éx_%fﬂsﬂﬁ)—f@w@DD@>du

ab[i\b‘/ (u)—y(u)|du+‘lm‘

“f %@ml)(Auwggflwww@»—ﬂ&M@nw)m}

(b—t2(a+b)IA | ' (L—wo?
’ ala+b) /0 I(a—1) |z (u) — y(u)|du
)

(-l 2y [ A ([ g i)
a|a + 0| / (ax —061)2 </0 s 1ds> du}
I Ll s Ma+m/a oy

< < 2ma + mp N 2m| | ) H H
xr — .
=\ala+bT(a+B+1) " Ja+bT(a+l) ylle

From the condition (9), it follows that @ is a contraction mapping.

The continuity and linear grown condition of f implies that the operator P
is continuous by means of Lebesgue Dominated Convergence Theorem. Also, P
is uniformly bounded on B, since

L1+ [ A7’
(a+B+1) T(a+1)

Now we need to prove the compactness of the operator P. In fact, it is easy
to obtain

1Pallo <

((Pz)(t2) — (Pz)(t1)]
)

_ /;2 (2 ;(3‘“ (/Ou (u ;(‘;) F(s,2(s))ds — Ax(u)) du

U ‘1f<w<s>>ds—m<u>) .

L(1+1") [ A7’
STatft1 Tlat1)

L(1+7") |Alr! B
< (v * om0

‘ta-&-ﬁ _ ttll-i-ﬁl +
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which is independent of xz and tends to zero as t; — t3. Thus P is relatively
compact on B,.. Hence, by the Arzela—Ascoli Theorem, P is compact on B, .
Thus all the assumption of Lemma 2.5 are satisfied and the conclusion of Lemma
2.5 implies that the problem (1) has at least one solution on J. The proof is
completed. O

Corollary 3.3 Suppose that the following conditions hold:
(i) there exists a function u(t) € L= (J, RT) for some o € (0, 3) such that

lf(t,z) — f(t,y)| < p(t)|z—y|, for eacht e J and all x,y € R.
(ii) there exists a function u(t) € L= (J, RY) for some o € (0, ) such that
[f(t,z)] < p(@)(1+|z|) for each t € J and all x € R.

Then the problem (1) has at least one solution on J provided that

((|a + b 4 2m)a +mB —ma)T(B — o + 1)u* (1—o>1“
ala+ LB (a+5—0+1) B—o

la + b| + 2m
e 1 10
\a—i—b\F(a—i—l)‘ <1 (10)

where m = max{|al, |b|} and p* = (fol(u(s))%ds>a.

To end this section, we extend to study the following more general problem

ax(0) +bx(l) =¢, 2'(0)=2'(1)=0, a+b#0. (11)

{ DI (D + Na(t) = O f(t,x(t), t€J, 1<a <2, 0<f<1, 7>0,
We remark that the term ¢” in the first equation in the problem (11) will weaken
the impact from the singular kernel (£ —-)®~! in the possible singular integrals.

Some related work on a weakly singular integral equation has been reported by
Wang et al. [39].

Theorem 3.4 Assume that f: J x R — R be a jointly continuous function
and satisfies nonlinear D-contraction on the second variable. In addition, there
exists a constant L > 0 such that |f(t,z)| < L(1 + |z|) for each t € J and all
x € R. Then the problem (11) has at least one solution provided that

- { 2ma +mpB+my)L(y+1) 2m|\|
ala+b(a+ B +v+1) la + bl (a+1)’
((la+0bl+2m)a+mpB+my)T(y+ 1)L (Ja+ b| + 2m)|A|
ala+dT(a+B8+v+1) la + 0|7 (a + 1)

} <1, (12)

where m = max{|al, |b|}.



Generalized boundary value problems for nonlinear fractional Langevin... 97

Proof Denote
Br” = {x S C<J7 R) : H‘,I"HC S rl/a}

where
((Ja+b| +2m)a+mp +my)T'(y+ 1)L c
+ | |
NS ala+bl'(a+B+vy+1) a+b
L ((Ja+0]+2m)a+mB+my)T(y+ 1)L (Jla+b|l+2m)A[”
ala+bla+B+~v+1) la + 0T (e 4+ 1)

We define two operators P and Q on B, as follows

(Pa)(t) = / o we ( [ D o a(s))ds et )

(o) r(o)

@0 =~ [ ([ st — et )

= ;Ei 2 %@1‘_)01_)2 ([ ST s ateds = xetw) )
*a —cf— b’

The rest proof is very similar to the steps of Theorem 3.2, so we omit it here.
O

4 Examples

In this section, we make two examples to illustrate our the above theory results
from the subject of the mathematics. Other interesting application the reader
can refer to Sandev at al. [34, 36]

Example 4.1 Consider the following boundary value problem

. 2 c 11 o x(t
DF (D + ) =ty 0
_ / _ / —

22(0) +=(1) =0, 2/(0) =a'(1) =0.

Set a = 11 B:%,)\:ﬁ,azlbzl,c:Oand

X

%0 +a) (t,z) €[0,1] x R.

f(t,f) =

Obviously f is a special case of (3), then f is nonlinear D-contraction on z and
|f(t, )| < 55 (1+ |z|) with L = 5. Further, the condition (7) is equivalent to

+ =~ (.7886 < 1.
3000 (1)

w4
5 13 7
1 1
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Then the problem (13) has a unique solution on J according to Theorem 3.1.
On the one hand, the condition (9) is equivalent to

ma{767+§1+ 7 ﬁ+7+ 4 }

X or ’

ST(3) 25 300r(%)” S0(3) 3000 ()
= max{0.0445,0.4819} < 1.

Then the problem (13) has at least one solution on J according to Theorem 3.2.

Example 4.2 Consider the following boundary value problem

3 3 x t
D/ (*Df + d5a(t)) = iy € 01 (14)
o ’ _
22(0) —x(1) =0, 2'(0) =2'(1) =0.
Setazg,BZ%AZEaHd
x

(t+52(1+z) (t,z) €[0,1] x RT.

f(t,z) =
Obviously, |f(t,z)| < (t+5 1+|x\) and | f(t,z) — f(t,y)] < ﬁ|x—y|. So we

1
can put u(t) = (f+5)2 Set o = 1 and p* = (35 — 55 ) > = 0.0346. Further,

the condition (10) is equivalent to

x 0.0346 x /2 1

)
HrErd)  ar)

= 0.4961 < 1.

8U(3
(
Then the problem (14) has at least one solution according to Corollary 3.3.

5 Final remarks

Sometimes we need to consider the following model

(15)

LDPEDY + Na(t) = f(t,x(t), te J:=[0,1, 1<a<?2, 0< <1,
2(0) = 0, lim e (t-2(t)) = 21,
where © Dy (or LDf ) is the Riemann-Liouville fractional derivative of order o (or
B) with the lower limit 0, f is a nonlinear D-contraction function, or f(t,z) =
F(t,z) + G(t,x) where F is continuous and G is a nonlinear D-contraction
function and F(¢,z) < L(1 + |z|) with L > 0.

By proceeding as in Section 2 and Section 3, one can derive the formula of
the solution and obtain the existence theorems for the problem (15).
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