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Operads of decorated trees and their duals

Vsevolod Yu. Gubarev, Pavel S. Kolesnikov

Abstract. This is an extended version of a talk presented by the second author on the Third

Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The pur-

pose of this paper is twofold. First, we would like to review the technique developed in a

series of papers for various classes of di-algebras and show how the same ideas work for tri-

algebras. Second, we present a general approach to the definition of pre- and post-algebras

which turns out to be equivalent to the construction of dendriform splitting. However, our

approach is more algebraic and thus provides simpler way to prove various properties of pre-

and post-algebras in general.
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Classification: 17A30, 17A36, 17A42, 18D50

1. Introduction

The study of a wide variety of algebraic systems that may be informally called di-

algebras was initiated by J.-L. Loday and T. Pirashvili [22], who proposed the notion

of an (associative) di-algebra as a tool in the cohomology theory of Lie and Leibniz

algebras. A systematic study of associative di-algebras and their Koszul dual dendriform

algebras was presented in [21]. Later, an algebraic approach to operads appearing in

combinatorics led J.-L. Loday and M. Ronco [23] to the notions of tri-associative and

tri-dendriform algebras.

In [9], F. Chapoton pointed out that the operads governing the varieties of Leibniz

algebras and of di-algebras in the sense of [22] may be presented as Manin white products

of the operad Perm with Lie and As, respectively. Manin products (white product �

and black product �) were originally defined for quadratic associative algebras and then

for binary quadratic operads. In [29], it was proposed a conceptual approach to Manin

products and Koszul duality which covers a wide range of monoids in categories with

two coherent monoidal products (quadratic associative algebras and binary operads, in

particular, fit this scheme). The operad Perm has an extremely simple algebraic nature,

so it is obvious that the white product Perm �M coincides with the Hadamard product

Perm⊗M for every binary quadratic operadM (see [29]). In this way, a general definition

of a di-algebra overM as an algebra governed by Perm⊗Mwas considered in [18], where

it was shown that di-algebras are closely related with pseudo-algebras in the sense of [3].

This relation allowed solving many algebraic problems on di-algebras [14], [19], [31].

Hence, it is interesting to find an analogous construction for tri-algebras as well. It was

also shown in [29] that the operad ComTrias (introduced in [28]) has the same property
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as Perm: ComTrias � M = ComTrias ⊗ M. In this paper, we show how to recover an

“ordinary” algebra from a given (ComTrias ⊗M)-algebra and apply the result to solve a

series of problems on tri-algebras.

Roughly speaking, a passage from an operad M governing a variety of “ordinary”

algebras (associative, Lie, Jordan, Poisson, etc.) to the operad di-M or tri-M may be

performed by “decoration” of planar trees presenting the operad M. (For di-algebras,

the procedure was proposed in [18], for tri-algebras — in [15] in the case of binary

operations.) In this sense, to decorate a tree one has to emphasize one (for di-algebras) or

several (for tri-algebras) leaves and assume the composition (grafting) of trees to preserve

the decoration (see Section 2 for details).

A similar unified approach to the definition of dendriform algebras comes naturally

from the general concept of Manin black product [29]. The class of associative den-

driform di-algebras Dend [21] is known to be governed by the operad pre-Lie � As,

where pre-Lie is the operad of left-symmetric algebras. Obviously (see [13]), Dend =

(Perm � As)! since Perm! = pre-Lie, As! = As. The same duality between white and

black Manin product holds in the general settings [29]. So, the natural way to define a

dendriform version of anM-algebra is to consider the operad pre-Lie�M or post-Lie�M

(the operad post-Lie = ComTrias! was introduced in [28]). The explicit description of

the corresponding varieties of such systems in terms of defining identities was proposed

in [2] (as di-successor and tri-successor algebras) and in [15] as (di- and tri-dendriform

algebras). A generalization of the first construction has recently been published in [25]:

B-(A-)Sp(M)-algebras are defined for an arbitrary operadM. In this paper, we state an-

other simple procedure of “dendriform splitting” and prove that the classes of systems

obtained (called pre- or post-algebras, respectively) coincide with those already intro-

duced in [2], [15], [25].

The paper is organized as follows. In Section 2 we recall the general definition of

what is a di- or tri-algebra and explain its relation with averaging operators. Section 3 is

devoted to the definition of operads pre-M and post-M for an arbitrary (not necessarily

binary or quadratic) operadM. The varieties of pre-M- and post-M-algebras obtained are

closely related with M-algebras equipped with Rota–Baxter operators in the very same

way as (A-)Sp(M)- and BSp(M)-algebras in [25], thus, our approach leads to the same

classes of systems. In Section 4 we observe a series of algebraic problems related with di-

and tri-algebras. Most of natural problems in this area may be easily reduced to similar

problems in “ordinary” algebras by means of the embedding proved in Theorem 2.8.

Section 5 is devoted to analogous problems on pre- and post-algebras. In these classes,

the picture is obscure: It is possible to state that many classical algebraic problems (like

those stated in Section 4) make sense for pre- and post-algebras, but it is not clear how

to solve them.

Throughout the paper we will use the following notations: P(n) is the set of all

nonempty subsets of {1, . . . , n}; S n is the group of all permutations of {1, . . . , n}. An

operad M is a collection of S n-modules M(n), n ≥ 1, equipped with associative and

equivariant composition rule (see, e.g., [24]).

Given a language Σ (a set of symbols of algebraic operations f together with their

arities ν( f )), by a Σ-algebra we mean a linear space equipped with algebraic operations
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from Σ. The class of all Σ-algebras as well as the corresponding (free) operad we denote

by FΣ. IfM is a quotient operad of FΣ and a Σ-algebra A belongs to the variety governed

byM then we say A to be anM-algebra. For an operadM, we will use the same symbol

M to denote the entire variety governed byM.

The free algebra in the variety of all M-algebras generated by a set X we denote by

M〈X〉.

2. Replicated algebras

2.1 Replication of a free operad. In this section we present an explanation of the idea

underlying the transition from “ordinary” algebras to di- and tri-algebras and discuss why

these constructions are the only possible ones in a certain context.

Let us consider the free operad F = FΣ generated by operations Σ. According to

the natural graphical interpretation, the spaces F(n), n ≥ 1, are spanned by planar trees

with enumerated leaves (variables) and labeled vertices (operations). For example, if

Σ = {(· ∗ ·), [·, ·]} consists of two binary operations then the term [x1, (x4 ∗ x3)] ∗ [x2, x5]

may be identified with

The general idea of replication (cf. [18]) is to set an additional feature on the trees

from F(n): Emphasize one or several leaves and claim that the emphasizing is preserved

by composition (grafting). Let us explain the details graphically and then present an

equivalent algebraic statement.

Recall the composition rule on the operadF: Given T ∈ F(n), Ti ∈ F(mi), i = 1, . . . , n,

their composition T (T1, . . . , Tn) ∈ F(m1+ · · ·+mn) is a tree obtained by attaching each Ti

to the ith leaf of T and by natural shift of numeration of leaves in each Ti. For example,

if Σ = {(· ∗ ·), [·, ·]} consists of two binary operations, T = [x2, x3] ∗ x1, T1 = [x2, [x1, x3]],

T2 = [x2, x1], T3 = x1 ∗ x2, then T (T1, T2, T3) is presented by

Symmetric group S n acts on F(n) by permutations of leaves’ numbers.

By definition, every tree in F(n) may be constructed by composition and symmetric

group actions from the elementary trees (generators of the operad) f (x1, . . . , xn), f ∈ Σ,

ν( f ) = n.
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Now, replace the generators with “decorated” elementary trees with one or several

emphasized leaves and define the composition of such trees by the same rule as in F, as-

suming that: (1) attaching of a tree Ti to a non-emphasized leaf of T removes decoration

from Ti; (2) attaching of a tree Ti to an emphasized leaf of T preserves decoration on

Ti. An example of such a composition with emphasized leaves circled in black is stated

below.

Note that if each of the trees T, T1, . . . , Tn has only one emphasized leaf then so is their

composition T (T1, . . . , Tn). However, if we are allowed to emphasize more than one leaf

(say, no more than two leaves of each tree, as in example above) then the composition

may contain more emphasized leaves than each of the trees T, T1, . . . , Tn (see the example

above). Hence, there are two natural cases: Either we may emphasize only one leaf of a

tree (di-algebra case) or an arbitrary number of leaves (tri-algebra case). Let us denote

the operads obtained by di-F or tri-F, respectively.

