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Abstract. We give a new representation of solutions to a class of time-dependent
Schrodinger type equations via the short-time Fourier transform and the method of char-
acteristics. Moreover, we also establish some novel estimates for oscillatory integrals which
are associated with the fractional power of negative Laplacian (fA)“/2 with 1 < k < 2.
Consequently the classical Hamiltonian corresponding to the previous Schrodinger type
equations is studied. As applications, a series of new boundedness results for the corre-
sponding propagator are obtained in the framework of modulation spaces. The main results
of the present article include the case of wave equations.
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1. INTRODUCTION AND MAIN RESULTS

This work is concerned with a series of new estimates for the solution to the
time-dependent Schrodinger type equation

(L1) {i@tu(t,m) = (=A)*2u(t,x) + V(t,z)u(t,z), (t,x) € R x R",
' u(0,2) = up(x), x € R™

in the framework of modulation spaces, which were first introduced by Feichtinger
[3] and several equivalent characterizations have been studied extensively (see [5]).
Here 1 < k < 2,1i=+/—1, u(t,z) is a complex valued function of (¢,7) € R x R™, ug
is a complex valued function defined on R™ and V' (¢,x) is a real valued function of
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(t,z) € R x R"™; 8y = 9/0t, A =3 0%/0x2, (~A)/? = F~1| . |*F with F and F~!
i=1

denoting the Fourier and inverse Fourier transforms, respectively, defined by

Fol) = [ et md Pt = b [ dsgeae

for all g € S(R™), where S(R™) is the Schwartz class of rapidly decreasing functions
on R".

Under the condition V' (¢, z) = 0, it is well known that the solution u(t,z) of (1.1)
can be written as

u(t,x) = (e ug) (@) = Ftfe M9 Fuo (6)] (a),

and the unimodular Fourier multiplier emi(=a)"/? generally does not preserve any
Lebesgue space L9, except for ¢ = 2. For example, e (=2) is bounded on L7 if and
only if ¢ = 2 (see [6]). It is then natural to look for some appropriate substitution
of Lebesgue spaces for the study of the unimodular Fourier multiplier, one of which
are the so-called modulation spaces.

To define the modulation spaces, let us first recall the definitions of the short-
time Fourier transform (STFT) and its adjoint operator which were introduced by
Cérdoba-Fefferman [2]. Fix ¢ € S(R™) \ {0}, then the short-time Fourier transform

of g € §'(R™) with respect to the window function ¢ is defined by

n

Vog(a,€) = / oy — Dgy) dy,

where S§’'(R™) denotes the dual space of S(R™).
Let G be a function on R™ x R"™, then the adjoint operator V' of V,, is defined by

ViG) = [[ @t -Gl dyae

with d¢ = (2r) "™ d€. It is known that for all 1, p € S(R™)\ {0} satisfying (v, p) # 0,
we have the inversion formula

1
WVJVLPQ =g, geS'(R")

(see [5], Corollary 11.2.7). Throughout this paper, we denote

Vap(t,~)u(tv Z, f) = V«p(t,~) [u(tv )](l‘, f) = / efiy{(p(t’ Yy—= :c)u(t, y) dy,

n
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where u and ¢ are functions on R x R™. Below, we shall present Feichtinger’s
definition on modulation spaces by STFT.

Let 1 < p,q < oo and ¢ € S(R™)\ {0}. We define the modulation space M} (R™)
as a Banach space which consists of all g € §’'(R™) such that their norm satisfies

9llarre = |||\Vw9($,€)||Lg||Lg < 0.

Note that this definition of MJ“(R") is independent of the choice of %, i.e.,
MpYR"™) = MEYR") for all ¢, € S(R™)\ {0} (see [3], Theorem 6.1). Thus
we may choose a suitable window function 1 to estimate the modulation space
norms in this paper. For the sake of convenience, we denote MP>7 = Mi’q(ﬂ%"). Fur-
thermore, we have the complex interpolation theory for modulation spaces as follows:
Let 0 < < land 1< p;,q < oowith g2 <oo,i=1,2. Set 1/p=(1-0)/p1+6/p2,
1/q=(1—0)/q1 +0/qo, then (MP191, MP2:92) 5 = MP? (see [4], Corollary 2.3).

As mentioned before, the unimodular Fourier multiplier is not a bounded operator
on any LY in general except for ¢ = 2. However, a recent work by Bényi-Grochenig-
Okoudjou-Rogers [1] has shown that e~ it=A)"? With k€ [0, 2] preserves the MP9-
norm for any 1 < p, g < oo, which is proved by the stationary phase method. More
precisely, we have the estimate

(1.2) lut, Marzg < O+ )" 2 uollazg,  wo € S(R™)

for all 1 < p,q < oo and ¢ € R, where C is a positive constant, ¢y € S(R™)\ {0} and
u(t, z) is the solution of (1.1) with V'(¢,z) = 0.

Furthermore, by using the unit-cube decomposition to the frequency spaces, Wang
and Hudzik [11] established the following two inequalities:

(1.3) ult, )z < C(A+ |t|)*”(1/2*1/”)||U0|\M5,gq’ up € S(R™)
and
(1.4) lu(t, Mamze < CQA+ )27V ug|laza,  uo € S(R™)

forallt € R, 1 < g < ooand 2 < p< oo, where 1/p' + 1/p = 1, C is a positive
constant, pg € S(R™) \ {0} and u(¢, x) is the solution of (1.1) with V(¢,z) = 0.

On the other hand, K.Kato, M. Kobayashi and S.Ito applied the properties of
the wave packet transform and the method of characteristics to obtain some new
estimates for (1.1) as follows, which cover (1.2), (1.3) and (1.4) when xk = 2 (see [7]).
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Theorem A (Kato-Kobayashi-Ito [7], [8]). Let 1 < p,q < o0, o € S(R™)\ {0}
and kK = 2.
(i) Suppose V(t,xz) = 0. Then

e, Marmg | = lwollagzg: o € S(R™)

holds for all t € R.
(i) Suppose V(t,z) = +|z|%. Then

[[u(t, ')HMV’;'&_) = HUOHMgg, ug € S(R™)
holds for all t € R.

