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THE FUNDAMENTAL CONSTITUENTS OF ITERATION
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Jizhu Nan, Yangjiang Wei, Dalian, Gaohua Tang, Nanning

(Received January 23, 2013)

Abstract. For a finite commutative ring R and a positive integer k > 2, we construct
an iteration digraph G(R, k) whose vertex set is R and for which there is a directed edge

from a ∈ R to b ∈ R if b = ak. Let R = R1 ⊕ . . . ⊕ Rs, where s > 1 and Ri is a finite
commutative local ring for i ∈ {1, . . . , s}. Let N be a subset of {R1, . . . , Rs} (it is possible
that N is the empty set ∅). We define the fundamental constituents G∗

N (R, k) of G(R, k)
induced by the vertices which are of the form {(a1, . . . , as) ∈ R : ai ∈ D(Ri) if Ri ∈ N ,
otherwise ai ∈ U(Ri), i = 1, . . . , s}, where U(R) denotes the unit group of R and D(R)
denotes the zero-divisor set of R. We investigate the structure of G∗

N (R, k) and state some
conditions for the trees attached to cycle vertices in distinct fundamental constituents to
be isomorphic.

Keywords: iteration digraph; fundamental constituent; digraphs product

MSC 2010 : 05C05, 11A07, 13M05

1. Introduction

Let R be a finite commutative ring. The graphG(R, k) (k > 2 is a positive integer)

is a digraph whose vertices are the elements of R and for which there is a directed

edge from a ∈ R to b ∈ R if b = ak. It is well known that if R is a finite commutative

ring with identity 1, then R can be uniquely expressed as a direct sum of local rings:

R = R1 ⊕ . . .⊕Rs, s > 1,

where Ri is a local ring for i = 1, . . . , s (see [1, Theorem 3.1.4]). Let N be a subset

of {R1, . . . , Rs} (it is possible that N is the empty set ∅). We define the subdigraph
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G∗
N (R, k) of G(R, k) induced by the vertices which are of the form

{(a1, . . . , as) ∈ R : ai ∈ D(Ri) if Ri ∈ N, otherwise ai ∈ U(Ri), i = 1, . . . , s},

where U(R) denotes the unit group of R and D(R) denotes the zero-divisor set of R.

Then G∗
N (R, k) is called a fundamental constituent of G(R, k). Since the number

of subsets of {R1, . . . , Rs} is 2s (including the empty set ∅), there are exactly 2s

fundamental constituents in G(R, k), and the disjoint union of these 2s fundamen-

tal constituents is precisely the digraph G(R, k). The fundamental constituents of

G(Zn, k), where Zn is the ring of integers modulo n, were introduced by Wilson in [8]

and were investigated by Somer et al. in [5] and [6].

A component of a digraph is a directed subgraph which is a maximal connected

subgraph of the associated undirected graph. If α is a vertex of a component in

G(R, k), we use ComR(α) to denote this component.

Suppose α is a vertex of G(R, k). The indegree of α, denoted by indegR(α), is

the number of directed edges entering α. We will simply write indeg(α) when it is

understood that α is a vertex in G(R, k). A digraph is regular if all its vertices have

the same indegree, while the digraph G(R, k) is said to be semiregular if there exists

a positive integer d such that each vertex of G(R, k) either has indegree 0 or d.

Cycles of length t are called t-cycles, and cycles of length one are called fixed points.

For an isolated fixed point α, the indegree and outdegree (i.e., the number of edges

leaving α) are both one. Attached to each cycle vertex α of G(R, k) is a tree TR(α)

whose root is α and whose additional vertices are the noncycle vertices β for which

βki

= α for some positive integers i, but βki−1

is not a cycle vertex. Moreover, we

specify two particular subdigraphs G1(R, k) and G2(R, k) of G(R, k), i.e., G1(R, k)

is induced by all the vertices of U(R), and G2(R, k) is induced by all the vertices

of D(R).