2.2 Operads Perm and ComTrias. Let us state definitions of two important operads.

Example 2.1 ([9]). Let Σ contains one binary operation. The operad governing the vari-

ety of associative algebras satisfying the identity (x1x2)x3 = (x2x1)x3 is denoted by Perm.

It is easy to see that monomials e
(n)

i
= (x1 . . . xi−1 xi+1 . . . xn)xi, i = 1, . . . , n, form a linear

basis of Perm(n), and thus dim Perm(n) = n.
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Example 2.2 ([28]). Given n ≥ 1, let C(n) be the formal linear span of the set of “corol-

las” {e(n)

H
| H ∈ P(n)}, where P(n) stands for the collection of all nonempty subsets

of {1, . . . , n}. For K ∈ P(m), Hi ∈ P(ni), i = 1, . . . ,m, define the composition of sets

K(H1, . . . ,Hm) ∈ P(n1 + · · · + nm) as follows:

j ∈ K(H1, . . . ,Hm) ⇐⇒ ∃k ∈ K, l ∈ Hk :

n1 + · · · + nk−1 < j ≤ n1 + · · · + nk,

j = n1 + · · · + nk−1 + l.

Then

e
(m)

K
(e

(n1)

H1
, . . . , e

(nm)

Hm
) = e

(n)

K(H1 ,...,Hm)
,

where n = n1 + · · · + nm.

With respect to the natural action of the symmetric group, the family of spaces C(n),

n ≥ 1, forms a symmetric operad denoted by ComTrias.

The algebraic interpretation of ComTrias was stated in [28]. Namely, an algebra from

the variety ComTrias is a linear space equipped with two binary operations ⊥ and ⊢
satisfying the following axioms:

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊢ y) ⊢ z = (y ⊢ x) ⊢ z,

(x ⊥ y) ⊢ z = (x ⊢ y) ⊢ z, x ⊢ (y ⊥ z) = (x ⊢ y) ⊥ z,

(x ⊥ y) ⊥ z = x ⊥ (y ⊥ z).

It is easy to see that e
(n)

H
∈ ComTrias(n) may be identified with the monomial

x j1 ⊢ · · · ⊢ x jn−k
⊢ (xi1 ⊥ · · · ⊥ xik ),

where H = {i1, . . . , ik}, i1 < · · · < ik, j1 < · · · < jn−k.

Example 2.3. Denote by C2 a 2-dimensional space with a basis {e1, e2} and operations

ei ⊥ ei = ei, e1 ⊢ e1 = e1, e1 ⊢ e2 = e2,

other products are zero. It is easy to check that C2 ∈ ComTrias.

Note that the composition rule in the operad Perm is completely similar to the com-

position in ComTrias restricted to singletons: e
(n)

i
∈ Perm(n) may be identified with

e
(n)

{i} ∈ ComTrias(n).

Lemma 2.4. Let m ≥ 1, n1, . . . , nm ≥ 1, and let n = n1 + · · · + nm. Then

∑

H∈P(n)

∑

K,H1,...,Hm

K(H1 ,...,Hm)=H
K∈P(m)
Hi∈P(ni)

e
(m)

K
⊗ e

(n1)

H1
⊗ · · · ⊗ e

(nm)

Hm

=
∑

K∈P(m)

∑

H1∈P(n1)

· · ·
∑

Hm∈P(nm)

e
(m)

K
⊗ e

(n1)

H1
⊗ · · · ⊗ e

(nm)

Hm
.
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A similar statement holds for Perm, if we restrict the sums to singletons only.

Proof: For m = 1 the statement is obvious. It is enough to note that

K(H1, . . . ,Hm) =


(K \ {m})(H1, . . . ,Hm−1) ∪ (n − nm + Hm), m ∈ K,

K(H1, . . . ,Hm−1), m < K,

and proceed by induction on m. �

2.3 Defining identities. Let M be a variety of Σ-algebras satisfying a family of poly-

linear identities Id(M). Denote the operad governing this variety by the same symbolM.

This is an image of the free operad F = FΣ with respect to a morphism of operads whose

kernel equals Id(M).

Definition 2.5 ([18], [15]). Denote by di-M and tri-M the following Hadamard products

of operads:

di-M = Perm ⊗M, tri-M = ComTrias ⊗M.

As an immediate corollary of this definition, we obtain

Proposition 2.6 ([18], [19]). Let A ∈M, P ∈ Perm. Then P⊗A equipped with operations

fi(x1 ⊗ a1, . . . , xn ⊗ an) = e
(n)

i
(x1, . . . , xn) ⊗ f (a1, . . . , an),

f ∈ Σ, ν( f ) = n, xi ∈ P, ai ∈ A, i = 1, . . . , n,

belongs to the variety di-M.

Proposition 2.7. Let A ∈ M, C ∈ ComTrias. Then C ⊗ A equipped with operations

f H(x1 ⊗ a1, . . . , xn ⊗ an) = e
(n)

H
(x1, . . . , xn) ⊗ f (a1, . . . , an),

f ∈ Σ, ν( f ) = n, H ∈ P(n), xi ∈ C, ai ∈ A, i = 1, . . . , n,

belongs to the variety tri-M.

In general, it is not clear which operations generate a Hadamard product of two op-

erads (even if the operads are binary). However, operads P = Perm,ComTrias are good

enough to allow finding generators and defining relations of P ⊗M. In particular, if M

is a binary quadratic operad then P ⊗M = P �M, where � stands for the Manin white

product of operads. The purpose of this section is to present explicitly defining relations

of tri-M (for di-M, the algorithm was presented in [5], see also [19]).

First, let us note that the operad tri-F is generated by

Σ(3) = { f H | f ∈ Σ, ν( f ) = n, H ∈ P(n)}.

Indeed, there exists a morphism of operads ι : FΣ(3) → tri-F sending f H to e
(n)

H
⊗ f , f ∈ Σ,

ν( f ) = n. Therefore, every D ∈ tri-M may be considered as a Σ(3)-algebra. Note that for
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every f , g ∈ Σ, ν( f ) = n, ν(g) = m, and for every ak, b j ∈ D we have

(1) f H(a1, . . . , ai−1, g
S (b1, . . . , bm), ai+1, . . . , an)

= f H(a1, . . . , ai−1, g
Q(b1, . . . , bm), ai+1, . . . , an)

for all H ∈ P(n), S ,Q ∈ P(m) provided that i < H. Indeed, by the definition of ComTrias,

the composition

e
(n)

H
(id, . . . , e

(m)

S
i

, . . . , id)

does not depend on S if i < H.

Moreover, each ι(m) : FΣ(3)(m)→ tri-F(m), m ≥ 1, is surjective. The natural algorithm

of constructing a canonical pre-image ΦH ∈ FΣ(3)(m) of e
(m)

H
⊗ Φ ∈ tri-F(m) with respect

to ι(m) is stated in [15] for binary case. In the general case, the algorithm remains the

same: Assume the pre-images are constructed for all terms of degree smaller than m. For

a monomial u = u(x1, . . . , xm) ∈ F(m), one may consider e
(m)

H
⊗ u ∈ tri-F(m) as a planar

tree with emphasized leaves xi1 , . . . , xik , where {i1, . . . , ik} = H. If u = f (v1, . . . , vn),

f ∈ Σ, ν( f ) = n, vi ∈ F(mi), then choose K = {i | vi contains x j, j ∈ H} and set

uH = f K(v
H1

1
, . . . , v

Hn
n ), where

Hi =


{ j | j ∈ H, x j appears in vi}, i ∈ K,

{1}, i < K.

Next, supposeΦ(x1, . . . , xm) ∈ F(m) is a polylinear identity on all algebras of a variety

M, i.e., Φ belongs to the kernel of natural morphisms of operads τM : F → M. Then

e
(m)

H
⊗ Φ belongs to the kernel of id ⊗ τM : tri-F→ tri-M. Hence, ΦH(x1, . . . , xm) ∈ FΣ(3)

is an identity on all algebras in tri-M.

Suppose the variety M is defined by a set of polylinear identities S (M) ⊂ Id(M).

As we have shown above, every algebra in tri-M may be considered as a Σ(3)-algebra

satisfying the collection of identities S (3)(M) that consists of (1) and ΦH(a1, . . . , am) = 0

for all Φ ∈ S (M) ∩ F(m), H ∈ P(m), m ≥ 1.

Let us prove that S (tri-M) = S (3)(M), i.e., every Σ(3)-algebra satisfying S (3)(M) is

actually an algebra of the variety governed by tri-M.

