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Abstract. We study the G-dimension over local ring homomorphisms with respect to
a semi-dualizing complex. Some results that track the behavior of Gorenstein properties
over local ring homomorphisms under composition and decomposition are given. As an
application, we characterize a dualizing complex for R in terms of the finiteness of the
G-dimension over local ring homomorphisms with respect to a semi-dualizing complex.
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1. Introduction

Throughout this paper, all rings are commutative and noetherian. It is well known

that Gorenstein homological dimensions are refinements of the classical homological

dimensions.

Gorenstein dimension (abbreviation G-dimension), which is a homological invari-

ant for modules, was introduced by Auslander and was deeply studied by Auslander

and Bridger in [1]. With that as a start, G-dimension has been studied by a lot of

algebraists so far. Two of its main features are that it is a finer invariant than the

projective dimension and that it satisfies an equality of the Auslander-Buchsbaum

type.

Let C be a semi-dualizing complex for R. Christensen introduced G-dimension

with respect to C in [7]. More precisely, for X ∈ D
f
b (R) the G-dimension of X with

The research has been supported by National Natural Science Foundation of China
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respect to C is defined to be

G-dimC X =

{

inf C − infX†C , X ∈ CR(R),

∞, X /∈ CR(R)

(see [7], 3.11).

Iyengar and Sather-Wagstaff in [11] develop a theory of Gorenstein dimension

over local ring homomorphisms. More precisely, let ϕ : R → S be a local ring

homomorphism and X ∈ D
f
b (S), and let R

ϕ̇
→ R′ ϕ′

→ Ŝ be a Cohen factorization of ϕ̀.

The Gorenstein dimension of X over ϕ is defined by G-dimϕ X = G-dimR′ X̂ −

edim(ϕ̇).

Motivated by this, it is natural to consider G-dimension over local ring homomor-

phisms with respect to a semi-dualizing complex. In this paper, G-dimension over

local ring homomorphisms with respect to a semi-dualizing complex is studied and

the corresponding results are generalized.

Transfer of homological properties along ring homomorphisms is a classical field

of study. The following stability result generalizes [11], Theorem 5.1, and [7], Theo-

rem 3.17 (b), (see Theorem 3.15).

Theorem A. Let C be a semi-dualizing complex for R. Let ϕ : R → S and

σ : S → T be local ring homomorphisms. If P ∈ D
f
b (T ) with pdσ P finite and

X ∈ D
f
b (S), then we have the equality

G- dimC
σϕ(X ⊗L

S P ) = G-dimC
ϕ (X) + pdσP.

In particular, G- dimC
σϕ(X ⊗L

S P ) and G-dimC
ϕ (X) are simultaneously finite.

As an application, we have the following result which recovers [11], Theorem 6.1,

(see Theorem 4.1).

Theorem B. Let (R,m, k) be a local ring and C a semi-dualizing complex for R.

Then the following conditions are equivalent.

(i) C is dualizing for R.

(ii) For every local ring homomorphism ϕ : R → S and X ∈ D
f
b (S),

G-dimC
ϕ (X) < ∞.

(iii) There is a local ring homomorphism ϕ : R → S and an ideal I of S such that

I ⊇ mS, and G-dimC
ϕ (S/I) < ∞.
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2. Preliminaries

The derived category is written asD(R). IfM is anR-complex, then the projective

dimension of M is abbreviated as pdR M . The symbols supM and infM are used

for the supremum and infimum of the set {i ∈ Z ; Hi(M) 6= 0}, with the conventions

sup ∅ = −∞ and inf ∅ = ∞. A complex M is called homologically bounded above

if supM is finite, it is called homologically bounded below if infM is finite, and

it is called homologically bounded if it is homologically bounded above and below.

The full subcategories D⊏(R) and D⊐(R) consist of complexes X with, respectively,

supX < ∞ and inf X > −∞. We set Db(R) = D⊏(R)∩D⊐(R). The full subcategory

P(R) of Db(R) consists of complexes of finite projective dimensions. We use the

superscript f to denote finite (finitely generated) homology.

We use the standard notation RHomR(−,−) and −⊗L
R − for the derived Hom

and derived tensor product of complexes.

2.1 (Depth). Let (R,m, k) be a local ring and M an R-complex. The depth of

M is defined as

depthR M = − supRHomR(k,M).