Similarly to the proof of [3, Theorem 29], it is easy to show the following lemma.

Lemma 1.1. Let R be a finite commutative ring. Let β ∈ U(R) be a cycle vertex

of G(R, k), k > 2. Then the tree TR(1) is isomorphic to the tree TR(β).

Given two digraphs Γ1 and Γ2, let Γ1 × Γ2 denote the digraph whose vertices

are the ordered pairs (a1, a2), where ai is an arbitrary vertex of Γi for i = 1, 2. In

addition, there is a directed edge in Γ1 × Γ2 from (a1, a2) to (b1, b2) if and only

if there is a directed edge in Γ1 from a1 to b1 and there is a directed edge in Γ2

from a2 to b2. In general, if S ∼= S1 ⊕ . . . ⊕ St, where S, S1, . . . , St are rings, then

G(S, k) ∼= G(S1, k)× . . .×G(St, k). The following lemma is obvious.

Lemma 1.2. Let Γi be digraphs, i = 1, 2, 3, 4, where Γ1
∼= Γ2 and Γ3

∼= Γ4. Then

Γ1 × Γ3
∼= Γ2 × Γ4.
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Lemma 1.3 ([4, Theorem 2]). Let R be a finite local ring with an identity element

1 which is not necessarily commutative. Let M be the unique maximal ideal of R.

Then |R| = pnr, |M | = p(n−1)r, Mn = {0} and char(R) = pk, where char(R) is the

characteristic of R, p is a prime, n, r, k are positive integers and 1 6 k 6 n.

2. The fundamental constituents of G(R, k)

In the following two examples, we denote by Fq the finite field of order q.

Example 2.1. LetR = F4⊕Z4, where F4 = {0, 1, a, a2} with o(a) = 3. There are

precisely 4 fundamental constituents G∗
Ni
(R, 3) in G(R, 3), where N1 = {F4}, N2 =

{F4,Z4}, N3 = {Z4}, and N4 = ∅. Figure 1 shows the fundamental constituents of

G(R, 3).

(0, 1) (0, 3)

G∗

N1
(R, 3)

(0, 0)
(0, 2)

G∗

N2
(R, 3)

(1, 0)

(1, 2) (a, 0)

(a, 2)

(a2, 0)(a2, 2)

G∗

N3
(R, 3)

(1, 3)

(a, 3) (a2, 3)

(1, 1)

(a, 1) (a2, 1)

G∗

N4
(R, 3)

Figure 1. The four fundamental constituents of G(F4 ⊕ Z4, 3).

Example 2.2. Let R = F4 ⊕ F3 ⊕ F5, where F4 = {0, 1, a, a2} with o(a) = 3.

There are precisely 8 fundamental constituents G∗
Ni

(R, 2) in G(R, 2), where N1 =

{F4,F3,F5}, N2 = {F3,F5}, N3 = {F4,F5}, N4 = {F5}, N5 = {F4,F3}, N6 = {F3},

N7 = {F4}, and N8 = ∅. Figure 2 shows the fundamental constituents of G(R, 2).

Remark 2.1. Let R be the direct sum of finite commutative local rings

R1, . . . , Rs. If N is a subset of {R1, . . . , Rs}, then by the definition of digraphs

products, we have

G∗
N (R, k) =

∏

Ri∈N

G2(Ri, k)×
∏

Rj 6∈N

G1(Rj , k).
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(0, 0, 0)

G∗

N1
(R, 2)

(1, 0, 0)

(a2, 0, 0)(a, 0, 0)

G∗

N2
(R, 2)

(0, 1, 0)

(0, 2, 0)

G∗

N3
(R, 2)

(1, 1, 0)

(1, 2, 0)

(a2, 1, 0)(a, 1, 0)

(a2, 2, 0) (a, 2, 0)

G∗

N4
(R, 2)

(0, 0, 1)
(0, 0, 4)

(0, 0, 2) (0, 0, 3)