Theorem 2.8. Suppose ν( f ) ≥ 2 for all f ∈ Σ. Then every Σ(3)-algebra satisfying

S (3)(M) may be embedded into an appropriate algebra of the form C ⊗ A ∈ tri-M, where

C ∈ ComTrias, A ∈M.

An analogous statement for di-M was proved in [19].

Proof: Given an algebra T ∈ tri-M, denote by T0 ⊆ T the linear span of all

(e
(n)

H
⊗ f )(a1, . . . , an) − (e

(n)

K
⊗ f )(a1, . . . , an),

K,H ∈ P(n), ai ∈ T , f ∈ Σ, ν( f ) = n. It follows from the definition of ComTrias that T0

is an ideal in T , and T̄ = T/T0 may be considered as a Σ-algebra. Moreover, the direct
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sum of linear spaces

T̃ = T̄ ⊕ T

turns into a Σ-algebra with respect to operations

(2) f (ā1 + b1, . . . , ān + bn) = f K(a1, . . . , an) +
∑

H∈P(n)

f H(cH
1 , . . . , c

H
n ),

(K is an arbitrary set in P(n)) f ∈ Σ, ν( f ) = n, ai, bi ∈ T , and

cH
i =


ai, i < H,

bi, i ∈ H.

Lemma 2.9. T̃ ∈ M.

Proof: In [15], this statement was proved in the binary case. The general case is similar.

Suppose Φ(x1, . . . , xm) ∈ S (M). Then (2) and (1) imply Φ(ā1 + b1, . . . , ām + bm) = 0

for ai, b j ∈ T by induction on the length of monomials. �

Recall the algebra C2 ∈ ComTrias from Example 2.3. Note that the map T → C2 ⊗ T̃ ,

given by

a 7→ e1 ⊗ ā + e2 ⊗ a ∈ C2 ⊗ T̃ , a ∈ T,

is a homomorphism of Σ(3)-algebras. Indeed, let f ∈ Σ, ν( f ) = n, H ∈ P(n), xi =

e1 ⊗ āi + e2 ⊗ ai, ai ∈ T , i = 1, . . . , n. Then

(e
(n)

H
⊗ f )(x1, . . . , xn) = e

(n)

H
(e1, . . . , e1) ⊗ f (ā1, . . . , ān)

=
∑

K∈P(n)

e
(n)

H
(eK

1 , . . . , e
K
n ) ⊗ f (cK

1 , . . . , c
K
n ),

where

eK
k =


e1, k < K,

e2, k ∈ K,
cK

i =


āi, i < K,

ai, i ∈ K.

It is easy to note from the definition of C2 that e
(n)

H
(eK

1
, . . . , eK

n ) , 0 if and only if K = H

(in this case, the result is equal to e2). Hence,

(e
(n)

H
⊗ f )(x1, . . . , xn) = e1 ⊗ f (ā1, . . . , ān) + e2 ⊗ f (cH

1 , . . . , c
H
n )

= e1 ⊗ f H(a1, . . . , an) + e2 ⊗ f H(a1, . . . , an).

�

Remark 1. Note that Theorem 2.8 remains valid for languages with unary operators t ∈ Σ,

ν(t) = 1, provided that S (M) includes identities stating all these t are endomorphisms or

derivations with respect to all f ∈ Σ, ν( f ) > 1. In this case, T0 is invariant with respect

to t, and thus T̃ exists.
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Therefore, if T satisfies S (3)(M) then it is a subalgebra in C2⊗ T̃ ∈ tri-M, so T ∈ tri-M.

As it was shown in [19], the variety governed by di-M = Perm⊗Mmay be represented

as a variety of Σ(2)-algebras defined by S (2)(M), where Σ(2) and S (2)(M) are obtained from

Σ and S (M) in the same way as Σ(3) and S (3)(M) provided that we consider only singletons

H = {i} ∈ P(n).

Examples include Leibniz algebras (di-Lie) [20], dialgebras (di-As) [22], semi-special

quasi-Jordan algebras (di-Jord) [18], [30], [4], Lie and Jordan triple di-systems (di-LTS

[8] and di-JTS [5]), Malcev di-algebras (di-Mal) [7], dual pre-Poisson algebras (di-Pois)

[1], triassociative algebras (tri-As) [23].

Example 2.10. Let us write down defining identities of tri-Lie-algebras. An algebra

from tri-Lie is a linear space with three binary operations [· ⊥ ·], [· ⊢ ·], and [· ⊣ ·],
[a ⊢ b] = −[b ⊣ a], such that [· ⊥ ·] is a Lie operation, [· ⊣ ·] satisfies (right) Leibniz

identity, and they satisfy the following axioms:

(3)
[x1 ⊥ [x2 ⊣ x3]] = [[x1 ⊣ x2] ⊥ x3] + [x2 ⊥ [x1 ⊣ x3]],

[x1 ⊣ [x2 ⊥ x3]] = [x1 ⊣ [x2 ⊣ x3]].

Let us note that the first identity of (3) appeared recently in [27].

Lemma 2.11. If ϕ : T → T ′ is a homomorphism of tri-M-algebras then ϕ̃ : T̃ → T̃ ′

defined by ϕ̃(ā) = ϕ(a), ϕ̃(a) = ϕ(a), a ∈ A, is a homomorphism of M-algebras.

Proof: It follows from the construction (see Theorem 2.8) that ϕ(T0) ⊆ T ′
0
. Hence, ϕ̃

is a well-defined map, and it is straightforward to check that ϕ is a homomorphism of

M-algebras. �

2.4 Averaging operators. Theorem 2.8 provides a powerful tool for solving various

problems for di- and tri-algebras (see Section 4). Let us state here an equivalent definition

of tri-M by means of averaging operators.

Definition 2.12. Suppose A is a Σ-algebra. A linear map t : A→ A is called an averaging

operator on A if

f (ta1, . . . , tan) = t f (ta1, . . . , tai−1, ai, tai+1, . . . , tan)

for all f ∈ Σ, ν( f ) = n, a j ∈ A, i, j = 1, . . . , n.

Let us call t a homomorphic averaging operator if

f (ta1, . . . , tan) = t f (aH
1 , . . . , a

H
n ),

for all H ∈ P(n), where

(4) aH
i =


ai, i ∈ H,

tai, i < H.



430 V.Yu. Gubarev, P.S. Kolesnikov

Given a Σ-algebra A equipped with a homomorphic averaging operator t, denote by

A(t) the following Σ(3)-algebra:

f H(a1, . . . , an) = f (aH
1 , . . . , a

H
n ),

where f ∈ Σ, ν( f ) = n, H ∈ P(n), ai ∈ A, aH
i

are given by (4).

If t is an averaging operator on A then the same rule defines Σ(2)-algebra A(t) provided

that all H are singletons.

Theorem 2.13. Suppose ν( f ) ≥ 2 for all f ∈ Σ.

(1) If A ∈ M and t is an averaging operator on A then A(t) is a di-M-algebra.

(2) If A ∈ M and t is a homomorphic averaging operator on A then A(t) is a tri-M-

algebra.

(3) Every D ∈ di-M may be embedded into A(t) for an appropriate A ∈ M with an

averaging operator t.

(4) Every T ∈ tri-M may be embedded into A(t) for an appropriate A ∈ M with a

homomorphic averaging operator t.

Proof: Let us show (2) and (4) since (1) and (3) are in fact restrictions of the statements

on tri-algebras.

To prove (2), it is enough to note (by induction on m) that for every

Φ = Φ(x1, . . . , xm) ∈ F(m)

and for every H ∈ P(m) we have

ΦH(a1, . . . , am) = Φ(aH
1 , . . . , a

H
m), ai ∈ A.

Moreover, (1) also hold on A(t) by definition of t.

Statement (4) follows from Theorem 2.8: T is a subalgebra of C2 ⊗ T̃ . Consider

A = T̃ = T̄ ⊕ T and define

ta = ā, tā = ā, a ∈ T.

It is easy to see by definition of operations on T̃ that t is indeed a homomorphic averaging

operator on A, and T ⊆ A(t) is a Σ(3)-subalgebra. �

3. Splitted algebras

In this section, we observe an approach to the procedure of splitting of an operad [2]

that leads to classes of objects in some sense dual to di- and tri-algebras.