By [9], 1.5.(3), for every R-complex M one has

depthR M > − supM.

If supM = s is finite, then equality holds if and only if m is an associated prime of

the homology module Hs(M).

2.2 (Auslander-Buchsbaum formula). If R is local and X ∈ Pf (R), then we

have the equality

pdRX = depthR− depthR X.

3. G-dimension over a local ring homomorphism

In this section, we introduce the G-dimension over a local ring homomorphism

with respect to a semi-dualizing complex and study some of its properties. First, we

need to recall the following definitions from [7].

Definition 3.1. An R-complex C is said to be semi-dulizing for R if and only

if C ∈ D
f
b (R) and the homothety morphism χR

C : R → RHomR(C,C) is an isomor-

phism (see [7], 2.1).

Let R be a local ring. Recall that a dualizing complex for R is a semi-dualizing

complex with finite injective dimension. For instance, when R is complete, it pos-

sesses a dualizing complex.
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Definition 3.2. Let C be a semi-dualizing complex for R. For X ∈ D(R) the

dagger dual with respect to C is the complex X†C = RHomR(X,C), and −†C =

RHomR(−, C) is the corresponding dagger duality functor.

An R-complexX is said to be C-reflexive if and only ifX and the dagger dualX†C

belong to D
f
b (R), and the biduality morphism δCX : X → (X†C)†C is invertible. By

CR(R) we denote the full subcategory of D
f
b (R) whose objects are the C-reflexive

complexes (see [7], 2.7).

Definition 3.3. Let C be a semi-dualizing complex for R. For X ∈ D
f
b (R) the

G-dimension of X with respect to C is defined to be

G-dimC X =

{

inf C − infX†C , X ∈ CR(R),

∞, X /∈ CR(R)

(see [7], 3.11).

The change of rings theorems for Gorenstein dimensions of modules have been in-

vestigated in [5]. For complexes of modules, change of rings theorem for G-dimension

has been given by Christensen (see [6], Theorem 2.3.12). Here we also have the follow-

ing change of rings theorem for G-dimension over local homomorphism with respect

to a semi-dualizing complex C.

Lemma 3.4. Let R be a local ring and C a semi-dualizing complex for R. Let

x = x1, x2, . . . , xt be an R-sequence and S = R/(x). For X ∈ D
f
b (S) there is an

equality

G-dimC X = G-dimC⊗L

R
S X + t.

In particular, the two dimensions are simultaneously finite.

P r o o f. It follows from [7], Proposition 5.7, that C ⊗L
R S is semi-dualizing for S.

Since it is straightforward to prove that X ∈ CR(R) if and only if X ∈ C⊗L

R
SR(R),

one has G-dimC X and that G-dimC⊗L

R
S X are simultaneously finite. Now the result

follows from [7], Theorem 3.14, and the Auslander-Buchsbaum formula for projective

dimension (see (2.2)). �

Here we also need to recall the definition of Cohen factorizations of local homo-

morphisms from [4].

3.5. Let ϕ : (R,m, k) → (S, n, l) be a local ring homomorphism. The embedding

dimension of ϕ is

edim(ϕ) := edim(S/mS).
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A regular or Gorenstein factorization of ϕ is a diagram of local ring homomorphisms,

R
ϕ̇
→ R′ ϕ′

→ Ŝ, where ϕ = ϕ′ϕ̇, with ϕ̇ flat, the closed fibre R′/mR′ regular or

Gorenstein, respectively, and ϕ′ : R′ → S surjective.

Let Ŝ denote the completion of S at its maximal ideal and let ι : S → Ŝ be

the canonical inclusion. By [4], (1.1), the composition ϕ̀ = ιϕ admits a regular

factorization R → R′ → Ŝ with R′ complete. Such a regular factorization is called

a Cohen factorization of ϕ̀.

In order to introduce the concept of G-dimension over a local ring homomorphism

with respect to a semi-dualizing complex, we also need the following result.