G∗

N5
(R, 2)

(1, 0, 1)
(1, 0, 4)

(1, 0, 2) (1, 0, 3)

(a2, 0, 1)(a, 0, 1)

(a2, 0, 4) (a, 0, 4)

(a, 0, 2) (a, 0, 3) (a2, 0, 3) (a2, 0, 2)

G∗

N6
(R, 2)

(0, 1, 1)

(0, 1, 4)

(0, 2, 2) (0, 1, 2) (0, 1, 3) (0, 2, 3)

(0, 2, 1) (0, 2, 4)

G∗

N7
(R, 2)

(1, 1, 1)

(1, 1, 4)

(1, 2, 2) (1, 1, 2) (1, 1, 3) (1, 2, 3)

(1, 2, 1) (1, 2, 4)

G∗

N8
(R, 2)

(a, 1, 1)

(a2, 2, 1) (a2, 2, 4)
(a2, 1, 4)

(a, 2, 3) (a, 1, 2) (a, 1, 3) (a, 2, 2)

(a2, 1, 1)

(a, 2, 1) (a, 2, 4)

(a, 1, 4)

(a2, 2, 3)(a2, 1, 2) (a2, 1, 3)(a2, 2, 2)

G∗

N8
(R, 2)

Figure 2. The eight fundamental constituents of G(F4 ⊕ F3 ⊕ F5, 2).

In particular, if N = {R1, . . . , Rs}, then G∗
N (R, k) has precisely one component, i.e.,

G∗
N (R, k) = G2(R1, k)× . . .×G2(Rs, k) = ComR(0).
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If N = ∅, then G∗
N (R, k) = G1(R, k). Note that G2(Ri, k) = ComRi

(0), since Ri is

a local ring. We can write G∗
N (R, k) =

∏

Ri∈N

ComRi
(0)×

∏

Rj 6∈N

G1(Rj , k).

Somer and Křížek obtained the semiregularity and regularity of the fundamental

constituents of G(Zn, k), see [5, Theorems 5.1, 5.4]. Analogously, we present the

following Theorems 2.1 and 2.2 for any finite commutative ring.

Theorem 2.1. Let R be the direct sum of finite commutative local rings

R1, . . . , Rs. Let N be a subset of {R1, . . . , Rs}. Then G∗
N (R, k) is semiregular

if and only if G2(Ri, k) is semiregular for Ri ∈ N .

P r o o f. Suppose that G∗
N (R, k) is semiregular. By way of contradiction, we can

assume without loss of generality that R1 ∈ N while G2(R1, k) is not semiregular.

Then there exists a vertex g of G2(R1, k) with indegR1
(0) 6= indegR1

(g) > 0. Now

let γ = (g, a2, . . . , as) ∈ G∗
N (R, k), where for j ∈ {2, . . . , s}, aj = 0 if Rj ∈ N , while

aj = 1 if Rj 6∈ N . Further, let β = (b1, . . . , bs) ∈ G∗
N (R, k), where for i ∈ {1, . . . , s},

bi = 0 if Ri ∈ N , while bi = 1 if Ri 6∈ N . Then we can see that both the vertices γ

and β have positive indegree in G∗
N (R, k). However, indegR(γ) 6= indegR(β), since

indegR1
(g) 6= indegR1

(0) = indegR1
(b1),

but indegRj
(aj) = indegRj

(bj) for j ∈ {2, . . . , s}. This is impossible, as G∗
N (R, k) is

semiregular and γ, β ∈ G∗
N (R, k). Hence, G2(Ri, k) is semiregular for Ri ∈ N .

Conversely, assume that G2(Ri, k) is semiregular for Ri ∈ N . Let α = (a1, . . . , as)

and β = (b1, . . . , bs) be two distinct vertices in G
∗
N (R, k) such that indegR(α) > 0 and

indegR(β) > 0. By assumption, indegRi
(ai) = indegRi

(bi) for Ri ∈ N . Moreover, by

a proof similar to that of [7, Theorem 3.2], we derive that G1(R, k) is semiregular

for any finite commutative ring R, so indegRj
(aj) = indegRj

(bj) for Rj 6∈ N . Thus

indegR(α) =

s
∏

i=1

indegRi
(ai) =

s
∏

i=1

indegRi
(bi) = indegR(β).