3.1 Definition and examples. As above, let M be a variety of Σ-algebras defined by a

family of polylinear identities S (M).
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Suppose T is a Σ(3)-algebra, and let C ∈ ComTrias. Define the following Σ-algebra

structure on the space C ⊗ T :

f (a1 ⊗ u1, . . . , an ⊗ un) =
∑

H∈P(n)

e
(n)

H
(a1, . . . , an) ⊗ f H(u1, . . . , un),(5)

f ∈ Σ, ν( f ) = n.(6)

Denote the obtained Σ-algebra by C ⊠ T .

In a similar way (considering only singletons in (5)) one may define P ⊠ D for a

Σ(2)-algebra D and P ∈ Perm.

Definition 3.1. A class of Σ(2)-algebras D such that P ⊠ D ∈ M for all P ∈ Perm is

denoted by pre-M.

A class of Σ(3)-algebras T such that C ⊠ T ∈ M for all C ∈ ComTrias is denoted by

post-M.

It is enough to check whether P ⊠ D, C ⊠ T ∈ M for free algebras P = Perm〈X〉 and

C = ComTrias〈X〉, where X = {x1, x2, . . . } is a countable set of symbols.

It is obvious that pre-M and post-M are varieties of Σ(2)- and Σ(3)-algebras, respec-

tively. Indeed, it is easy to find their defining identities by the very definition.

Example 3.2. Suppose Σ consists of one binary operation [·, ·], and let M = Lie. Then

Σ(2) consists of two operations, say, [· ⊢ ·] and [· ⊣ ·]. A Σ(2)-algebra D belongs to pre-Lie

if and only if Perm〈X〉 ⊠ D ∈ Lie, i.e.,

[(x1 ⊗ a1), (x2 ⊗ a2)] = x1x2 ⊗ [a1 ⊢ a2] + x2x1 ⊗ [a1 ⊣ a2]

is anti-commutative and satisfies the Jacobi identity. The anti-commutativity implies

[a1 ⊢ a2] = −[a2 ⊣ a1], a1, a2 ∈ D.

Denote [a ⊢ b] by ab. Let us check the Jacobi identity:

[[(x1 ⊗ a1), (x2 ⊗ a2)], (x3 ⊗ a3)](7)

= x1 x2x3 ⊗ (a1a2)a3 − x3x1x2 ⊗ a3(a1a2) − x2 x1x3 ⊗ (a2a1)a3 + x3x2x1 ⊗ a3(a2a1)

= e
(3)

3
⊗ ((a1a2)a3 − (a2a1)a3) − e

(3)

2
⊗ a3(a1a2) + e

(3)

1
⊗ a3(a2a1).

Hence,

[[(x1 ⊗ a1), (x2 ⊗ a2)], (x3 ⊗ a3)] + [[(x2 ⊗ a2), (x3 ⊗ a3)], (x1 ⊗ a1)]

(8)

+ [[(x3 ⊗ a3), (x1 ⊗ a1)], (x2 ⊗ a2)] = e
(3)

1
(a3(a2a1) − (a3a2)a1 + (a2a3)a1 − a2(a3a1))

+ e
(3)

2
((a3a1)a2 − a3(a1a2) + a1(a3a2) − (a1a3)a2)

+ e
(3)

3
((a1a2)a3 − a1(a2a3) + a2(a1a3) − (a2a1)a3).

Hence, D ∈ pre-Lie if and only if the product ab is left-symmetric.
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Other well-known examples include pre-associative (dendriform) [21], post-associa-

tive (tridendriform) [23], pre-Poisson [1], pre-Jordan [16] algebras, as well as pre-Lie

triple systems [6].

3.2 Equivalent description. Suppose T is a Σ(3)-algebra. Denote by T̂ the direct sum

of two isomorphic copies of T as of linear space:

T̂ = T ⊕ T ′.

Assume the isomorphism is given by the correspondence a↔ a′, a ∈ T , and define

(9) f (a1 + b′1, . . . , an + b′n) =
∑

H∈P(n)

f H(a1, . . . , an) +


∑

H∈P(n)

f H(cH
1 , . . . , c

H
n )


′

,

where f ∈ Σ, ν( f ) = n, and

cH
i =


ai, i < H,

bi, i ∈ H.

Thus, T̂ carries the structure of a Σ-algebra. For a Σ(2)-algebra D, one may define D̂ in a

similar way assuming f H(x1, . . . , xn) = 0 for |H| > 1.

Theorem 3.3 (cf. [15]). The following statements are equivalent:

(1) T ∈ post-M;

(2) T̂ ∈M.

Similarly, a Σ(2)-algebra D belongs to pre-M if and only if D̂ ∈M.

Proof: Let us fix C = ComTrias〈Y〉, Y is an infinite set. It is enough to prove that (2) is

equivalent to C ⊠ T ∈ M.

Suppose Φ = Φ(x1, . . . , xn) ∈ F(n) is a polylinear term of degree n in the language Σ.

Evaluate the term Φ in C ⊠ T :

Φ(y1 ⊗ a1, . . . , yn ⊗ an) =
∑

H∈P(n)

e
(n)

H
(y1, . . . , yn) ⊗ Φ(H)(a1, . . . , an).

This equation defines a family of n-linear functions Φ(H) : T⊗n → T , H ∈ P(n).

Lemma 3.4. In the algebra T̂ , the following equations hold for ai ∈ T ⊂ T̂ (i = 1, . . . , n):

Φ(H)(a1, . . . , an)′ = Φ(dH
1 , . . . , d

H
n ),(10)

∑

H∈P(n)

Φ(H)(a1, . . . , an) = Φ(a1, . . . , an).(11)

where

dH
i =


a′

i
, i ∈ H,

ai, i < H.
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Proof: If n = 1 then (10) is trivial. Proceed by induction on n. Assume

Φ = f (Ψ1, . . . ,Ψm), f ∈ Σ, ν( f ) = m,

where Ψi ∈ F(ni), n1 + · · · + nm = n. Suppose zi j ∈ Y are pairwise different, ai j ∈ T ,

i = 1, . . . ,m, j = 1, . . . , ni. To simplify notations, denote

z̄i = (zi1, . . . , zini
), āi = (ai1, . . . , aini

), i = 1, . . . ,m.

For Hi ∈ P(ni), denote by ā
Hi

i
the ni-tuple (d

Hi

i1
, . . . , d

Hi

ini
) obtained from the initial one by

“adding primes” to all those components that belong to Hi.

Then

f (z11 ⊗ a11, . . . , zmnm
⊗ amnm

)

=
∑

K∈P(m)
H1∈P(n1)

...
Hm∈P(nm)

e
(m)

K
(e

(n1)

H1
(z̄1), . . . , e

(nm)

Hm
(z̄m)) ⊗ f K(Ψ1(H1)(ā1), . . . ,Ψm(Hm)(ām))

=
∑

K∈P(m)
H1∈P(n1)

...
Hm∈P(nm)

e
(n)

K(H1 ,...,Hm)
(z11, . . . , zmnm

) ⊗ f K(Ψ1(H1)(ā1), . . . ,Ψm(Hm)(ām)),

where K(H1, . . . ,Hm) is the composition of sets from the definition of ComTrias.

Hence, for every H ∈ P(n) we have

(12) Φ(H)(a11, . . . , amnm
) =

∑

K,H1,...,Hm

K(H1 ,...,Hm)=H

f K(Ψ1(H1)(ā1), . . . ,Ψm(Hm)(ām)).

By definition, every H uniquely determines K and Hi for i ∈ K. Other H j (for j < K) in

(12) run through the entire P(n j). Therefore,

Φ(H)(a11, . . . , amnm
)′ = f K (b1, . . . , bm)′, bi =


Ψi(Hi)(āi)

′, i ∈ K,
∑

Hi∈P(ni) Ψi(Hi)(āi), i < K.

By the inductive assumption,

Ψi(Hi)(āi)
′ = Ψi(ā

Hi

i
),

∑

Hi∈P(ni)

Ψi(Hi)(āi) = Ψi(āi).

It remains to apply the definition of operations in D̂ (9) to prove (10).
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To complete the proof, apply (12) and Lemma 2.4:

∑

H∈P(n)

Φ(H)(a11, . . . , amnm
)

=
∑

H∈P(n)

∑

K,H1,...,Hm

K(H1 ,...,Hm)=H

f K(Ψ1(H1)(ā1), . . . ,Ψm(Hm)(ām))

=
∑

K∈P(m)

∑

H1∈P(n1)

· · ·
∑

Hm∈P(nm)

f K(Ψ1(H1)(ā1), . . . ,Ψm(Hm)(ām)).

Now (11) follows from polylinearity of f K and inductive assumption. �

Let us finish the proof of the theorem. If T̂ ∈ M then ComTrias(Y) ⊠ T satisfies all

defining identities of the varietyM by Lemma 3.4.

