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IN HARDY-HÖLDER SPACES
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(Received January 3, 2013)

Abstract. We prove some optimal logarithmic estimates in the Hardy space H
∞(G)

with Hölder regularity, where G is the open unit disk or an annular domain of C. These
estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev
space H

k,∞ of the unit disk and those of I. Feki in the case of an annular domain. The
proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions.
As an application of these estimates, we study the stability of both the Cauchy problem for
the Laplace operator and the Robin inverse problem.
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1. Introduction

Let D be the open unit disk of C with boundary T and let H∞(D) be the space of

bounded analytic functions on D. For s ∈ ]0, 1[, we denote by Gs = D\sD the annulus
with inner boundary sT and outer boundary T and by H∞(Gs) the Hardy space of

bounded analytic functions on Gs. For more details concerning the definitions and

properties of the Hardy spaces H∞(D) and H∞(Gs), we can refer the reader to [1],

[2], [10], [11], [12], [26], [24], [25].

In the sequel, we denote by G the open unit disk D or the annulus Gs; s ∈ ]0, 1[.

For k ∈ N and α ∈ ]0, 1[, we designate by Hk,∞(G) the Hardy-Sobolev space of G:

Hk,∞(G) = {f ∈ H∞(G) ; f (j) ∈ H∞(G), j = 0, . . . , k},

This research has been supported by the Laboratory of Applied Mathematics and Har-
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where f (j) denotes the jth complex derivative of f , and byHk,α(G) the Hölder-Hardy

space:

Hk,α(G) =
{

g ∈ Hk,∞(G) ; sup
z1 6=z2∈G

|g(k)(z1)− g(k)(z2)|
|z1 − z2|α

< ∞
}

.

We endow Hk,∞(G) with the usual norm

‖f‖Hk,∞ = max
06j6k

(‖f (j)‖L∞(∂G)).

Let Bk,α(G) denote the unit ball of Hk,α(G):

Bk,α(G) = {g ∈ Hk,α(G) ; [g]k,α 6 1},

where [g]k,α is the kth Hölder quotient defined by

[g]k,α = sup
z1 6=z2∈G

|g(k)(z1)− g(k)(z2)|
|z1 − z2|α

.

For any connected open subset I of ∂G with length 2πλ; λ ∈ ]0, 1[, the L1 norm of

f on I is given by

‖f‖L1(I) =
1

2πλ

∫

I

|f(reiθ)| dθ,

where r = s if I ⊂ sT and r = 1 if I ⊂ T.

Control problems in Hardy spaces have been first considered by L.Baratchart

and M. Zerner [3] in the class of Hardy-Sobolev spaces H1,2 of the unit disk D.

They proved a ((log− log)/ log)-type inequality with respect to the L2 norm. More

recently, a (1/ logk)-type optimal estimates with respect to the L∞ norm have been

established by the authors in Hk,∞(D) ([5]).

For the annulus Gs, a (1/ log)-type estimate with respect to the L2 norm has

been proved by J. Leblond and al. in [18]. Their method is based on the Hilbertian

properties of the Hardy space H2 and provides a control of the behavior of a function

on the inner boundary sT from its behavior on T. In the same situation, H.Meftahi

and F.Wielonsky [20] gave a similar and explicit estimate in the Hardy-Sobolev

spaces Hk,2(Gs). Recently, the second author [13] proved a (1/log
k)-type estimate

in Hk,∞(Gs). His estimates control the behavior on the whole boundary ∂Gs with

respect to the L∞ norm starting from its behavior on any open connected subset I

of ∂Gs.

In the present paper we establish some optimal logarithmic estimates in the Hölder-

Hardy spaces Hk,α(G), extending thus the earlier cases [3], [5], [18], [20]. Our main

result is the following:
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Theorem 1.1. Let k ∈ N and let I be a subarc of ∂G of length 2πλ; λ ∈ ]0, 1[.