Hence, G∗
N (R, k) is semiregular. �

Theorem 2.2. Let R be the direct sum of finite commutative local rings

R1, . . . , Rs. Let N be a subset of {R1, . . . , Rs}. Then G∗
N (R, k) is regular if

and only if Ri is a field for Ri ∈ N and gcd(|U(Rj)|, k) = 1 for Rj 6∈ N .

P r o o f. Suppose thatG∗
N (R, k) is regular. Then for α = (a1, . . . , as) ∈ G∗

N (R, k),

the indegree of α is 1. Hence, indegRi
(ai) = 1 for any ai ∈ D(Ri) if Ri ∈ N . Thus,

D(Ri) has only one element, i.e., 0. So Ri is a field for Ri ∈ N . On the other hand,
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we also have indegRj
(aj) = 1 for any aj ∈ U(Rj) if Rj 6∈ N , which implies that

G1(Rj , k) is regular if Rj 6∈ N . So gcd(|U(Rj)|, k) = 1 for Rj 6∈ N .

Conversely, assume that Ri is a field for Ri ∈ N and gcd(|U(Rj)|, k) = 1 for Rj 6∈

N . Let α = (a1, . . . , as) ∈ G∗
N (R, k). So we have ai = 0 and hence indegRi

(ai) = 1

if Ri ∈ N . Moreover, since gcd(|U(Rj)|, k) = 1 for Rj 6∈ N , Rj is regular. So

indegRj
(aj) = 1 if Rj 6∈ N . Therefore, the indegree of α in G∗

N (R, k) is equal to
s
∏

i=1

indegRi
(ai) = 1. Consequently, G∗

N (R, k) is regular. �

Somer and Křížek showed in [6, Theorem 6.1] that all trees attached to cycle

vertices in a fundamental constituent of G(Zn, k) are isomorphic. In general, we

have the following result.

Theorem 2.3. Let R be the direct sum of finite commutative local rings

R1, . . . , Rs. Let N be a subset of {R1, . . . , Rs}. If α and β are two cycle ver-

tices in G∗
N (R, k), then the tree TR(α) is isomorphic to the tree TR(β).

P r o o f. By Remark 2.1, if N = ∅, then G∗
N (R, k) = G1(R, k), and the assertion

follows from Lemma 1.1. If N = {R1, . . . , Rs}, then G∗
N (R, k) = ComR(0). Since

the only cycle vertex in ComR(0) is 0, there is only one tree in G∗
N (R, k), and the

theorem follows trivially.

Now suppose ∅ 6= N 6= {R1, . . . , Rs}. We can suppose without loss of generality

that N = {R1, R2, . . . , Rt}, where 1 6 t 6 s− 1. Then by Remark 2.1,

G∗
N (R, k) = G2(R1, k)× . . .×G2(Rt, k)×G1(Rt+1, k)× . . .×G1(Rs, k).

Therefore, if α = (a1, . . . , as) is a cycle vertex in G∗
N (R, k), then it is evident that

a1 = . . . = at = 0, while aj is a cycle vertex in G1(Rj , k) for j ∈ {t + 1, . . . , s}. In

particular, γ = (b1, . . . , bs) is also a cycle vertex in G
∗
N (R, k), where b1 = . . . = bt = 0

and bt+1 = . . . = bs = 1. Hence, we will complete the proof by showing that

TR(α) ∼= TR(γ). By the definition of digraphs products, it is easy to show that

TR(α) = TR1
(0)× . . .× TRt

(0)× TRt+1
(at+1)× . . .× TRs

(as),

TR(γ) = TR1
(0)× . . .× TRt

(0)× TRt+1
(1)× . . .× TRs

(1).