The converse is even simpler. Note that T̂ = C2 ⊠ T , where C2 is the 2-dimensional

ComTrias-algebra from Example 2.3. By the very definition, T̂ ∈ M. �

Remark 2. Note that the base field itself is a 1-dimensional algebra in ComTrias. There-

fore, if A ∈ pre-M or A ∈ post-M then k ⊠ A ∈ M. This observation explains the term

“splitting”: An operation f ∈ Σ, ν( f ) = n, splits into n or 2n − 1 operations, f =
∑

H f H .

3.3 Rota-Baxter operators. Let A be a Σ-algebra.

Definition 3.5 (cf. [2]). A linear map τ : A → A is said to be a Rota–Baxter operator of

weight λ (λ ∈ k) if

f (τ(a1), . . . , τ(an)) =
∑

H∈P(n)

λ|H|−1τ( f (aH
1 , . . . , a

H
n )),(13)

aH
i =


ai, i ∈ H,

τ(ai), i < H,
(14)

for all f ∈ Σ, ν( f ) = n, ai ∈ A.

Obviously, if τ is a Rota–Baxter operator of nonzero weight λ then τ′ = 1
λ
τ is a Rota–

Baxter operator of weight 1. Hence, there are two essentially different cases: λ = 0 (zero

weight) and λ = 1 (unit weight).

The following statement was proved in [15] in the case of binary operations (ν( f ) = 2).

By means of the approach presented in this paper, the proof becomes clear in the general

case.

Given a Σ-algebra A equipped with a Rota–Baxter operator τ, denote by A(τ) the Σ(3)-

algebra defined on the space A by

f H(a1, . . . , an) = f (aH
1 , . . . , a

H
n ),

where f ∈ Σ, i = 1, . . . , n, a1, . . . , an ∈ A, aH
i

are given by (14).

The same relations restricted to |H| = 1 define a Σ(2)-algebra structure on A also

denoted by A(τ).
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Theorem 3.6. (1) If A ∈ M and τ is a Rota–Baxter operator of zero weight on A

then A(τ) is a pre-M-algebra.

(2) If A ∈ M and τ is a Rota–Baxter operator of unit weight on A then A(τ) is a

post-M-algebra.

(3) Every D ∈ pre-Mmay be embedded into A(τ) for an appropriate A ∈M equipped

with Rota–Baxter operator τ of zero weight.

(4) Every T ∈ post-M may be embedded into A(τ) for an appropriate A ∈ M
equipped with Rota–Baxter operator τ of unit weight.

Proof: As in Theorem 2.13, let us prove (2) and (4).

For (2), it is enough to consider C⊠A(τ) for any C ∈ ComTrias, and note (by induction

on m ≥ 1) that

Φ(y1 ⊗ a1, . . . , ym ⊗ am) =
∑

H∈P(m)

e(m)(y1, . . . , ym) ⊗ Φ(aH
1 , . . . , a

H
m)

for every Φ ∈ F(m).

Hence, C ⊠ A(τ) ∈M.

To prove (4), consider A = C2 ⊠ T ∈ M, where C2 is the algebra from Example 2.3,

and define

(15) τ(e1 ⊗ a) = −e1 ⊗ a, τ(e2 ⊗ a) = e1 ⊗ a, a ∈ T.

Let us show that (15) is a Rota–Baxter operator of unit weight on C2⊠T . Indeed, suppose

f ∈ Σ, ν( f ) = n, ui = eki
⊗ ai, ki ∈ {1, 2}, ai ∈ T , i = 1, . . . , n. Evaluate the left-hand side

of (13):

f (τ(u1), . . . , τ(un)) = (−1)|K| f (e1 ⊗ a1, . . . , e1 ⊗ an),

where K = {i | ki = 1}. On the other hand,

f (uH
1 , . . . , u

H
n ) = (−1)|K\H| f (ek′

1
⊗ a1, . . . , ek′n ⊗ an)

= (−1)|K\H|
∑

M∈P(n)

e
(n)

M
(ek′

1
, . . . , ek′n) ⊗ f M(a1, . . . , an),

where k′
i
=


ki, i ∈ H,

1, i < H
. Nonzero summands appear in two cases: (1) k′

i
= 1 for all

i = 1, . . . , n; (2) k′
i
= 2 if and only if i ∈ M. The first case occurs if and only if H ⊆ K,

the second one corresponds to M = H \ K. Hence,

f (uH
1 , . . . , u

H
n ) =


(−1)|K|−|H|e1 ⊗

∑
M∈P(n) f M(a1, . . . , an), H ⊆ K,

(−1)|K\H|e2 ⊗ f H\K(a1, . . . , an), H * K.
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Let us evaluate the right-hand side of (13):

(16)
∑

H∈P(n)

τ( f (uH
1 , . . . , u

H
n )) =

∑

∅,H⊆K

(−1)|K|−|H|+1 f (e1 ⊗ a1, . . . , e1 ⊗ an)

+
∑

H*K

(−1)|K\H|e1 ⊗ f H\K(a1, . . . , an).

The first summand in the right-hand side of (16) is equal to (−1)|K| f (e1 ⊗ a1, . . . , e1 ⊗ an)

since ∑

H⊆K

(−1)|H| = 1 +
∑

∅,H⊆K

(−1)|H| = 0.

In the second summand, present H * K as H = U∪M, U ⊆ K, M , ∅, M∩K = ∅. Then

∑

U⊆K

∑

M,∅
M∩K=∅

(−1)|K|−|U|e1 ⊗ f M(a1, . . . , an) = 0

by the same reasons.

We have proved that (13) holds for τ (λ = 1), and thus it is a Rota–Baxter operator of

unit weight. �

Remark 3. Theorem 3.6 implies that Definition 3.1 provides an equivalent description of

the same class of systems as the splitting procedure described in [2]: pre-M = ASp(M),

post-M = BSp(M).

In the binary case, pre-M and post-M coincide with operads denoted in [15] by

DendDiM and DendTriM, respectively.

Remark 4. Indeed, it was shown in [15] that if M is a binary quadratic operad then

pre-M = pre-Lie �M, post-M = post-Lie �M, where � is the Manin black product of

operads [13],

(pre-M)! = di-(M!), (post-M)! = tri-(M!),

where ! stands for Koszul duality of operads.

4. Problems on replicated algebras

In this section, we consider a series of problems for replicated algebras. Some of them

have already been solved in particular cases. Here we will show how to solve them in

general.

4.1 Codimension of varieties. Given an operad M, the number cn(M) = dimM(n),

n ≥ 1, (if it is finite) is called codimension ofM. The growth of codimensions, namely,

of
n
√

cn(M) is intensively studied since the seminal paper [12] on associative algebras.

It follows immediately from definition that for a variety di-M or tri-M the codimension

may be explicitly evaluated as a product of cn(Perm) or cn(ComTrias) with cn(M).

Proposition 4.1. For every operadM, cn(di-M) = ncn(M), cn(tri-M) = (2n − 1)cn(M).
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In particular, ifM is a variety of Lie algebras of polynomial codimension growth then

so is the variety di-M of Leibniz algebras.

4.2 Replication of morphisms of operads. LetM,N be two operads. Supposeω : N→
M is a morphism of operads. Then for every algebra A inM one may define A(ω) ∈ N, a

new algebra structure on the same linear space A.

The well-known examples include − : Lie → As, x1x2 7→ x1x2 − x2x1, a similar

morphism Mal→ Alt, as well as + : Jord→ As, x1x2 7→ x1 x2 + x2 x1, and many others.

For every B ∈ N there exists unique (up to isomorphism) algebra Uω(B) ∈ M such

that:

• there exists a homomorphism ι : B→ Uω(B)(ω) of algebras in N;

• for every algebra A ∈ M and for every homomorphism ψ : B→ A(ω) there exists

unique homomorphism ξ : Uω(B)→ A of algebras inM such that ψ(b) = ξ(ι(b))

for all b ∈ B.

The algebra Uω(B) is called the universal enveloping algebra of B with respect toω. Note

that ι is not necessarily injective, e.g., for the Albert algebra H3(O) ∈ Jord the universal

enveloping associative algebra (with respect to +) is equal to {0}.
An N-algebra B is special relative to ω if there exists an M-algebra A such that B is

isomorphic to a subalgebra of A(ω).