In (i) and (ii), ¢(¢,z) and u(t,x) are the solutions of (1.1) with ¢(0,x) = @o(x)
and u(0,x) = ug(x), respectively.

Our purpose in the present paper is to obtain similar estimates to Theorem A
for the general time-dependent Schrédinger type equations, whose potentials V (¢, x)
satisfy the following assumptions.

Assumptions. Throughout this paper, we shall assume that V(¢,z) is a real
valued C2-function of (t,z) € R x R™ and C?"/2+4 in z, such that for all multi-
indices a with 2 < || < 2[n/2] +4 or 1 < |a| < 2[n/2] + 4 there exists Cy > 0 such
that

(L5) 02V (t,2)| < Cay  (t,2) € R x R,

where C,, is a constant depending only on «.
The next theorem is one of our main results.
Theorem 1.1. Let 1 < p < 00, 1 < k < 2, F(po) € CX(R™\ {0}) \ {0} and

T > 0. Set p(t,z) = e 2" 40(2). IFV € C*(R x R") satisfies (1.5) for all
multi-indices o with 2 < || < 2[n/2] + 4, then there exists C > 0 such that

[ut, lazz | < Clluollazg,  uo € S(R)

»)

for allt € [T, T), where u(t, ) is the solution of (1.1) in C(R; L*(R™)) with u(0, z) =
uo(x), and C is a positive constant depending only on x, n and T.

We remark that the MPP norm generally cannot be replaced by the MP¢ norm
in the above theorem. Indeed, when k = 2 and V (¢, z) = |z|?, it follows that

e
[0y =2 NVruoles el
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(see [8]), but the inequality H||V¢Ou0(§,x)|\,;g|

L < C|IVouo(z, &)l 12|

general. However, if the assumption (1.5) is strengthened to include the case of

L2 fails in
|a| =1, we can replace the MPP norm by the M?-? norm as follows.

Theorem 1.2. Let 1 < p,q < 00, 1 < k < 2, F(po) € CZ(R™\ {0}) \ {0}
and T > 0. Set p(t,z) = e’it(’A)ﬁmgao(x). If V e C%*(R x R") satisfies (1.5) for all
multi-indices o with 1 < || < 2[n/2] + 4, then there exists C > 0 such that

[ut, lazg | < Clluollazg,  uo € S(R™)

)
for all t € [-T,T], where u(t,z) is the solution of (1.1) in C(R;L?(R™)) with
u(0,z) = uo(x), and C is a positive constant depending only on k,n and T.

Our paper is organized as follows. In Section 2, we set up some key lemmas
concerning the classical orbit associated with the classical Hamiltonian corresponding
to the time-dependent Schrédinger type equation (1.1). Furthermore, two important
inequalities are provided, which play a crucial role in the proof of our main results.
In Section 3, we obtain a new representation (3.10) of solutions to (1.1) and use it
to prove Theorem 1.1. Finally, the proof of Theorem 1.2 is given in Section 4.

Throughout this paper, R and N will stand for the sets of reals and positive inte-
gers, respectively. The letter C' denotes a positive constant, which may be different
at different places. For z = (z1,22,...,2,) € R" and £ = (§1,&,...,&,) € R™, we

write

vo€= (2,6 = &, ol =(z,2)"? and (z) = (ja]* +1)"/2
=1

2. KEY LEMMAS

In this section, we give two inequalities which play a key role in the proof of main
results, and study the classical Hamiltonian corresponding to (1.1).

Lemma 2.1. Let 1 < k < 2, then there exists C,, > 0 such that
(2.1) ‘|a|”*2a — |b|"‘*2b‘ < Cyla — b|“*1

for all a € R™, b € R™, where C; depends only on k.
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Proof. We note that the inequality (2.1) is trivial when Kk = 1 or K = 2 or
min{|al, |b],|a — b|} = 0. Letting 1 < x < 2, min{|al, |b], |a — b} > 0, we have

lla]*2a — [b]*2b* = |al*"~2 + [b[*" 72 — 2]a|*~*[b]*"*(a, b)
= a2 + b]**7 — |a|"2b]*"*(|a|* + |b* — |a — b]*)
= (la]" = [bI")(Jal"™2 = [o]"7%) + |al"~2[b]""*|a — b]

K K—2 K—2 —b|2
el (ol (lal Y a2 a2
o {(ww oz L) e e

Setting x = |a|/|b|, p = |a — b|/|b] and

Fz) = (2" — 1)(@" 2 — 1) + 2" 2p% = 222 _ g5 2(22 _ p? 1 1) + 1,
it is sufficient to prove the inequality
(2.2) F(z) < Cup™ 2,
if [p—1| < z < |p + 1|. Differentiating (2.2), we have
Fl(z) = 2" 3{(k — 2)(p* — 1) + (2K — 2)a" — ka?} = 2" 3G (2),

where
G(x) = (k —2)(p* = 1) + (2K — 2)2" — Ka?,

hence
G'(x) = 2k2" Yk — 1 — 2277).

Let z9 = (8 — 1)Y/27%) we have G'(x) > 0 for all 2 € (0,z), and G'(x) < 0 for all
x € (xg,00). Thus,

sup G(z) = G(wo) = (2 — w){(k — 1)¥ %) 41— p?).

x>0

Setting
po={(k— 1)/ L1312,

the proof of (2.2) can be divided into three cases.
Case 1. If p > pg, then

F'(z) = 2" 3G (x) < 2" 3G(w0) = (2 — K)z"3(pz — p*) <0
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for all z > 0. It follows that

sup  F(z) =F(lp—1|)
[p—1|<z<|p+1]

—[p—1""" = |p- 1|” p—1 =P+ 1) +1

e p—1\2
= (-1 + 22
( | 1|
{(( p—1)F 4 1)° <dp? p> 1
B <

Tla--pr)?<pt 0<p<l.