There exist two non-negative constants C and γ, depending only on k, α, s and λ,

such that for every f ∈ Bk,α(G) satisfying ‖f‖L1(I) < γ, we have

(1.1) ‖f‖L∞(∂G) 6
C

|log ‖f‖L1(I)|α+k
.

The following proposition clarifies the optimality of Theorem 1.1.

Proposition 1.2. Let k ∈ N, α ∈ ]0, 1[ and let I be the semicircle I =

{eiθ,−π/2 6 θ 6 π/2}. Then there exists a sequence of functions gn ∈ Bk,α(G)

such that

(1.2) lim
n→∞

‖gn‖L∞(∂G)|log ‖gn‖L1(I)|α+k >
(log 2)α+k

21−α
.

The optimality of the equation (1.1) is clear in light of Proposition 1.2: we cannot

replace in (1.1) the constant C with any function ε which tends to zero at zero such

that for every function f ∈ Bk,α(G) we would have

‖f‖L∞(∂G) 6
ε(‖f‖L1(I))

|log ‖f‖L1(I)|α+k
.

In Section 2, we present some notation and preliminary results that will be useful

in the sequel. We also prove a variant of the Hardy-Landau-Littlewood inequality

amid the class of Hölder functions on a finite interval. Section 3 is devoted to the

proof of our main results and to recovering the results of [5], [13] as a consequence

of Theorem 1.1. As applications, in the last part of the paper we study the stability

of Cauchy’s problem for the Laplace operator in the class of Hölder solutions, and

the stability of the Robin inverse problem in the case of a flux ϕ ∈ W 1,2
0 (I).

2. Notation and preliminary results

In this section we give some preliminary results which will be useful for the proof

of our main estimates. For every t ∈ [−π, π], we introduce the radial primitive of

a function f ∈ H∞(G) as

(2.1) Ft(r) =

∫ r

x0

f(xeit) dx for all r ∈ ]x0, 1[,

where x0 = 0 if G = D and x0 = s if G = Gs.

Then, referring to [3], Lemma 4.1, [14], Lemma 2.4, and [5], Lemma 2.3, we get

the following two estimates of the function f and its radial primitive Ft in the case

of the unit disk D.
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Lemma 2.1. Let I be a subarc of T of length 2πλ; 0 < λ < 1 and let f ∈ H∞(D).

For every constant m > ‖f‖L∞(T) and z ∈ D we have

(2.2) |f(z)| 6 m1−(λ/2)(1−|z|)‖f‖(λ/2)(1−|z|)
L1(I) for every z ∈ D.

Lemma 2.2. Let I be a subarc of T of length 2πλ; 0 < λ < 1 and let f ∈ H∞(D),

not identically zero. For every constant m > ‖f‖L∞(T) and (t, r) ∈ [−π, π]× [0, 1] we

have

(2.3) |Ft(r)| 6
m

∣

∣

1
2λ log

(

‖f/m‖L1(I)

)∣

∣

.

In the case of an annular domain, similar estimates have been established in [13],

Lemma 3.3, Lemma 3.4.

Lemma 2.3. Let I be a subarc of ∂Gs of length 2πλ; 0 < λ < 1 and let f ∈
H∞(Gs). For every constant m > ‖f‖L∞(∂Gs) there exists a non-negative constant

Cs depending only on s such that for every z ∈ Gs we have

|f(z)| 6 m
∥

∥

∥

f

m

∥

∥

∥

2λCs(log s−log |z|)/ log s

L1(I)
if s < |z| 6

√
s,

|f(z)| 6 m
∥

∥

∥

f

m

∥

∥

∥

2λCs log |z|/ log s

L1(I)
if

√
s 6 |z| < 1.

Lemma 2.4. Let I be a subarc of ∂Gs of length 2πλ; 0 < λ < 1 and q0 = − log s.