Definition 2.5 immediately implies

Proposition 4.2. Given a morphism of operads ω : N → M, the map id ⊗ ω : tri-N =

ComTrias ⊗ N→ ComTrias ⊗M = tri-M is also a morphism of operads.

A similar statement for di-algebra case obviously holds.

4.3 PBW-type problems. The following natural problems appear each time when we

consider a morphism of operads ω : N→ M.

• Embedding problem: Whether every B ∈ N is special with respect to ω?

• Ado problem: Whether every finite-dimensional algebra B ∈ N is a subalgebra

of A(ω), where A ∈ M, dim A < ∞?

• Poincaré–Birkhoff–Witt (PBW) problem: Given B ∈ N, what is the structure of

the universal enveloping algebra Uω(B) ∈ M?

Suppose N and M are varieties of Σ− and Σ′-algebras, respectively. Throughout this

section, assume ν( f ) ≥ 2 for all f ∈ Σ ∪ Σ′.
The following lemma is an immediate corollary of definitions.

Lemma 4.3. For every morphism of operads ω : N → M and for every A ∈ tri-M,

C ∈ ComTrias we have

C ⊗ A(ω) = (C ⊗ A)(id⊗ω) ∈ tri-N.

A similar statement holds for di-algebras [19].

Theorem 4.4. If the embedding problem has positive solution for ω : N → M then it

has positive solution for id ⊗ ω : di-N→ di-M and for id ⊗ω : tri-N→ tri-M. The same

statement holds for the Ado problem.
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Proof: Let us consider tri-algebra case. If T ∈ tri-N then T̃ ∈ N and T ⊂ C2 ⊗ T̃ . If

T̃ ⊆ A(ω) for some A ∈ M then T ⊆ C2 ⊗ T̃ ⊆ C2 ⊗ A(ω) = (C2 ⊗ A)(id⊗ω), C2 ⊗ A ∈ tri-M.

Finally, if dim T < ∞ then dim T̃ < ∞ and dim(C2 ⊗ T̃ ) < ∞, the same holds for A.

Hence, if T̃ has a finite-dimensional envelope then so is T . �

Let T ∈ tri-N, T̃ ∈ N, ι : T̃ → Uω(T̃ )(ω) as above.

Theorem 4.5. The subalgebra generated in C2 ⊗ Uω(T̃ ) ∈ tri-M by the set {e1 ⊗ ι(ā) +

e2 ⊗ ι(a) | a ∈ T } is isomorphic to Uid⊗ω(T ) ∈ tri-M.

Proof: Consider id ⊗ ι : C2 ⊗ T̃ → C2 ⊗ Uω(T̃ )(ω) = (C2 ⊗ Uω(T̃ ))(id⊗ω). Hence, the

restriction of id ⊗ ι to T ⊆ C2 ⊗ T̃ maps a ∈ T to e1 ⊗ ι(ā) + e2 ⊗ ι(a). Denote by U the

subalgebra of C2 ⊗ Uω(T̃ ) ∈ tri-M generated by (id ⊗ ι)(T ). Let us check the universal

property for U.

Suppose A ∈ tri-M, and ψ : T → A(id⊗ω). By Lemma 2.11, there exists ψ̃ : T̃ →
Ã(id⊗ω). Note that A

(id⊗ω)

0
⊆ A0. It follows from the construction of Ã, see the proof of

Theorem 2.8. Therefore, there exists natural homomorphism Ã(id⊗ω) → Ã(ω), and we may

consider ψ̃ as a homomorphism from T̃ to Ã(ω), where

ψ̃(ā) = ψ(a) ∈ A/A0, ψ̃(a) = ψ(a)

for a ∈ T .

By definition, there exists a homomorphism ofM-algebras ξ : Uω(T̃ ) → Ã such that

ξ(ι(x)) = ψ̃(x), x ∈ T̃ . Then id ⊗ ξ : C2 ⊗Uω(T̃ )→ C2 ⊗ Ã is a homomorphism of tri-M-

algebras. Moreover, it is easy to see that (id ⊗ ξ)((id ⊗ ι)(T )) ⊆ A ⊆ C2 ⊗ Ã. Hence, the

restriction of id ⊗ ξ to U ⊆ C2 ⊗ Uω(T̃ ) is the desired homomorphism of tri-M-algebras

U → A. �

The similar statement obviously holds for di-algebras (consider C2 as an algebra in

Perm). For example, the morphism − : Lie → As leads to id ⊗ − : Leib → di-As con-

sidered in [22], see also [21]. The PBW Theorem for Leibniz algebras is an immediate

corollary of Theorem 4.5.

Let us deduce PBW Theorem for tri-Lie algebras as an application of Theorem 4.5.

Every L ∈ tri-Lie with operations [· ⊢ ·], [· ⊣ ·], and [· ⊥ ·] gives rise to the following Lie

algebras: L̄ = L/L0 and L⊥ = (L, [· ⊥ ·]).

Corollary 4.6. Let L ∈ tri-Lie. Then Uid⊗−(L) ∈ tri-As as a linear space is isomorphic to

U(L̄) ⊗ U0(L⊥), where U(·) is the ordinary universal enveloping associative algebra with

identity, U0(·) stands for its augmentation ideal.

Proof: Suppose B ⊂ L is a well-ordered linear basis of L. It is easy to see that the

defining identities of Uid⊗−(L), namely,

a ⊢ b − b ⊣ a = [a ⊢ b], a ⊥ b − b ⊥ a = [a ⊥ b], a, b ∈ B, a ≥ b,

allow to present every element of Uid⊗−(L) ∈ tri-As as a linear combination of

(17) u = (a1 ⊢ · · · ⊢ an ⊢ b1) ⊥ b2 ⊥ · · · ⊥ bm,
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ai, b j ∈ B, a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bm, n ≥ 0, m ≥ 1, and ā1, . . . , ān are linearly

independent in L̄.

It remains to show that the elements (17) are linearly independent in Uid⊗−(L). By

Theorem 4.5, Uid⊗−(L) ⊆ C2 ⊗ U(L̃). Identify x and ι(x) for x ∈ L̃ and evaluate

ũ = (ã1 ⊢ · · · ⊢ ãn ⊢ b̃1) ⊥ b̃2 ⊥ · · · ⊥ b̃m,

where ã = e1 ⊗ ā + e2 ⊗ a, a ∈ B. By the definition of C2,

ũ = e1 ⊗ ā1 . . . ānb̄1 . . . b̄m + e2 ⊗ ā1 . . . ānb1 . . . bm.

By the choice of ai, b j the second summands are linearly independent in C2 ⊗ U(L̃). �

4.4 Special identities. Let ω : N → M be a morphism of operads. An algebra B ∈ N
is said to be special with respect to ω if there exists A ∈ M such that B is a subalgebra

in A(ω).

The class of all special algebras in N with respect to ω may not form a subvariety

of N: It is not closed with respect to homomorphic image. The variety generated by

all special algebras is denoted by S(ω)N. The corresponding operad is an image of N.

Nonzero elements of the kernel of the corresponding morphism of operads (if they exist)

are exactly all polylinear identities that hold on all special algebras in N but do not hold

on the entire N. Such identities are called special (with respect to ω).

Theorem 4.7. If char k = 0 then the following equation holds for varieties:

S (id⊗ω)tri-N = tri-S (ω)N.

The proof is completely similar to di-algebra case in [19]. The only difference appears

in using C2 ∈ ComTrias instead of k[x] ∈ Perm, where the Perm-algebra structure on

polynomials was given by f (x)g(x) = f (0)g(x). Let us sketch the main steps of the proof

in these new settings.

Proof: (⊆) It is enough to prove that every T ∈ tri-N which is special with respect

to id ⊗ ω satisfies replicated polylinear special identities. Indeed, if T ⊆ A(id⊗ω) for

A ∈ tri-M then ψ : T̃ → Ã(id⊗ω) → Ã(ω) is a homomorphism of tri-N-algebras. Then

id ⊗ ψ : C2 ⊗ T̃ → C2 ⊗ Ã(ω) is a homomorphism of tri-N-algebras which is injective on

T ⊆ C2 ⊗ T̃ . Hence, T satisfies all identities that hold on C2 ⊗ Ã(ω) ∈ tri-S (ω)N.