Case 2. If p < pp and zg < |p — 1], we have

sup  F(z) < sup F(z) < sup 2" ?p® < 20" ?p® < (20" *po? 72 )p* 3,
Ip—1|<z<|p+1] 2o >0
where C,, = 20" 2py*~2* depends only on k.

Case 3. If p < pp and xo > |p — 1|, we shall show that

sup  F(x) < max{F(|p - 1), F(xo)}.

[p—1|<z<z0
Indeed, if we suppose that there exists a point z1 € (|p — 1|, zo) such that
F(z1) > max{F(]p — 1|), F(z0)},

it follows from the Mean-Value Theorem for derivatives that there exist &
(lp—1|,21) and & € (x1, o) such that

G6) = 6 F (&) = 6 “{F(x;f:f;(f’f'

=& (&) = G(&),

which contradicts G'(x) > 0 for all = € (0, ). Thus we obtain

R{F(fUO)—F(fCl)}

o — I

1|)} >0>§23—

sup F(z) < sup F(z)= max{ sup  F(x), sup F(x)}
lp—1|<z<|p+1] z>|p—1| [p—1|<z<z0 T2T0

< max{F(|p —1]), sup F(x )} < max{4,C,€}p2“*2,

T=T0

where the last inequality follows from the first two cases.
It is evident that (2.2) follows from the Cases 1-3. This completes the proof of
Lemma 2.1. U

Remark 2.2. If x ¢ [1,2], the constant C, in (2.1) also depends on the vectors a
and b.
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Lemma 2.3. Let 1 < k < 2 and define

(2.3) S(y,€) = ly — €I" — [€]" + wlE]" (€, y)

for all y € R™, £ € R"™. Then we have

(2.4)

[ (. €ety) dy| < Oy

for all p € S(R™), where ¢ is an arbitrarily small positive number, and C' is a positive

constant depending only on ¢, K, n and €.

Proof. We note that the inequality (2.4) is trivial when x = 2. Let 1 < k < 2.
Applying (2.1), we have

1
(2.5) 15(y,6)] = / Ailty — €" dt + ﬁ|§|ﬂ—2<e,y>\

1
- / /-e|ty—§|H—2<ty—g,y>dt+m|§|*‘—2<f,y>\

-/ n<|ty—§|ﬂ-2<ty—f>—|—fs|*€—2<—e>,y>dt\

< [ caur=lar= b,
(2.6) 10y S(y, )| = slly — 1" (4 — &) — |—€" 2 (=&)| < Culy"™
for 1 < i < n. Furthermore,
(2.7) 1055 (y,€)| < Cla, m)ly — €1

for all multi-indices o with |«| > 2, where C(a, k) is a positive constant depending
only on « and k.

We shall divide the proof of Lemma 2.3 into four steps.

Step 1. (2.4) holds for |z| < 1.

ProofofStep1l. Using (2.5), we have

(2.8)

< / Cﬁ|y|”|50(y)| dy < C((p, Ii) < C<x>*n7,‘{+5
[R’!L

for all ¢ € S(R™) and |z| < 1, where C is a positive constant depending only on ¢,
Kk, n and €. O
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Step 2. Let |a| = 2. Then

(2.9)

[ 10550, 9(0) dy| < Claf

for all p € S(R™) and |x| > 1, where ¢ is an arbitrarily small positive number, and
C is a positive constant depending only on ¢, k, n and €.

Proof of Step 2. Define the derivative operator

z-V

Then we have

L(z, D)ei””'y = eV,

The conjugate operator is
z-Vy

L (e, D) =~

We note that

/ ) TV S(y, E)ply) dy = el / TVOrS(y + £, ey + &) dy

= / ei“"y@(%)@ﬁs(y +&,8p(y+8dy

+e®€ / ei“"y(l - g(%))aﬁ(y +&,9p(y+&dy
£+ I,

where ¢ > 0 is to be chosen later, and g is a C'S°(R™) function satisfying 0 < o < 1

Q(y)_{o, lyl > 2:

L |yl <L

and

It is clear that

L] < Clr, o) / P2 dy < Cln, k, 9)5™ 2.
ly|<20
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To estimate I, we can take a sufficiently large integer N > 0, apply (2.7) and
integrate by parts to obtain that

L] </

C(r, N)la|” N/| ZW 2N S |98 (y + 6) dy
y/

= Iﬁ\ =j

e (1- g(%))a;S(y +E8p(y+6)}|d

Cle N)fal Y 3 6 / S Y 0y +6)ldy
=1

s<|yl<
WIS20 j=o 18l=i

<C<K,N>|x|-N/ ZW 2N+ 3 980(y + €)] dy

120 = |81=3
Cle N)fal ™ 3 / (o1~ + 1ol ) [0ty + O] dy
IBISN

Cls Nl (62 4672 Y) 7 [ ooty + 91y

[BI<N
< Clry o, Nl ™V (1457 V)52,

Then we have

L]+ 12| < Cn, k, 0, N)(E™ 72 4 [a| V872 4 2|~V o727 )
< C(n, k0, N){(1+ |2 7V)8" 772 4 2|2V 5" 727N}
< 2C(n, K, @, )(5n+n—2 4 |x|—N55—2—N)
for |z| > 1. Taking 6"t*=2 = |2|~N§* 2N we obtain § = |z|~N/V+7) and it

follows that
L]+ | L] < C(n, 5,0, N)|o|~ N/ NFED04=2) < O, 15, e, ) || "7 HF2

for |z| > 1, if we take a sufficiently large positive integer N which depends only on
k, n and €. This proves (2.9). O