Theorem 3.6. Let C be a semi-dualizing complex for R. Let ϕ : R → S be

a local ring homomorphism and X ∈ D
f
b (S). If R

ϕ̇1
→ R1

ϕ′
1→ Ŝ and R

ϕ̇2
→ R2

ϕ′
2→ Ŝ are

Cohen factorizations of ϕ̀, then we have the equality

G-dimC⊗L

R
R1

(X̂)− edim(ϕ̇1) = G-dimC⊗L

R
R2

(X̂)− edim(ϕ̇2),

where X̂ = X ⊗L
S Ŝ.

P r o o f. It follows from [7], Theorem 5.6, that C ⊗L
R R1 = C ⊗R R1 is semi-

dualizing for R1 and C ⊗L
R R2 = C ⊗R R2 is semi-dualizing for R2. Now by analogy

with the proof of [11], Theorem 3.2, using Lemma (3.4) one obtains the result. �

Definition 3.7. Let C be a semi-dualizing complex for R. Let ϕ : R → S be

a local ring homomorphism and R
ϕ̇
→ R′ ϕ′

→ Ŝ a Cohen factorization of ϕ̀. For

X ∈ D
f
b (S) we define the Gorenstein dimension of X over ϕ with respect to C,

G-dimC
ϕ (X), as

G-dimC
ϕ (X) := G-dimC⊗L

R
R′(X̂)− edim(ϕ̇),

where X̂ = X ⊗L
S Ŝ. It follows from [7], Theorem 5.6, that C ⊗L

R R′ = C ⊗R R′ is

semi-dualizing for R′. Theorem 3.6 shows that G-dimC
ϕ (X) does not depend on the

choice of Cohen factorization. Note that G-dimC
ϕ (X) ∈ {−∞} ∪ Z ∪ {∞}, and also

that G-dimC
ϕ (X) = −∞ if and only if X is acyclic.

The Gorenstein dimension of ϕ with respect to C is defined to be

G-dimC(ϕ) := G-dimC
ϕ (S).

Recall the next definition from [11], Definition 4.2.
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Definition 3.8. Let ϕ : R → S be a local ring homomorphism and R
ϕ̇
→ R′ ϕ′

→ Ŝ

a Cohen factorization of ϕ̀. For X ∈ D
f
b (S) the projective dimension of X over ϕ,

pdϕX , is defined by

pdϕ X = pdR′ X̂ − edim(ϕ̇),

where X̂ = X ⊗L
S Ŝ. The projective dimension of ϕ is defined to be

pd(ϕ) = pdϕ S.

The following proposition shows that G-dimension with respect to a semi-dualizing

complex is a refinement of projective dimension over a local ring homomorphism and

recovers [7], Proposition 3.15, and [11], Proposition 4.6.

Proposition 3.9. Let C be a semi-dualizing complex for R. Let ϕ : R → S be

a local ring homomorphism and X ∈ D
f
b (S). Then we have the inequality

G-dimC
ϕ (X) 6 pdϕ X,

and equality holds if pdϕ X < ∞.

P r o o f. Let R
ϕ̇
→ R′ ϕ′

→ Ŝ be a Cohen factorization of ϕ̀. Then we have

G-dimC
ϕ (X) = G-dimC⊗L

R
R′(X̂)− edim(ϕ)

6 pdR′ X̂ − edim(ϕ)

= pdϕ X

with equality if pdϕX < ∞ (see [7], Proposition 3.15). �

The next theorem is an extension of the Auslander-Bridger formula for G-

dimension over a local ring homomorphism (see [11], Theorem 3.5) and for G-

dimension with respect to a semi-dualizing complex (see [7], Theorem 3.14), which

is a special case by putting C = R and ϕ = idR respectively.

Theorem 3.10. Let C be a semi-dualizing complex for R. Let ϕ : R → S be

a local ring homomorphism and X ∈ D
f
b (S). If G-dim

C
ϕ (X) < ∞, then

G-dimC
ϕ (X) = depthR− depthS X.

P r o o f. By analogy with the proof of [11], Theorem 3.5, and this time using [7],

Theorem 3.14, one obtains the result. �
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Lemma 3.11. Let ϕ : R → R′ be a ring homomorphism of finite flat dimension

and C a semi-dualizing complex for R. Assume that R′ has a dualizing complex D.

Then RHomR(C,D) is a semi-dualizing complex for R′.