Let f ∈ H∞(Gs) not identically zero satisfy ‖f‖L1(I) < e−q0/(λCs). Then for every

constant m > ‖g‖L∞(∂Gs) and (t, r) ∈ [−π, π]× ]s, 1[ we have

(2.4) |Ft(r)| 6
(2s+ 1)q0m

∣

∣2λCs log ‖f/m‖L1(I)

∣

∣

.

In the following, we establish a variant of Hardy-Landau-Littlewood inequalities

amid the class of Hölder functions defined on a finite interval. We can refer the

reader to [4], [22], [15], [16], [17], [21], [23] for more details concerning Hardy-Landau-

Littlewood inequalities.

Let a < b and H > 0. A function f : [a, b] → R is said to be a Ck,α
H function if

(2.5) |f (k)(x)− f (k)(y)| 6 H |x− y|α for all x, y ∈ [a, b].

Using arguments similar to [22], [19] for Lipschitz functions, we prove the following

inequality.
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Lemma 2.5. Let k ∈ N
∗ and let f : [a, b] → R be a Ck,α

H function such that

‖f‖L∞[a,b] 6 1.

If H > (2(1 + α))/(α(b − a)1+α), then we have

(2.6) ‖f ′‖L∞

([a,b])
6 C‖f‖(α+k−1)/(α+k)

L∞

([a,b])
,

where C is a non-negative constant depending only on k, α and H .

P r o o f. We prove the lemma by induction on k.

Let f ∈ C1,α
H and let x0 ∈ [a, b] be such that

|f ′(x0)| = sup
x∈[a,b]

|f ′(x)|.

An asymptotic expansion of f at x0 gives

|f(x) − f(x0)− (x− x0)f
′(x0)| 6

H

1 + α
|x− x0|1+α for all x ∈ [a, b].

Moreover, if x ∈ [a, b]; x 6= x0, we get

|f ′(x0)| 6
∣

∣

∣
f ′(x0)−

f(x)− f(x0)

x− x0

∣

∣

∣
+
∣

∣

∣

f(x)− f(x0)

x− x0

∣

∣

∣
.

Consequently,

(2.7) ‖f ′‖L∞[a,b] 6 g(|x− x0|),

where g is the function defined on [0, b− a] by

g(t) =
H

1 + α
tα +

2M

t
; M = sup

x∈[a,b]

|f(x)|.

Since H > 2(1 + α)/(α(b − a)1+α), one may set t = (2M(1 + α)/(αH))1/(1+α),

which is then the optimal choice in (2.7). Then we obtain the estimate

‖f ′‖L∞[a,b] 6

(2(1 + α)

α

)α/(1+α)

H1/(1+α)Mα/(1+α).

For k > 2, we suppose that inequality (2.6) holds for every function in Cj,α
H ; j =

1, . . . , k − 1.

Let f ∈ Ck,α
H . Then by virtue of the Hardy-Landau-Littlewood inequality [4],

Chapter VIII, page 147, there exists a non-negative constant C depending only on

k, a, b such that

(2.8) ‖f ′‖L∞

([a,b])
6 C‖f‖1/k

Wk,∞

([a,b])

‖f‖1−1/k
L∞

([a,b])
.
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Let s ∈ {0, . . . , k} be such that ‖f‖
W

k,∞([a,b]) = ‖f (s)‖L∞

([a,b])
. Then we consider

the following two cases:

First case: s ∈ {0, 1}.
From (2.8) we obtain

(2.9) ‖f ′‖L∞

([a,b])
6 C‖f‖L∞

([a,b])
,

which is better than (2.6).

Second case: s ∈ {2, . . . , k}.
For j ∈ {2, . . . , s} we obtain from the induction hypothesis that

(2.10) ‖f (j)‖L∞

([a,b])
6 C‖f (j−1)‖(α+k−j)/(α+k−j+1)

L∞

([a,b])
.