Step 3. Let || = 1. Then

(2.10) [ s et an| < claf

for all ¢ € S(R™) and |x| > 1, where ¢ is an arbitrarily small positive number, and
C is a positive constant depending only on ¢, k, n and €.
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Proof of Step 3. Denote the derivative operator L = L(z,D) and L* =
L*(z, D), which are defined in the proof of Step 2.
By induction and integration by parts, we have

/n ei”'yayaS(y, Eo(y)dy = / L(ei”'y)aifs(% §ely)dy

YL (0 Sy, €)e(y)) dy

n

n

\\

L (DS (. €))ply) dy + / V92 Sy, ) L* ((y) dy

Rn

N-1
_ lxy eix~y « *\ N )
= 3 [ @S et [ omsw o ey

Q

Taking a sufficiently large positive integer N = N (n, k, &) such that N > n+x—1—¢,
then it follows from (2.5) that

/neia:'ya;‘S( LN ‘ Co Y ol N/ "0 o(y)| dy

|Bl=N
(N, 5, @)z = Cln, v, p,€)|a] ™
| n—k+1+e

<C
< C(n, k6, 0)|z

Y

and it follows from (2.9) that

/ VL (97 S (5, )L (y) dy\
<Y fu

[B1]=2|B2|=j
< Z C( n,/@,e,852<p)|a:|_”_“+€+l_j

[B2]=j
< O(n, K, e, N,@)|z| " F et = O(n, Kk, e, @) ||~ rT1Te

/ V9 Sy, )0 oly) dy

for || > 1 and 0 < j < N — 1. Summing up, we complete the proof of Step 3. O

Step 4. Let |z| > 1. Then we have

/ VS (y, )ply) dy| < Cla| "

for all ¢ € S(R™), where ¢ is an arbitrarily small positive number, and C' is a positive
constant depending only on ¢, x, n and .
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Proof of Step4. Denote the operator L and L* as in the proof of Step 3. Then
it follows by induction and integration by parts that

N-1
| ersuoptdn= 3 [ dmrr S o)y e dy
n =
+/ VS (y,€) (L) ¥ ply) dy.
Proceeding as in the proof of Step 3, we can apply (2.5) and (2.10) to obtain the

desired inequality in Step 4. O

It is evident that (2.4) follows from the Steps 1-4. This completes the proof of
Lemma 2.3. 0

Remark 2.4. If k = 1, the desired inequality (2.4) still holds. Indeed, we have
obtained in the proof of Step 4 that

N—1 )
[ st -X [ s LY et ay
+ / VS (y, )(L*)No(y) dy.

Let |o| = 1. Then we may apply the same method to

/ YOS (y, £)p(y) dy

as in the proof of Step 2, and obtain (2.10) in the case of k = 1. Thus the inequality
(2.4) with k = 1 follows from an argument similar to that of Step 4.

To derive Theorem 1.1 and Theorem 1.2 given in Section 1, we also need to consider
the classical orbit associated with the classical Hamiltonian corresponding to (1.1),
which is described as follows:

1) = Rlg(s)*2g(s), 7)==
(2.11)

Lo(5) = ~VaV (s, /() (1) =

where g: R — R™ and f: R — R™.
The following two lemmas will show some properties of the solutions to (2.11).
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Lemma 2.5. Let V € C?(R x R") satisfy (1.5) for all multi-indices o with
|a| = 2. Then there exists a unique solution of (2.11) with x € [1,2]. The solution
(f,9)(s,t,2,€) is C* in (s,t,2,€) € R? x R™ x (R™\ {0}). Furthermore, denote the
2n x 2n Jacobian matrix as

M(s,t,x,&) = ( )(5773,3?,5)%

then det M (s, t,x,£) = 1 for all (s,t,z,&) € R? x R™ x (R™\ {0}).

Proof. Note that the equations (2.11) are equivalent to the integral equations

st el g(r) dr
. / VLV(r J(7) dr

Thus the existence, uniqueness and differentiability of the solution (f,g)(s,t,z,£)

(2.12)

are easily seen by Picard’s iteration scheme from (2.12) (see [10]).

Denote f(S) = (fl(s)an(S)a .- -;fn(s))lxn and g(s) = (91(8),92(5), o 79”(8))1><n7
where f;: R—>Randg;: R—> R, foralll <i<n

For all (s,t,2,£) € R? x R™ x (R™ \ {0}), we differentiate (2.12) by the derivative
operator 00, ¢) and obtain

(213) %(foi(s),vgfi(s))lwn
= H(H - |K 4 Zgj zg] Vfgj(s))IXQn

+rlg(s)]*” 2<vxgi<s>,vggi<s>>1x2m
(214) S (Vagils), Veouls))

= = (5,02, V)(5, F(5))(Va fi(5), Ve £5(5) 120

j=1

for all 1 < i < n. Let w((s) be the 1 x 2n matrix defined by

N
N

{ w(i)(S) = (Vafi(s), Vefi(s))ixan, 1 "
w0 (5) = (V,g0(s). Veau(s))ixn: 1 <0 <.
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Set aij = r(k —2)gi(s)|g(s)|" *gj(s), bij = —(02;02,V)(s, f(s)) and ¢ = £|g(s)[* >
forall 1 <i<n,1<j<n By (2.13), we have

Za 2w (s) + cw™) (s), 1

N
N
S

d
= w0 (s Zb w(s), 1<i<n.