P r o o f. Note that RHomR(C,D) ∈ D
f
⊏(R

′) by [3], 1.2.2. Since fdR R′ is finite,

one has that idR D is finite and so RHomR(C,D) ∈ D
f
b (R

′). It follows from [6],

A.4.24, that

RHomR′(D,D) = RHomR′(RHomR(RHomR(C,C), D), D)

= RHomR′(RHomR(C,D)⊗L
R C,D).

Now the commutative diagram

R′

≃

��

// RHomR′(RHomR(C,D),RHomR(C,D))

≃

��
RHomR′(D,D)

≃ // RHomR′(RHomR(C,D)⊗L
R C,D)

shows that the homothety morphism

χR′

RHomR(C,D) : R′ → RHomR′(RHomR(C,D),RHomR(C,D))

is an isomorphism. Therefore, RHomR(C,D) is a semi-dualizing complex for R′. �

We proceed by recalling the definition of the C-Aslander class from [7], 4.1.

3.12. Let C be a semi-dualizing complex of R. The objects in the C-Auslander

class CA (R) are the homologically bounded R-complexes X such that C ⊗L
R X is

homologically bounded and the natural morphism X → RHomR(C,C ⊗L
R X) is an

isomorphism.

We list some stability properties of CA (R).

Proposition 3.13. Let C be a semi-dualizing complex for R. Let ϕ : R → S

be a local ring homomorphism and X an S-complex. Then the following statements

hold.

(i) X ∈ CA (R) if and only if X ⊗S Ŝ ∈ C⊗RR̂A (R̂).

(ii) If ϕ is of finite flat dimension, then X ∈ CA (R) if and only if X ∈ C⊗L

R
SA (S).

(iii) If S → S′ is a flat local ring homomorphism, then X ∈ CA (R) if and only if

X ⊗L
S S′ ∈ CA (R).

(iv) If q ∈SpecS and p = q ∩R, then X ∈ CA (R) if and only if Xq ∈ Cp
A (Rp).
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P r o o f. If ϕ is of finite flat dimension, then C ⊗L
R S is a semi-dualizing complex

for S by [7], Proposition 5.7. Let C be a semi-dualizing complex of R. Then Cp

a semi-dualizing complex of Rp by [7], Lemma 2.5. Now by analogy with the proof

of [3], Proposition 3.7, one obtains the result. �

Proposition 3.14. Let ϕ : R → S be a local ring homomorphism and R
ϕ̇
→

R′ ϕ′

→ Ŝ a Cohen factorization of ϕ̀, and let X ∈ D
f
b (S). Let C be a semi-dualizing

complex for R and D a dualizing complex for R′. Then the following conditions are

equivalent.

(i) G-dimC
ϕ (X) < ∞.

(ii) G-dimC⊗L

R
R′(X̂) < ∞.

(iii) X̂ ∈ RHomR(C,D)A (R′).

P r o o f. (i) ⇔ (ii) By definition.

(ii) ⇔ (iii) By Lemma (3.11), RHomR(C,D) is a semi-dualizing complex for R′.

Now the result follows from [7], Theorem 4.7, as

C ⊗L
R R′ = RHomR′(RHomR(C,D), D)

(see [6], A.4.24). �

The following stability result is one of the main results in this paper which gener-

alizes [11], Theorem 5.1, and [7], [Theorem 3.17 (b)].

Theorem 3.15. Let C be a semi-dualizing complex for R. Let ϕ : R → S and

σ : S → T be local ring homomorphisms. If P ∈ D
f
b (T ) with pdσ P finite and

X ∈ D
f
b (S), then we have the equality

G-dimC
σϕ (X ⊗L

S P ) = G-dimC
ϕ (X) + pdσ P.

In particular, G-dimC
σϕ (X ⊗L

S P ) and G-dimC
ϕ (X) are simultaneously finite.

P r o o f. Note that X ⊗L
S P ∈ D

f
b (T ) by [11], Lemma 2.11. Passing to the

completions of S and T at their respective maximal ideals, and replacing X and P

by Ŝ ⊗S X and T̂ ⊗T P , respectively, one may assume that S and T are complete.

In doing so, one uses the isomorphism

(Ŝ ⊗S X)⊗L
Ŝ
(T̂ ⊗T P ) ≃ T̂ ⊗T (X ⊗L

S P ).