(⊇) If T ∈ tri-S (ω)N then T̃ ∈ S (ω)N and thus T̃ is a homomorphic image of a special

algebra B ⊆ A(ω), A ∈ M. It is straightforward to deduce that C2 ⊗ T̃ is then a homomor-

phic image of a special algebra (C2 ⊗ A)(id⊗ω). Therefore, T belongs to S (id⊗ω)tri-N. �

4.5 TKK construction for tri-Jordan algebras. The classical Tits–Kantor–Koecher

(TKK) construction of a Lie algebra T (J) for a Jordan algebra J is known to preserve

simplicity, nilpotence and strong (Penico) solvability. Moreover, T (J) is a Z3-graded

Lie algebra J+ ⊕ S (J) ⊕ J−, where J± are isomorphic copies of the space J, S (J) is the

structure algebra constructed by inner derivations and operators of left multiplication in J

[17].
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The TKK construction for Jordan dialgebras was done in [14]. There was also proved

an analogue of Zhevlakov theorem [32] which for ordinary Jordan algebras states that

any finitely generated solvable Jordan algebra is nilpotent.

Proposition 4.8. A finitely generated solvable tri-Jordan algebra is nilpotent.

Proof: Let us consider finitely generated and solvable J ∈ tri-Jord. By Lemma 2.9,

J̃ = J̄ ⊕ J ∈ Jord, it has to be a finitely generated and solvable Jordan algebra by the

construction. By the Zhevlakov theorem, J̃ is nilpotent. Hence, C2 ⊗ J̃ ∈ tri-Jord is also

nilpotent, and by Theorem 2.8 so is J ⊆ C2 ⊗ J̃. �

The notion of strong solvability for Jordan algebras is translated to di- and tri-algebras

in a straightforward way (the minimal change is due to absence of commutativity). For a

tri-Jordan J, the language Σ(3) contains three operations ⊢, ⊣,⊥ (note that a ⊢ b = b ⊣ a).

Consider the sequence

J(1) = J, J(2) = J · J,
J(n+1) = J(n) · J(n) + J · (J(n) · J(n)) + (J(n) · J(n)) · J, n > 1,

where A · B stands for A ⊢ B + A ⊥ B. All J(n) are ideals of J. If there exists N ≥ 1 such

that J(N) = 0 then J is said to be strongly solvable (or Penico solvable).

Let us state an analogue of the TKK construction for tri-Jordan.

Proposition 4.9. For every J ∈ tri-Jord there exists T (J) ∈ tri-Lie such that the following

properties hold:

• T (J) = J−1 ⊕ J0 ⊕ J1 is Z3-graded algebra, where the spaces J−1, J1 are copies

of J;

• T (J) is nilpotent if and only if J is nilpotent;

• T (J) is solvable if and only if J is strongly solvable.

Proof: Let us consider X(J) = C2 ⊗T (J̃), where T (J̃) = J̃−⊕S t(J̃)⊕ J̃+ is the TKK con-

struction for Jordan algebra J̃, where S t(J̃) is the structure algebra of J̃. By Lemma 2.9,

X(J̃) ∈ tri-Lie. We can represent X(J) as a Z3-graded space

(C2 ⊗ J̃−) ⊕ (C2 ⊗ S t(J̃)) ⊕ (C2 ⊗ J̃+).

Let J± be subspaces in C2⊗ J̃± spanned by isomorphic images of elements e1⊗ ā+e2⊗a,

a ∈ J. The subalgebra T (J) generated by J+ and J− in X(J) ∈ tri-Lie is the required one.

Indeed, T (J) is nilpotent or solvable if and only if J is nilpotent or strongly solvable,

respectively, because of the definitions of C2 ⊗ J̃ and properties of TKK construction for

ordinary algebras. �

4.6 Tri-Jordan polynomials. Another classical question is related with Cohn’s descrip-

tion of Jordan polynomials in the free associative algebra [10]. Suppose char k , 2. For

the morphism of operads + : Jord → As defined by x1x2 7→ x1 x2 + x2x1, the free alge-

bra S J〈X〉 = S (+)Jord〈X〉 is a subspace of As〈X〉, elements of S J〈X〉 are called Jordan

polynomials. It is well-known since [10] that S J〈X〉 ⊆ H〈X〉, where H〈X〉 is the space of
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symmetric elements with respect to involution σ : x1 . . . xn 7→ xn . . . x1. The embedding

is strict if and only if |X| > 3.

For di-Jordan algebras a similar question was considered in [31]: It was shown that

S (+)di-Jord〈X〉 lies in the space of symmetric elements (with respect to naturally defined

involution), and the embedding is strict if and only |X| > 2. Here we use (+) for (id ⊗ +)

to simplify notations.

Theorem 2.8 provides a way to solve the same question for tri-Jordan algebras. Let us

sketch the proof which is even simpler than the proof in di-algebra case [31].

Denote by σ the linear map tri-As〈X〉 → tri-As〈X〉 such that

σ(x) = x, x ∈ X;

σ(u ⊢ v) = σ(v) ⊣ σ(u),

σ(u ⊣ v) = σ(v) ⊢ σ(u),

σ(u ⊥ v) = σ(v) ⊥ σ(u), u, v ∈ tri-As〈X〉.

Denote tri-H〈X〉 = { f ∈ tri-As〈X〉 | σ( f ) = f }.

Proposition 4.10. For every X, S (+)tri-Jord〈X〉 ⊆ tri-H〈X〉. The embedding is strict if

and only if |X| > 1.

Proof: Obviously, S (+)tri-Jord〈X〉 ⊆ tri-H〈X〉. If |X| > 1 then

f = (x1 ⊢ x2 ⊢ x2) ⊥ x1 + x1 ⊥ (x2 ⊣ x2 ⊣ x1) ∈ tri-H〈X〉 \ S (+)tri-Jord〈X〉.

Indeed, consider the tri-algebra analogue of the Grassmann algebra ∧〈ξ1, . . . , ξn〉 con-

structed as follows. Associative algebra

An = As〈ξ̄1, . . . ξ̄n, ξ1, . . . , ξn | ab = −ba, a2 = 0, a, b ∈ {ξi, ξ̄i | i = 1, . . . , n}〉

is equipped with homomorphic averaging operator τ given by ξi 7→ ξ̄i, ξ̄i 7→ ξ̄i. Therefore,

A
(τ)
n ∈ tri-As by 2.13.

The epimorphism θ : tri-As〈x1, x2〉 → A
(τ)

2
defined by x1 7→ ξ1, x2 7→ ξ2 annihilates

S (+)tri-Jord〈x1, x2〉, but does not annihilate f :

θ( f ) = ξ̄1ξ̄2ξ2ξ1 + ξ1ξ2ξ̄2ξ̄1 = 2ξ̄1ξ̄2ξ2ξ1 , 0.

If |X| = 1, X = {x}, then the equality S (+)tri-Jord〈x〉 ⊆ tri-H〈x〉 may be derived

from Theorem 2.8 and the Cohn Theorem for ordinary algebras. The involution σ of

tri-As〈X〉may be extended to ˜tri-As〈X〉 and C2 ⊗˜tri-As〈X〉 in the natural ways. Note that
˜tri-As〈x〉 is a homomorphic image of As〈x̄, x〉, and so C2⊗As〈x̄, x〉maps onto tri-As〈x〉 ⊆

C2 ⊗˜tri-As〈x〉. If σ( f ) = f for f ∈ tri-As〈x〉 then f has a preimage in C2 ⊗ H〈x̄, x〉. The

latter coincides with C2 ⊗ S J〈x̄, x〉 and thus f belongs to S (+)tri-Jord〈x〉. �
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5. Problems on splitted algebras

Less is known about relations between operads of pre- and post-algebras that are (in

quadratic binary case) Koszul dual to di- and tri-algebras, respectively. Apart from al-

ready considered relations with Rota–Baxter operators, we may prove analogues of some

results from the previous section.

5.1 Splitting morphisms of operads. Let us show how a morphism of operads ω :

N → M induces a functor on the corresponding varieties of pre- and post-algebras. We

will consider the case of post-algebras since all constructions for pre-algebras may be

obtained by restriction.

As above, assume Σ and Σ′ are the languages ofM and N, respectively.

Let A ∈ post-M. Define a structure of a Σ′(3)-algebra on the space A as follows.

Given f ∈ Σ′, ν( f ) = n, H ∈ P(n), we have to define f H(a1, . . . , an), ai ∈ A. Consider

(ComTrias〈y1, y2, . . . 〉 ⊠ A)(ω) ∈ N, and evaluate

f (y1 ⊗ a1, . . . , yn ⊗ an) =
∑

H∈P(n)

e
(n)

H
(y1, . . . , yn) ⊗ bH .

Here bH ∈ A are uniquely defined. Finally, set

f H(a1, . . . , an) = bH.