Hence, we obtain

w® w®
w w1 w(nFi-1)
d d | w? | 4 Y (n-+i)
d(detM(stmf)) ds : :Z &wl +Z dwnz
'2 i=1 | u(i+1) i=1 | p(ntitl)
w( n) 2nx2n
w(2n) 2nx2n w(2n) 2nx2n
w® w® w®
o w1 L wlD oo w1
SD9) S PEE IS e IS ) o I I
i=1 j=1 wED i=1 | (D) i=1 j=1 wntitl)
w(2n) 2nx2n w(2n) 2nx2n w(2n) 2nx2n
Therefore
det M (s,t,z,&) = det M (¢,t,x,&) = det I, = 1,
where I, is the 2n x 2n identity matrix. O

Lemma 2.6. Let (f,g)(s,t,x,€) be solutions to (2.11) with k € [1,2]. If V €
C?(R x R™) satisfies (1.5) for all multi-indices o with 1 < |a| < 2, then there exist
C4,C5 > 0 such that

1 Cr(1+ |t —s|%)
(2.15) <y—f(5,t,$;€)> < <y—x+/€(t—5)|§|ﬂ_2€>
and

(2.16) 1 S

<77—9(57ta37af)> h <77_€>
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for all (y,n) € R™ x R™, where C1 = C1(k,n) depends only on k and n, Cy = Ca(n)
depends only on n.

Proof. Since (f,g)(s,t,x,&) are solutions to (2.11), using (2.12) we have

(2.17) Fs,t2,6) =2+ 5 / gt )2t £)
and
(2.18) Glsit,2,6) = € — /t VLV f(r b2, 6)) dr.

Note that it follows from (1.5) that
(2.19) Ve V(r, f(7t,2,8))] < C(n)

for all (7,t,7,&) € RZ x R™ x (R™\ {0}), where C(n) is a constant depending only
on n. Thus, by (2.17), (2.18) and (2.19), we may apply (2.1) to obtain

ly — @+t = s)|E1"7%| < ly = fs,t, 2,0+ |f(s,t,2,€) — x + w(t — 5)|€]"%¢]

<ly— flsit2,8)| + } [ llatr b 91 gt .0 — el ar
t

< |y_f(85t7x7§)|+cﬁ

/t lg(r,t,,€) — €7 dr

Ay

<ly— f(s.t,2,6)| + Cln, x) / |r — "t dr
t

— ly— f(s,t,2,6)] + Clm )t — 5"

Kk—1

:|y—f(s,t,x,£)|+Cn dr

/ V.V(o, f(0.t,2,€)) do

Then
(y —x+ k(t = s)|€]"%) <(ly — f(s,8,2,6)| + Cln, k)|t — 5]")
< C(n,k)(ly — f(s,t, 2,8 + [t — s[7)
< C(n; H)<y - f(s,t,:c,f))(hf - S|K>a

which yields (2.15).
Similarly, by (2.18) and (2.19) we have

|77_§| < |77_9(3at7x75)|+|9(57ta$;§)_§|
< |77_9(3at7$75)| + ‘/ VIV(U,f(O',t,IE,f)) do
t
< |77_9(3at7$75)| +C(n)|t_ S|.
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Then
=8 <(In—g(s,t,z,8[+ C(n)t — s|)
< C(n){n —g(s,t,z,8))(t — s),

which implies (2.16). O

3. PrROOF OF THEOREM 1.1

We only consider the case ¢t € [0,T], since the case t € [—T,0] can be treated
similarly. Let ¢(t,x) = e*it(’A)ﬁmgaO(a:). It follows by STFT and integration by
parts that

(3.1) 10V, yult, 2, 8) = Vi, (10iu) (L, 2, &) — Vig, e, ult, x,§)

and

(3.2) Ve, )((—A)“/QU)(t z,§)

= (6" Vip(e.yut, 2,€) = inl€]* 26 - Va Vo, gult, 2, €) + Rult,,€).
Here we denote
(33) Ruta,6) = [ e ity — o utt.y)dy
with
(34) Ut 2,€) = Foou{ Sz, O Fur: ot w)l}

where S(z,€) is defined by (2.3). Using integration by parts, we may apply Taylor’s
Theorem to the potential V (¢,-) and obtain

(3.5) Vi, (Vu)(t, z,8)
— [ ey D)

X (V(t,x) + V., V({t,x) (y—x)+ Z (ye — zx)(y; — x])ij (t,x y)> dy

k=1
={V(t,x) +iV V(t,z) - Ve =V V(t,x) - 2}V yult, =, §) + Ru(t, z,§),

where

36 Rute. 9= 3 [ GG D) — o) — ) 0,,0)

k,j=1
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and
_ 1
(3.7) Vst y) = / O 0, V (b, + 0y — 2))(1 — 0) 6.
0
Since i0;p(t, x) = (=A)*/2p(t, ), we have

(3.8) Vioup(t,yult, @, §) = Vi_ ayn/zp(,yult, @, ).

Combining (3.1), (3.2), (3.5) and (3.8), we may transform the initial value problem
(1.1) via STFT with the window function ¢(¢, z) into a first order partial differential
equation

(10; +1iK|€|F72¢ -V, — iV V (t,2) - Ve — [€]F = V (¢, z)
+ va(t,x) ' x)VLp(t,~)u(t7x7§) - R’U,(f,, xaf) - H’U,(t, xaf) =0,
V¢(07.)U(0, x,f) = VLPOUO(:E;&')'
where

(3.9) Hu(t,z,€) = Ru(t,z,€) — Vi_aye/2p(yult, 2, ).