The next step is the reduction to the case where ϕ and σ are surjective. To

achieve this, take Cohen factorizations R → R′ → S and R′ → R′′ → T , and expand
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to a commutative diagram as in [11], 5.9. Let X ′ = S′ ⊗S X . Since S′ = R′′ ⊗R′ S,

by construction, X ′ ∼= R′′ ⊗R′ X and hence X ′ ⊗L
S′ P ≃ X ⊗L

S P . Since R′ → R′′ is

faithfully flat, [7], Corollary 5.11, yields that

G-dimC⊗L

R
R′(X) = G-dimC⊗L

R
R′′(X ′).

Also, in conjunction with those in [11], 5.9, we have

pdσ(P ) = pdS′(P )− edim( ˙̺),

G-dimC
ϕ (X) = G-dimC⊗L

R
R′′(X ′)− edim(ϕ̇),

G-dimC
σϕ(X ⊗L

S P ) = G-dimC⊗L

R
R′′(X ′ ⊗L

S′ P )− edim( ˙̺)− edim(ϕ̇).

Therefore, it suffices to verify the equality for the diagram R′′ → S′ → T and

complexes X ′ and P . This places us in the situation where R → S is surjective and

then the equality we seek is

G-dimC(X ⊗L
S P ) = G-dimC(X) + pdS(P ).

It suffices to prove that G-dimC(X ⊗L
S P ) and G-dimC(X) are simultaneously

finite. For, when they are both finite, one has

G-dimC(X ⊗L
S P ) = depthR− depthR(X ⊗L

S P )

= depthR− depthS(X ⊗L
S P )

= depthR− depthS X − depthS P + depthS

= depthR− depthR X + pdSP

= G-dimC(X) + pdSP

where the first and the last equalities follow by the Auslander-Bridger formula (see

[7], Theorem 3.14), the second by [11], Lemma 2.8, the third a consequence of [10],

Theorem 4.1, while the forth is a consequence of [11], Lemma 2.8, and (2.2).

The rest of the proof is dedicated to proving thatG-dimC(X) andG-dimC(X⊗L
SP )

are simultaneously finite. This is tantamount to proving that

X ∈ CR(R) ⇔ X ⊗L
S P ∈ CR(R).

First, note that X ∈ D
f
b (R) if and only if X ⊗L

S P ∈ D
f
b (R) by [11], Theorem 2.9.

Secondly, since pdS RHomR(P, S) = − inf P is finite, we have the equalities

RHomR(X ⊗L
S P ,C) = RHomS(P,RHomR(X,C))

= RHomS(P, S)⊗
L
S RHomR(X,C),
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where the first equality follows by adjointness and the second by tensor evaluation

(see, for example, [6], A.4.21 and A.4.23). Hence RHomR(X,C) ∈ D
f
b (R) if and

only if RHomR(X ⊗L
S P ,C) ∈ D

f
b (R) by virtue of [11], Theorem 2.9.

Finally, since pdS P is finite, one has that

δSP : P → RHomS(RHomS(P, S), S)

is an isomorphism. Also, since pdS RHomR(P, S) = − inf P is finite, we have the

equalities

RHomR(RHomR(X,C), C)⊗L
S P

= RHomR(RHomR(X,C), C)⊗L
S RHomS(RHomS(P, S), S)

= RHomS(RHomS(P, S),RHomR(RHomR(X,C), C))

= RHomR(RHomS(P, S) ⊗
L
S RHomR(X,C), C).

Now the commutative diagram

X ⊗L
S P

(δC
X
)⊗L

S
P // RHomR(RHomR(X,C), C) ⊗L

S P

≃

��
RHomR(RHomR(X,C)⊗L

S RHomS(P, S), C)

X ⊗L
S P

δC
(X⊗L

S
P)

// RHomR(RHomR(X ⊗L
S P ,C), C)

≃

OO

shows that δCX is an isomorphism if and only if δ
C
(X⊗L

S
P )
is an isomorphism. This

completes the proof. �

The next result is just the special case arising by taking X = S and P = T in

Theorem 3.15 and it generalizes [11], Theorem 5.2, by putting C = R.

Corollary 3.16. Let C be a semi-dualizing complex for R. Let ϕ : R → S and

σ : S → T be local homomorphisms with pd(σ) finite. Then

G-dimC(σϕ) = G-dimC(ϕ) + pd(σ).