Denote the Σ′-algebra obtained by A(post-ω).

In a similar way (|H| = 1), A(pre-ω) ∈ pre-N may be defined for A ∈ pre-M.

Proposition 5.1. If ω : N→ M is a morphism of operads and A ∈ post-M then A(post-ω) ∈
post-N.

Proof: Immediately follows from the definition since

(ComTrias〈y1, y2, . . . 〉 ⊠ A)(ω) = ComTrias〈y1, y2, . . . 〉 ⊠ A(post-ω).

�

Example 5.2. Consider the following morphism from the operad of Lie triple systems

(LTS) to the operad of Lie algebras:

ω : LTS → Lie,

[x1, x2, x3] 7→ [[x1, x2], x3]

Then for every L ∈ pre-Lie the following operations define L(pre-ω) ∈ pre-LTS :

[x1, x2, x3]1 = x3(x2x1), [x1, x2, x3]2 = −[x2, x1, x3]1 = −x3(x1x2),

[x1, x2, x3]3 = (x1x2)x3 − (x2x1)x3.

Indeed, consider P = Perm〈y1, y2, y3〉, and evaluate

[y1 ⊗ x1, y2 ⊗ x2, y3 ⊗ x3] = [[y1 ⊗ x1, y2 ⊗ x2], y3 ⊗ x3]
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in P ⊠ pre-Lie〈x1, x2, x3〉 assuming ab = [a, b]2 = −[b, a]1 in pre-Lie:

[[y1 ⊗ x1, y2 ⊗ x2], y3 ⊗ x3] = [y1y2 ⊗ x1 x2 − y2y1 ⊗ x2 x1, y3 ⊗ x3]

= y1y2y3 ⊗ (x1x2)x3 − y3y1y2 ⊗ x3(x1x2) − y2y1y3 ⊗ (x2x1)x3 + y3y2y1 ⊗ x3(x2x1)

It remains to collect similar terms to get the desired expressions.

5.2 On the special identities for pre- and post-algebras. It remains unclear how to

solve in general the analogues of PBW-type problems for pre- and post-algebras. For

special identities, however, we may state a partial result and show by example that an

analogue of Theorem 4.7 does not hold.

Given a morphism of operads ω : N→ M, one may consider the induced morphisms

pre-ω, post-ω, and define varieties S (pre-ω)pre-N and S (post-ω)post-N generated by all spe-

cial algebras in pre-N and post-N, respectively.

Proposition 5.3. Over a field of zero characteristic, we have the following relations:

S (pre-ω)pre-N ⊆ pre-S (ω)N, S (post-ω)post-N ⊆ post-S (ω)N.

Proof: Let us consider the case of post-algebras. It is enough to show that every special

algebra in post-N belongs to post-S (ω)N. Suppose T ∈ S (post-ω)post-N, T ⊆ A(post-ω).

Fix C = ComTrias〈y1, y2, . . . 〉 and note that C ⊠ T ⊆ C ⊠ A(post-ω) = (C ⊠ A)(ω), i.e.,

C ⊠ T ∈ S (ω)N. By definition, T ∈ post-S (ω)N. �

Let us state an example to show that the converse embedding may not hold. Although

the language in the example below contains unary operation, it is a derivation with respect

to the binary product. Hence, Theorem 4.7 for di- or tri-algebras would remain valid

in these settings (see Remark 1). Thus, the example stated below shows an essential

difference between di-, tri-algebras and pre-, post-algebras.

Example 5.4. Let N = Perm, and let M govern the variety of associative commutative

algebras with a derivation (unary operation) ∂ such that ∂2 = 0. Consider ω : N → M
given by x1x2 7→ ∂(x1)x2.

Here Σ′ = {·}, one binary operation; Σ = {·, ∂}.
It is well-known that ω determines a functor from the variety M to N = Perm [21].

Moreover, every algebra of the form A(ω), A ∈ M, is 3-nilpotent. Since there are no

identities of smaller degree, the variety S (ω)N coincides with N3, the variety of algebras

satisfying x(yz) = (xy)z = 0.

It is straightforward to find the defining identities of pre-N3:

(18)
(x ≺ y) ≺ z = 0, (x ≻ y) ≺ z = 0, (x ≺ y + x ≻ y) ≻ z = 0,

x ≺ (y ≺ z + y ≻ z) = 0, x ≻ (y ≺ z) = 0, x ≻ (y ≻ z) = 0.

Here Σ′(3) = {≻,≺}, two binary operations.

On the other hand, pre-M consists of Perm-algebras equipped with a derivation ∂ such

that ∂2 = 0. If A ∈ pre-M then the operations on A(pre-ω) ∈ pre-N are given by

a ≻ b = ∂(a)b, a ≺ b = b∂(a).
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Note that a ≻ b + b ≺ a = ∂(a)b + a∂(b) = ∂(ab), and ∂(ab) ≻ c = 0 for all a, b, c ∈ A.

Hence, every algebra in S (pre-ω)pre-N satisfies an identity

(x ≻ y + y ≺ x) ≻ z = 0

which does not follow from (18).

Remark 5. It is interesting to mention two similar classes of “replicated” and “splitted”

operads: totally compatible and linearly compatible ones [11], [26]. These operads may

also be obtained as white and black Manin products with operads denoted by 2Com and

Lie2, respectively. All problems mentioned in Section 4 make sense for these classes.

Acknowledgments. The authors are very grateful to Bruno Vallette and to the anony-

mous referee for valuable remarks and comments. The second author is pleased to ac-

knowledge hospitality of the University of Denver during the Third Mile High Con-

ference on Nonassociative Mathematics. This work was partially supported by RFBR

12-01-00329 and 12-01-33031.

References

[1] Aguiar M., Pre-Poisson algebras, Lett. Math. Phys. 54 (2000), 263–277.

[2] Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota–Baxter operators,

Int. Math. Res. Notes 3 (2013), 485–524.

[3] Bakalov B., D’Andrea A., Kac V.G., Theory of finite pseudoalgebras, Adv. Math. 162 (2001), no. 1,

1–140.

[4] Bremner M.R., On the definition of quasi-Jordan algebra, Comm. Algebra 38 (2010), 4695–4704.

[5] Bremner M.R., Felipe R., Sánchez-Ortega J., Jordan triple disystems, Comput. Math. Appl. 63 (2012),

1039-1055.

[6] Bremner M.R., Madariaga S., Dendriform analogues of Lie and Jordan triple systems, Comm. Algebra,

to appear, arXiv:1305.1389 [math.RA].

[7] Bremner M.R., Peresi L.A., Sánchez-Ortega J., Malcev dialgebras, Linear Multilinear Algebra 60 (2012),

1125–1141.

[8] Bremner M.R., Sánchez-Ortega J., Leibniz triple systems, Commun. Contemp. Math. 16 (2014), 1350051

(19 pages); DOI: 10.1142/S021919971350051X.

[9] Chapoton F., Un endofoncteur de la catégorie des opérades, in: Loday J.-L., Frabetti A., Chapoton F.,

Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin,

2001, pp. 105–110.

[10] Cohn P.M., On homomorphic images of special Jordan algebras, Canadian J. Math. 6 (1954), 253–264.

[11] Dotsenko V., Khoroshkin A., Character formulas for the operad of two compatible brackets and for the

bihamiltonian operad, Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 1–17.

[12] Giambruno A., Zaicev M., On codimension growth of finitely generated associative algebras, Adv. Math.

140 (1998), no. 2, 145–155.

[13] Ginzburg V., Kapranov M., Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272.

[14] Gubarev V.Yu., Kolesnikov P.S., The Tits–Kantor–Koecher construction for Jordan dialgebras, Comm.

Algebra 39 (2011), no. 2, 497–520.

[15] Gubarev V.Yu., Kolesnikov P.S., Embedding of dendriform algebras into Rota–Baxter algebras, Cent.

Eur. J. Math. 11 (2013), no. 2, 226–245.

[16] Hou D.P., Ni X., Bai C., Pre-Jordan algebras, Math. Scand. 112 (2013), no. 1, 19–48.

[17] Jacobson N., Structure and Representations of Jordan Algebras, American Mathematical Society, Provi-

dence, 1968.

[18] Kolesnikov P.S., Varieties of dialgebras and conformal algebras, Sib. Math. J. 49 (2008), no. 2, 257–272.



Operads of decorated trees and their duals 445

[19] Kolesnikov P.S., Voronin V.Yu., On special identities for dialgebras, Linear Multilinear Algebra 61

(2013), no. 3, 377–391.

[20] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math.
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