By the method of characteristics, we have

(3.10) Vv(t’.)u(t, T, f)
= e g Mt ds (T (£(0, 8 2, €),9(0, 8, 2, €))

t
—i / el Jo Mete O ds Ry Hu} (o, f(0,t,2,£),9(0,t,2,€)) do),
0
where f(s,t,2,€) and g(s,t,z,§) are solutions to (2.11), and
h(svta fE,f) = |g(s,t,x,§)|” + V(Sa f(satvxvf)) - VIV(Sv f(S,t, x,ﬁ)) : f(satvxvf)'

Then it follows from (3.10) that

t t

(3.11) |V¢(t,.>u(t,x,g)|<|fl|+/ |Ig|da—|—/ \Iy| do,
0 0

where

(312) Il = Vs@ouo(f(oatvxvf)ag(oatvxvf))a

I2 = Ru(a,f(a,t,x,f),g(a,t,x,f)),
IB = Hu(a,f(a,t,x,&),g(a,t,x,f)).
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Applying the Minkowski inequality, we obtain

(3.13) [Jut, ) lagz

v = Veeyultz,&)ler

t t
il + [ Vel do+ [ 15l o

Now we make the change of variables = = ¢(0,¢,z,£) and X = f(0,¢,z,£). Then it
follows from Lemma 2.5 and the inverse mapping theorem that

‘ 9, &) | _
(X, 2)

for all (¢, X,E) € RxR™x (R™\ {0}). So we can easily obtain HI1||L;°§ = [luollarge ==,
and

19 ik, = f[ e orge g'ded“>1/p-Huo|A¢§

for all p € [1,00).
As for I, by (3.6) and the inverse formula of STFT for u we obtain

1 - e -

||50( Nk Z ///RS el 5)4%(75,9—x)ij(taxay)sﬁ(ty —z)
L2 kj=1 "

x Vi, yult, z,n) dydz dn,

Ru(t,z,§&) =

where ¢ (t,y) = yry;j(t,y). Take a large positive integer N = [n/2] 4+ 1 such that
2N > n. Note that

(1- Ay)Neiy'("_g("vt’”’f)) = (n—g(o,t,x, &)y =glete8))
By integration by parts, we obtain

Mallos =wwwfwtxo g(o.t.2.) s

S [ 0= a0 et - fota ety -2)

|V<p(a,~)u(07 Z, 77)|
<77 - g(a, ta z, £)>2N

HM T 2=,

X ij(a,f(a,t,x,f),y)ﬂ dydzan

Ly,
H ||2 Z Z H ///3 |85150kj(0,y — f(o,t,2,8))
(o)L k,j=1|B1|+|B2|+|B8s|<2N Rom
7 |V¢(U~)u(0azan)| 3
X 85280(0’ Yy — Z)aﬂgvk'(aa f(aatvxvf)a y)| , dy dz dﬂ
Y Y ! <77 _g(05t7x7§)>2N Li)g
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Since |853‘~/kj (o, flo,t,x,6),y)| < Cg, for Cg, > 0, we make the change of variables
E=yg(o,t,z,€) and X = f(o,t,2,£) when p € [1,00), and then apply Lemma 2.5
and Young’s inequality twice to obtain that

(315) Il < 1 ”2 Z >

L? k= 1\51|+\ﬂ2\+|ﬁ3\<2N

{//R% (//R% N

) |26 v
o2 — dzdnd ’ =
< [ 103etay = Wyt sl dsdnay) |7 ax az)
1 " B
< > Ca, 108 orj (0, 9) 1o [ () 2N
lollZ2

k,j=1|B1|+|B2|+|Bs|<2N
X 052¢(0, ) L1 Voo, ulo, 2l e -

Since Fpo € C°(R™\ {0}), it follows by integration by parts that

(3.16) 052 ay|—‘ / —1olel” (1€)P2 Fipo (€ d&‘

/ eiyf@*)m{ei”'ﬁ'”(m)ﬁzfsao(f)}af‘
C(/BQa m, T, '%) <y>7m
for all m € N and o € [0,T], where the derivative operator L* is defined by

v Y Ve
ily|?’

and C(f2,m, T, k) depends only on B2, m,T and k.
Similarly, we have

(3.17) 10y ori(0,9)] < C(Br,m, T k) {y) ™™

for all m € N and o € [0,T], where C(81,m, T, k) depends only on 81, m,T and .
From (3.15), when p € [1,00), we have

(3.18) Iallo . < Clnk. Dllu(o.lages

for all o € [0,t] and ¢ € [0,T]. The case p = oo can be easily obtained from (3.15)
similarly. Now we consider the estimates for I3. By (3.9) and the inverse formula of
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STFT for u, we obtain

Hu(t,x
- T / [ €79ty = a0ty — Voot 2. dy dzan,
where
(3.19) P(t,x,6) = Y(t, 2, 6) — (—A)2p(t, z).

Using an argument similar to that for Iy and the change of variables with respect
to (x,&), we have

(3.20)
1
ez, < o
[RJW ]- - {1/)(0 Yy — f(U t X 5) (J,t,x,g))so(a,y - Z)}|
|V¢(U,~)u(0azan)| 3
(n—glo,t,2,€)>N dydzdn L,
<
ll¢(o, -)|Ii2
][0 = 5ot sl 0,05 ol - )
|1 \+|/32\<2N o
|V¢(U,~)u(0azan)| 3
(n—glo,t,2,€)>N dydzdn L,

1 ~
> 195 . )l o)~

= Tl |11+ <2
X ”85290(07 ')||L1||V<p(a,~)u(avzv77)”L§’,nv

where the last inequality follows from Young’s inequality. Since Fpo € C2°(R™\{0}),
it follows by integration by parts that

(321) 19 (=4, p(0,y)| =

[ e e )

/ ) eV E(L )™ eI (i6)P1 €] Fpo (€) } d€ ‘
C(ﬂla m, Tv ’%) <y>7m
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for all m € N and o € [0,T], where C(81,m,T, k) depends only on 81, m,T and k.
Moreover, there exists a function ¢ € C°(R™\ {0}) satisfying ¢ F[@o] = F[@o). Thus
by (3.4) we obtain

(3.22) 1o, y,€) = F3,{S(2,€)e*I" (12) o(2) Flgo) (2)}
=0y (o, ) * F 2 {S(2,€)¢(2)},

where * denotes the convolution operator. Then it follows from Lemma 2.3 and
Remark 2.4 that