In particular, G-dimC(σϕ) is finite if and only if G-dimC(ϕ) is finite.

The next stability result generalizes [11], Theorem 5.6, and [7], Theorem 3.17 (a).
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Corollary 3.17. Let C be a semi-dualizing complex for R. Let ϕ : R → S be

a local ring homomorphism and P ∈ D
f
b (S) with pdS P finite. For X ∈ D

f
b (S) we

have the equality

G-dimC
ϕ (RHomS(P,X)) = G-dimC

ϕ (X)− inf P.

Thus, G-dimC
ϕ (X) and G-dimC

ϕ (RHomS(P,X)) are simultaneously finite.

P r o o f. By analogy with the proof of [11], Theorem 5.7, and this time using

Theorem 3.15, one obtains the result. �

4. Some applications

In this section, we characterize R and a dualizing complex for R in terms of the

finiteness of G-dimension over local ring homomorphisms with respect to a semi-

dualizing complex.

Let ϕ : (R,m, k) → (S, n, l) be a local ring homomorphism. Recall that ϕ is Goren-

stein (see [2]), or more precisely, Gorenstein at n, if fdR ϕ < ∞ and µi+depthR
R =

µi+depthS
S for all i ∈ Z. By [2], 4.2, a flat ring homomorphism is Gorenstein if and

only if the ring S/mS is Gorenstein.

Applying the next result to C = R we recover [11], Theorem 6.1.

Theorem 4.1. Let (R,m, k) be a local ring and C a semi-dualizing complex for R.

Then the following conditions are equivalent.

(i) C is dualizing for R.

(ii) For every local ring homomorphism ϕ : R → S and X ∈ D
f
b (S),

G-dimC
ϕ (X) < ∞.

(iii) There is a local ring homomorphism ϕ : R → S and an ideal I of S such that

I ⊇ mS, and G-dimC
ϕ (S/I) < ∞.

P r o o f. (i) ⇒ (ii) Let R
ϕ̇
→ R′ ϕ′

→ Ŝ be a Cohen factorization of ϕ̀. Then ϕ̇ is

Gorenstein. By [3], 2.11, one has that C ⊗L
R R′ is dualizing for R′. It follows from [7],

Proposition 8.4, that C⊗L

R
R′R(R′) = D

f
b (R

′) and so X̂ ∈ C⊗L

R
R′R(R′). Therefore,

G-dimC⊗L

R
R′(X̂) < ∞. Thus G-dimC

ϕ (X) < ∞.

(ii) ⇒ (iii) It is trivial.

(iii)⇒ (i) Let R → R′ → Ŝ be a Cohen factorization. Composing with the surjec-

tion Ŝ
π
→ Ŝ/IŜ gives a diagram R → R′ → Ŝ/IŜ that is also a Cohen factorization.

Since G-dimC⊗L

R
R′(Ŝ/IŜ) is finite, so is G-dimC(πϕ̀). The composition πϕ̀ factors
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through the residue field k of R, giving the commutative diagram

R

��❂
❂❂

❂❂
❂❂

❂
// Ŝ/IŜ.

k

==③③③③③③③③

The map k → Ŝ/IŜ has finite projective dimension as k is a field. Therefore,

Corollary (3.16) implies that the surjection R → k has finite G-dimension with

respect to C. Thus, C is dualizing for R by [7], Proposition 8.4. �

The next result generalizes [11], Theorem 6.2.

Theorem 4.2. Let C be a semi-dualizing complex for R and ϕ : R → S a local

ring homomorphism such that S is Gorenstein. Then the following conditions are

equivalent.

(i) C is dualizing for R.

(ii) G-dimC(ϕ) is finite.

(iii) There exists a complex P ∈ D
f
b (S) such that pdS P is finite and G-dimC

ϕ (P ) is

finite.

P r o o f. (i) ⇒ (ii) By Theorem 4.1.

(ii) ⇔ (iii) By Theorem 3.15.

(ii) ⇒ (i) Let G-dimC(ϕ) be finite. In particular, G-dim(ϕ) is finite. By [11],

Theorem 6.2, R is Gorenstein. Hence the result follows from [7], Corollary 8.6. �
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