Making use of (2.10) for j ∈ {2, . . . , s}, we obtain

‖f (s)‖L∞

([a,b])
6 C‖f ′‖(α+k−s)/(α+k−1)

L∞

([a,b])
.

From (2.8) and the fact that ‖f‖
W

k,∞([a,b]) = ‖f (s)‖L∞

([a,b])
we deduce that

‖f ′‖L∞

([a,b])
6 C‖f‖(α+k−1)/(α+k−(k−s)/(k−1))

L∞

([a,b])
,

which is better than (2.6). �

3. Optimal logarithmic estimates in Hk,α(G)

This section is devoted to proving Theorem 1.1 and Proposition 1.2. As a conse-

quence, we establish some corollaries.

3.1. Proof of Theorem 1.1. Let m > max(‖f‖L∞(∂G), 1). For every t ∈ ]−π, π[,

we denote by Ft the radial primitive of f defined by equation (2.1). According to

Lemmas 2.2 and 2.4, there exists a non-negative constant λ0 such that

(3.1) |Ft(r)| 6
m

|λ0 log ‖f/m‖L1(I)|
,

where λ0 = λ/2 if G = D and λ0 = min(1, 2λCs/(1 + 2s)q0) if G = Gs.

Applying Lemma 2.5 to the radial primitive Ft, we obtain

‖f‖L∞(∂G) 6 C‖Ft‖(α+k)/(α+k+1)
L∞(∂G) ,
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consequently,

(3.2) ‖f‖L∞(∂G) 6 m1 := C

(

m
∣

∣λ0 log ‖f/m‖L1(I)

∣

∣

)(α+k)/(α+k+1)

.

Since (3.2) holds for every upper bound m > ‖f‖L∞(∂G), one can deduce

(3.3) ‖f‖L∞(∂G) 6 C

(

m1
∣

∣λ0 log ‖f/m1‖L1(I)

∣

∣

)(α+k)/(α+k+1)

.

Let η be the function defined on ]0, 1] by η(x) = x|log x|(α+k)/(α+k+1). Then

(3.4) η(x) 6 xβ for x ∈ ]0, 1], where β = 1− 1

e

α+ k

α+ k + 1
.

From (3.2) we get

(3.5)
∥

∥

∥

f

m1

∥

∥

∥

L1(I)
=

1

C
m1/(α+k+1)(λ0)

(α+k)/(α+k+1)η
(
∥

∥

∥

f

m

∥

∥

∥

L1(I)

)

.

Since we can choose C > 1, m > 1 and λ0 ∈ ]0, 1[, we derive from (3.5) and (3.4)

that

(3.6)
∥

∥

∥

f

m1

∥

∥

∥

L1(I)
6 ‖f‖βL1(I).

From (3.3) and the monotonicity of the mapping ε(x) = 1/|logx|, we obtain

‖f‖L∞(∂G) 6 C1+(α+k)/(α+k+1) m((α+k)/(α+k+1))2(1/β)(α+k)/(α+k+1)

|λ0 log ‖f‖L1(I)|(α+k)[1+(α+k)/(α+k+1)]/(α+k+1)
.

Proceeding in this manner, we obtain for every n > 1

‖f‖L∞(∂G) 6 Cbn
m((α+k)/(α+k+1))n+1

(1/β)cn

|λ0 log ‖f‖L1(I)|an
,

where an, bn and cn are three recurrent sequences satisfying

a1 =
α+ k

α+ k + 1

(

1 +
α+ k

α+ k + 1

)

, b1 = 1 +
α+ k

α+ k + 1
, c1 =

α+ k

α+ k + 1

an+1 =
α+ k

α+ k + 1
(1 + an), bn+1 = 1 +

α+ k

α+ k + 1
bn, cn+1 =

α+ k

α+ k + 1
(1 + cn).

The proof of inequality (1.1) is completed by letting n → ∞. �
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3.2. Proof of Proposition 1.2. Let un(z) = (z − 1)n. Then we have

(3.7) ‖un‖L∞(∂G) = 2n and ‖u(k)
n ‖L∞(∂G) =

n!