By Lemma 1.1, TRj
(aj) ∼= TRj

(1) for any cycle vertex aj in G1(Rj , k). So we can

conclude by Lemma 1.2 that TR(α) ∼= TR(γ), as desired. �

In Figure 1, we observe that trees attached to cycle vertices in different fun-

damental constituents are not isomorphic, whereas from Figure 2 we can see that

the fundamental constituents G∗
N3

(R, 2) and G∗
N4

(R, 2) (as well as G∗
N5

(R, 2) and
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G∗
N6

(R, 2), G∗
N7

(R, 2) and G∗
N8

(R, 2)) have isomorphic nontrivial trees attached to

their cycle vertices. In the following theorem, we present some conditions for trees

attached to cycle vertices in different fundamental constituents to be isomorphic.

Theorem 2.4. Let R be the direct sum of finite commutative local rings

R1, . . . , Rs. There are two distinct subsets N1 and N2 of {R1, . . . , Rs} such that

G∗
N1

(R, k) and G∗
N2

(R, k) have isomorphic trees attached to their cycle vertices,

provided one of the following conditions holds:

(1) There exists i ∈ {1, . . . , s} such that ComRi
(0) ∼= ComRi

(1).

(2) There exist i, j ∈ {1, . . . , s} (i 6= j) such that ComRi
(0) ∼= ComRj

(0) and

ComRi
(1) ∼= ComRj

(1).

(3) There exist i, j ∈ {1, . . . , s} (i 6= j) such that ComRi
(0) ∼= ComRj

(1) and

ComRi
(1) ∼= ComRj

(0).

P r o o f. (1) We can suppose without loss of generality that ComR1
(0) ∼=

ComR1
(1). Let N1 = {R1, . . . , Rs} and N2 = {R2, . . . , Rs} (if s = 1 then let

N2 = ∅). Clearly,

G∗
N1

(R, k) = ComR1
(0)× . . .× ComRs

(0),

G∗
N2

(R, k) = G1(R1, k)× ComR2
(0)× . . .× ComRs

(0).

We observe that G∗
N1

(R, k) has precisely one component. In addition,

LN2
= ComR1

(1)× ComR2
(0)× . . .× ComRs

(0)

is one component of G∗
N2

(R, k). By the hypothesis and Lemma 1.2, we have

G∗
N1

(R, k) ∼= LN2
. Hence, the result follows by Theorem 2.3.

(2) We can suppose without loss of generality that

ComR1
(0) ∼= ComR2

(0), ComR1
(1) ∼= ComR2

(1).

Let N1 = {R1}, N2 = {R2}. Then clearly

LN1
= ComR1

(0)× ComR2
(1)×

s
∏

j=3

ComRj
(1)

is one component of G∗
N1

(R, k), while

LN2
= ComR1

(1)× ComR2
(0)×

s
∏

j=3

ComRj
(1)
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is one component of G∗
N2

(R, k). By the hypothesis and Lemma 1.2, LN1
∼= LN2

.

Accordingly, the result follows by Theorem 2.3.

(3) We can suppose without loss of generality that

ComR1
(0) ∼= ComR2

(1), ComR1
(1) ∼= ComR2

(0).

Let N1 = {R1, R2}, N2 = ∅. Then clearly

LN1
= ComR1

(0)× ComR2
(0)×

s
∏

j=3

ComRj
(1)

is one component of G∗
N1

(R, k), while

LN2
= ComR1

(1)× ComR2
(1)×

s
∏

j=3

ComRj
(1)

is one component of G∗
N2

(R, k). By the hypothesis and Lemma 1.2, LN1
∼= LN2

.