(3.23) 105 6(0. 9. Ol < C1O ol )|+ ()",

where ¢ is an arbitrarily small positive number, and C' is a positive constant depend-
ing only on ¢, k, n and . Thus by Young’s inequality and (3.16) with a large number
m € N, we have

(324) |10 %(o,y, )] ()T < C(ny s, T)

1 < C05 (o)

1
L Y

for o € [0,T], where C(n, x,T) depends ounly on k, n and T.
Then it follows from (3.19), (3.21) and (3.24) that

(3.25) |||\351{¢§(g,y,5)|\L?HL§ < O(n,k,T).
Hence, we obtain from (3.20) that
(3.26) Msllze , < Clnw, Dllue, g

w(a,)

for all 0 € [0,¢] and ¢ € [0,T]. From (3.14), (3.18), (3.26) and (3.13), we have

t
Jut. sy, < Noollagy + Cn . T) [t laay | do
for t € [0,T]. Thus Gronwall’s inequality yields

(3.27) lut, Mz < Clluollazy

»)

for ¢t € [0,T], where C' is a positive constant depending only on «, n and 7. This
completes the proof of Theorem 1.1. O
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4. PROOF OF THEOREM 1.2
We only consider the case ¢t € [0,T], since the case t € [—T,0] can be treated
similarly. In this section, we shall first consider the case (p,q) = (c0,1), next the
case (p,q) = (1,00), and finally the general case (p, q).
Take a positive integer N = [n/2] + 1 so that 2N > n. Note that

(1-— Ay)Neiy-(n*g(Oﬁtyzyf)) =(n— g(o’t7x7£)>2Neiy~(nfg(0,t,x,§)).

By the inverse formula of STFT for ug, integration by parts and (2.16) in Lemma 2.6,

we obtain
@l 1hl= Hon s oy fy = 0 L, ) oly - 2)
X Vigouo(z,m) dy dzdn
H%H ///R )M {eoly = F(0,t,2,8))po(y — )}
1.2 3n

|V¢O’U,0(Z, 77)'
<77 - g(O,t,x,£)>2N

ca+i Y /// 1084 0oy — F(0,t,2,€)[105 0oy — 2)]

[B1]+]B2|<2N

dydzdn

- Vatolz, )

dy dzdn.
(n— &N
Now we apply Fubini’s theorem to obtain
172
CA+D*™ Y 1190l s
[B1|+B2|<2N
[Veouo(z, e . ~
‘ // 105 oy — f(0,t,2,8))|———gn—— dydp
R2n <77 - £> L Lé
COA+D*N Y 119570l 105 @oll Ll )N [l o || Vieo o (2, m)
[B1|+]B2|<2N

< O, T) oy
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for ¢t € [0,T], where C(n,T) depends only on n and 7. As for I, we have
(4.2)

21 < g [ 1080 (o~ ot )eto - 2

kj 1
|V¢,(U,,)U(O',Z,77)|
(n—glo,t,2,8)*N

ng 3 /// 108 pxi (0, — f(o,2,€))

lo(a, )13 k,j=1 |B1|+|B2|+]Ba|<2N

x Vi (0, f(o,t,2,€), 1)} dy = dn

Ve(o.hulo, 2, m))|

dydzd
m—gen YD

X |8y/62<)0(0-7 Yy —- 2)853‘7/@ (07 f(O', ta x, 5)7 y)|
where ¢y; and ij are defined in the proof of Theorem 1.1. Since
(43) |853‘7kj(07f(07taxa£)7y)| < Cﬂs
for Cg, > 0, we obtain

CA+t—a)?N &
e D S

k.j=11p1]+|Bz2|+|Bs|<2N

|ay6150kj (Ua y—- f(O', t,$,§))|

1142 o=

R37
V g, (] =
x |35250(0,y—2)lw dydzdn
(n—2¢) Lol
CA+1)2N
S ol S CalloPe(, )l ek, v) iy
L

KJ=11B1|+|8al+ 185 <2N
<O 2 [ Voo, yulo, 2,m)

<y, T) (0, )y

forallt € [0,T] and o € [0,¢], where C(n, k,T) depends only on n, x and T. Similarly,

we have
(4.4)
— 0 2N
<G s [ oo fete9.000.t0.6)

[B1]+]B2]<2N
|V<p(a,~)u(07 Z, 77)|

X |85230(0,y—2:)| <77_§>2N

dydzdn,
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where {/; is defined by (3.19). Then it follows by Fubini’s theorem, Minkowski in-
equality and (3.25) that

[|173]| oo

C(1+ |t —a])?N Z

Le ™ le(o, )22

[B1|+]B2|<2N

HH/// 080 (0,y — flo.t,2,€), g(0,t,2,€))]

|V<p(a,~)u(0a Z, 77)|

X |826250(Uay_z)| <77_£>2N

dydzdny

Lee Lé
2N
_Ca+1) 3

2 Hazﬂz@(Uaz)HL;
H‘POHL2

HayBI{Z;(Ua yvf)”L?’ HL;

[B1|+]B2|<2N

<) T2V L [ Vi o,yulos 2, m) [

Ly
< Cn, 5, T)llu(o, )y

1
(:°)

for all t € [0,7] and o € [0,¢t], where C(n, k,T) depends only on x, n and T. Hence,
using (3.11) and the Minkowski inequality, we obtain

t t
I O e ey A (LA ey N e
e(t,) £ 0 3 0 3
¢
< ctnn )l + [ oo gy do}
©0 0 o(e,)
for all t € [0,T]. Thus we may apply Gronwall’s inequality to (4.5) and obtain
(4.6) Ju(t. gy < Cluolyg

for all t € [0,T] and a positive constant C' depending only on x, n and T, which
concludes the case (p,q) = (o0, 1).