(n− k)!
2n−k.

Furthermore, we have

(3.8) |u(k)
n (z1)− u(k)

n (z2)|(1/α)−1 6

( n!

(n− k)!
2n−k+1

)(1/α)−1

and using the Taylor expansion, we obtain the asymptotic estimate

(3.9) |u(k)
n (z1)− u(k)

n (z2)| 6
n!

(n− k − 1)!
2n−k−1|z1 − z2|.

By multiplying the above inequalities (3.8) and (3.9), we get

(3.10) |u(k)
n (z1)− u(k)

n (z2)| 6
n!(n− k)α−1

(n− k − 1)!
2n−k+1−2α|z1 − z2|α.

Let fn(z) = ((n− k − 1)!un(z))/(n!(n− k)α−12n−k+1−2α).

Then we have

‖fn‖L∞(∂G) =
(n− k − 1)!2k−1+2α

n!(n− k)α−1

and

‖fn‖L∞(I) =
(n− k − 1)!

n!(n− k)α−12(n/2)−k+1−2α
.

Consequently,

‖fn‖L∞(∂G)|log(‖fn‖L∞(I))|α+k =
(log(2))α+k

21−α
(1 + o(1)) as n → ∞,

from which we conclude the inequality (1.2). �

Using (2.3) and Theorem 1.1, we prove as in [14], Corollary 3.1, the following

result:
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Corollary 3.1. Let m and k be two integers with 0 6 m < k and let I be

a subarc of G of length 2πλ; λ ∈ ]0, 1[. There exists non-negative constants C

and γ, depending only on m, k, α, s and λ, such that for every f ∈ Bk,α(G) with

‖f‖Wm,1(I) 6 γ we have

(3.11) ‖f‖Hm,∞ 6
C

|log(‖f‖Wm,1(I))|α+k−m
.

3.3. Further remarks concerning Theorem 1.1. As a consequence of Theo-

rem 1.1, we find again for α = 1 the results of the authors [5], Theorem 2.6, when

G = D and those of the second author [13], Theorem 3.7, when G = Gs. The

following consequences are immediate.

Corollary 3.2. Let k ∈ N and let I be a subarc of ∂G of length 2πλ; λ ∈ ]0, 1[.

There exist two non-negative constants C and γ, depending only on k, s and λ, such

that every f ∈ Hk,∞(G) satisfying ‖f‖Hk,∞ 6 1 and ‖f‖L1(I) < γ, also satisfies

(3.12) ‖f‖L∞(∂G) 6
C

|log ‖f‖L1(I)|k
.

In the particular case where I = T, we find again the result given by the second

author in [13], Corollary 3.10. A similar estimate with respect to the L2-norm have

been established by Leblond et al. in [18], Corollary 8.

Corollary 3.3. Let I = T, k and m be integers with 0 6 m < k. There exist

non-negative constants C and γ depending only on k,m, s and λ, such that every

f ∈ Hk,∞(Gs) satisfying ‖f‖Hk,∞ 6 1 and ‖f‖Hm,1(T) < γ, also satisfies

‖f‖Hm,∞(sT) 6
C

|log ‖f‖Wm,1(T)|k−m
.

4. Applications

In this section we present two applications using the previous estimates: The first

deals with the stability of the Cauchy problem for the Laplace operator in the class

of Hardy-Hölder solutions. The other consists in establishing a logarithmic stability

estimate for the inverse problem of the identification of an unknown Robin parameter

in the case of a W 1,2
0 -current flux.
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Let us consider first the Cauchy problem

(CP)











−∆u = 0 in D,

∂nu = ϕ on I,

u = f on I,

where ∂nu denotes the outer normal derivative of u, ϕ the imposed current flux and

f the potential measurement.