Next, we consider the case (p,q) = (1,00). Takee =k —1/2> 0, N = [n/2] +1
and 7 = n+1/2. Thus for all multi-indices 8 satisfying |51]| < 2N, using (2.15) and
(3.16), we have

(47) Ha'flso(o-a Yy — f(O', t7x7§))”L}L

R\T <y - f(U,t,iL’,f»T B1 i
<=y [ O ool y — [0t )] s

T b1 :
(y)70] @(U,y)HL;’) /R (y —x + K(t — o) [E]"28)7 4

< C(1 +T”)T< sup ||
c€[0,T]

<C(n,k,T)
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forallt € [0,T] and o € [0, t], where C(n, k, T) depends only on x, n and 7. Similarly,

by (2.15) and (3.17), we have
(4.8) 18y ¢r,j (0 y — flovt,2,€) |y < Cln,k,T)
for t € [0,7] and o € [0,t]. As for 851{/;, by (3.19) we have

)70 0 5.l |
< 1) 05 (e v, O)llege | o + 1w) 05 (-

It follows by (3.21) that

sup [[(y)70 (—A

) %0(0,y)lLe < C(n, 5, T).
o€[0,T] i

A o(0,y)l| L=

On the other hand, by virtue of (3.16) and (3.23) with ¢ = k — 1/2 we may apply

Young’s inequality to obtain

o) * (y) ")
aﬁl oo, ) () g
851 (@)l l()7 2

|||| Taﬁlw U yv ”L HLOO X C

| oo

for all o € [0,T]. Then it follows that

sup H|| 3511;(07%5)”@0”%@ < C(n,k,T).

o€[0,T]

Furthermore, we obtain

(4.9) 102 (0,y — f(o,t,2,€),9(0,t,2,€))l| 12

(y — flot,z,6))7
an (Y — @ + Kt — 0)[€]F26)"
x |01 (o,y — f(o,t,2,€), g(o,t,2,€))| dz

<C+T( sy [I6)707 90Ol )

C+1t—oal")"

1
. / (y — x4 Kt —o)|€]"=26)7 d
< C(n,k,T)

for all t € [0,T] and o € [0,¢], where C(n,«,T) depends only on x, n and T.
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Hence, by (4.1), (4.7) and Fubini’s theorem, we have

H||Il||L;HLgo SO+ >

|B1+1B21<2N

| ][ 1050t = 10,1090 si03enty - 2ol aya g

Le

< C(na Ky T)HUOHM;,’Oac

for all ¢t € [0, T]. Similarly to the above, by (4.3), (4.2), (4.8) and Fubini’s theorem,
we obtain

22l o

n

1+t—02N
= D

HSO L2 k.j=1|B1|+|B2]+|B3|<2N
HH ///[RJ” |a’51¢kj(0’y - f(aatvxvf))”agzw(gﬂy - 2)853‘7}@]'(0, f(U,t,iL‘,f),y”

VU' bR
" Ve (o, yulo, z,m)]

-gex WD

1
rillng

g C(na K, T)H’LL(O', )HM;’(?)
for all t € [0,7] and o € [0, t]. Furthermore, it follows from (4.4), (4.9) and Fubini’s
theorem that

sl ]] e <
L (o, )17 Brl 4+ Bal<2N

H ///RS 10510,y — flo,t,a,€), glovt, ,6))| 11

Ve(o,yulo,z,m)| =
x |02 (0, y — =) L dy dz dn
<77 - f> Lg
< C(nv R, T)”’LL(O’, )HM;(?)

for all t € [0,7T] and o € [0,¢], where C(n, k,T) depends only on x, n and 7.
Hence, by (3.11) and the Minkowski inequality, it follows from the above three

. /H||Iz||L1 dU+/H||£3||D

< D) Juallge + [ Tty do
4 0 e(o,)

inequalities that

(4.10)  Ju(t, My < [y |

Lac
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for ¢t € [0,T]. Thus we may apply Gronwall’s inequality to (4.10) and obtain
(4.11) [t )l pgree < Clluoll pppe
p(t,-) ©o

for all ¢t € [0, 7] and a positive constant C depending only on x, n and T, which
concludes the case (p,q) = (1, 00).

Finally, combining (3.27), (4.6) and (4.11), the general case (p, ¢) follows from the
complex interpolation theorem for the modulation space, i.e.,

l[ult, )z g

e S Clluollazy

for all ¢ € [0, T, where C is a positive constant depending only on «, n and 7. This
completes the proof of Theorem 1.2. O

Remark. After this paper was submitted, the author was informed kindly by
the reviewer of one recent work [9] about the estimates on modulation spaces for
Schrédinger equations with smooth potentials. Both the results in the present paper
and those in [9] are inspired by [7], [8], and the proofs of main results in this paper
and [9] both rely essentially on integration by parts and the inversion formula for the
short-time Fourier transform. However, the author would like to point out that the
fractional power of negative Laplacian (—A)"/? with x # 2, which is considered in
this article, is much more complicated than the negative Laplacian that is dealt with
in [9]. This leads to an additional remainder Hu in (3.10) of our paper, compared
with (14) in [9]. To handle this remainder, we need to establish a new inequality (2.1)
and apply the estimate for oscillatory integrals in Lemma 2.3, which are both trivial
in the case of kK = 2 in [9]. Moreover, due to [10], the singularity of the classical
Hamiltonian (2.11) is considered in Lemma 2.5 and Lemma 2.6, which generalize
the corresponding results in the case of the smooth Hamiltonian with x = 2 in
[9]. Finally, we state that the main results in this paper include the case of wave
equations, which correspond to (1.1) with x = 1.

Acknowledgement. The author would like to thank the referee for several valu-
able comments and for pointing out the relevance of the results in [9]. The author also
would like to express his gratitude to H. Kitada for stimulating discussions about [10].
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