Let c, α > 0. We denote by C0,α
c the set

C0,α
c =

{

v ∈ C0(D); ‖v‖L∞(D) + sup
x 6=y∈D

|v(x) − v(y)|
|x− y|α 6 c

}

.

Then we establish the following theorem:

Theorem 4.1. Let ϕ ∈ C0(I) and let ui ∈ C0,α
c , i = 1, 2 be the respective solutions

of (CP) when f = fi; i = 1, 2. If ‖f1 − f2‖L1(I) < 1, then

‖u1 − u2‖L∞(T) 6
β

|log ‖f1 − f2‖L1(I)|α
,

where β > 0 is a constant depending only upon ϕ, I, α and c.

P r o o f. Let θ0 ∈ [0, 2π] be such that eiθ0 ∈ I. For j = 1, 2 we denote by vj
the harmonic conjugate function of uj such that vj(eiθ0) = 0 and gj = uj + ivj .

According to Privalov’s theorem, see [12], Theorem 5.8, the function gj is bounded

on the Hardy-Hölder set H0,α. Then, by using Theorem 1.1, we have

‖g1 − g2‖L∞(T) 6
C

|log ‖g1 − g2‖L1(I)|α
.

Using the Cauchy Riemann equations, we have v1(eiθ) = v2(e
iθ) =

∫ θ

θ0
ϕ(eis) ds for

every θ ∈ [0, 2π] such that eiθ ∈ I. Consequently,

‖u1 − u2‖L∞(T) 6
C

|log ‖f1 − f2‖L1(I)|α
.

�

For the second application, we consider a prescribed flux ϕ 6≡ 0 together with

measurements f given on a subarc I of the unit circle T, and we will find a function
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q on J = T \ I such that the solution u of

(RP)











−∆u = 0 in D,

∂nu = ϕ on I,

∂nu+ qu = 0 on T \ I,

also satisfies u|I = f .

Let c, c′ > 0 and let K be a non-empty connected subset of J for which the

boundary does not intersect that of I. We suppose that q belongs to the class of

admissible Robin coefficients

Qad = {q ∈ C1
0(J), ‖q‖W 1,∞(J) 6 c′, and q > cχK},

where C1
0 denotes the set of differentiable functions such that the functions and their

first derivatives vanish on the boundary. Let W 1,2
0 (I) denote the closure of C1

0(I) in

W 1,2(I). Referring to [8], [9], [7], we have the following lemma:

Lemma 4.2 ([8], [9], [7]). Let ϕ ∈ W 1,2
0 (I) with non-negative values satisfy ϕ 6≡ 0

and assume that q ∈ Qad for some constants c, c
′ > 0. Then the solution uq of the

Robin problem (RP) belongs to the set C1,1/2(D).

Furthermore, there exist non-negative constants α, β and γ such that for every

q ∈ Qad we have

uq > α > 0, ‖u‖W 1,∞(T) 6 β

and

|u(k)
q (x)− u(k)

q (y)| 6 γ|x− y|1/2 ∀x, y ∈ D ∀k = 0, 1.

Using again Privalov’s theorem and equation (1.1), we prove as in [6] the following

stability result:

Theorem 4.3. Let ϕ ∈ W 1,2
0 (I) with non-negative values satisfy ϕ 6≡ 0. Then

there exists a non-negative constant C such that for any q1, q2 ∈ Qad we have

‖q1 − q2‖L∞(J) 6
C

|log ‖u1 − u2‖L1(I)|1/2

provided that ‖u1−u2‖L1(I) < 1, where ui denotes the solution of (RP) with q = qi;

i = 1, 2.

Note that this result improves [6], Corollary 1, where the authors supposed that

ϕ ∈ W 2,2
0 (I).

P r o o f. The proof is the same as the one of [6], Theorem 3, except that we use

Privalov’s theorem, see also [12], Theorem 5.8, instead of [6], Theorem 2, and our

Theorem 1.1 instead of [6], Corollary 3. �
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