Thus, by Theorem 2.3, the result follows. �

Theorem 2.5. Let R be the direct sum of finite commutative local rings

R1, . . . , Rs. If there exists i ∈ {1, . . . , s} such that ComRi
(0) ∼= ComRi

(1), then for

any subset N of {R1, . . . , Rs}, there exists a subset N0 (N0 6= N) of {R1, . . . , Rs}

such that G∗
N (R, k) and G∗

N0
(R, k) have isomorphic trees attached to their cycle

vertices.

P r o o f. We can suppose without loss of generality that ComR1
(0) ∼= ComR1

(1).

If R1 ∈ N , let N0 = N − {R1}. If R1 6∈ N , let N0 = N ∪ {R1}. Then by the proof

of Theorem 2.4 (1), the result follows. �

Finally, we state some conditions for ComR(0) ∼= ComR(1), where R is a finite

commutative local ring.

Theorem 2.6. Let R be a finite commutative local ring with a unique maximal

ideal M . Then ComR(0) ∼= ComR(1) if one of the following conditions holds:

(1) |R| = 2|M | = 2n, n 6 2 6 k and 2 | k.

(2) |R| = 2|M | = 2n, n = 3 and 4 | k.

(3) |R| = 2|M | = 2n, n > 4 and 2n−2 | k.

(4) |R| = p|M | = pn, p is an odd prime, n > 1, p− 1 | k − 1 and pn−1 | k.
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P r o o f. (1) If n = 1, then R = F2. So G1(R, k) ∼= G2(R, k), i.e., ComR(0) ∼=

ComR(1) for k > 2.

If n = 2, then R = Z4 if char(R) = 22. Otherwise, if char(R) = 2, then by [4,

Theorem 3], R is isomorphic to the ring of upper triangular matrices R∗ over F2,

where

R∗ =

{(

0 0

0 0

)

,

(

1 0

0 1

)

,

(

1 1

0 1

)

,

(

0 1

0 0

)}

.

Obviously, R∗ ∼= Z2[x]/〈x
2〉 and R∗ is commutative. Hence, for α ∈ R, either αk = 0

or αk = 1 if 2 | k. Thus G(R, k) has precisely two components, one with fixed point

0 and the other with fixed point 1, and both components are isomorphic.

(2) Suppose n = 3 and 4 | k. Clearly αk = 0 or αk = 1 for α ∈ R, since

|M | = |U(R)| = 4. Hence, ComR(0) ∼= ComR(1).

(3) Suppose that n > 4 and 2n−2 | k. By assumption, |M | = |U(R)| = 2n−1 and

by Lemma 1.3, Mn = {0}. Note that k > n, since n > 4 and 2n−2 | k. We see that

αk = 0 for α ∈ M . Furthermore, by the work of Gilmer in [2], if |S| = 2t, where S is

a local ring and t > 4, then U(S) is not a cyclic group. So U(R) ∼= C2n1 × . . .×C2ns ,

where s > 2, 1 6 ni 6 n− 2, C2ni is a cyclic group with order 2ni for i ∈ {1, . . . , s},

and n1 + . . . + ns = n − 1. Therefore, β2n−2

= 1 for β ∈ U(R). Moreover, since

2n−2 | k, we have βk = 1 for β ∈ U(R). Thus G(R, k) has precisely two components,

and the two components are isomorphic.

(4) By hypothesis, |U(R)| = pn−1(p − 1). So U(R) ∼= H1 × H2, where H1 and

H2 are abelian groups, |H1| = pn−1 and |H2| = p − 1. Thus, αpn−1

= 1 and hence

αk = 1 for α ∈ H1, since p
n−1 | k. Therefore, G(H1, k) has exactly one component

and indegH1
(1) = pn−1. On the other hand, for β ∈ H2 we have β

p−1 = 1 and hence

βk = βk−1β = β, since p−1 | k−1. So we can conclude that each vertex of G(H2, k)

is an isolated fixed point. By the definition of digraphs products, we have

G1(R, k) = G(U(R), k) ∼= G(H1, k)×G(H2, k).

So G1(R, k) has precisely p−1 components and each cycle is of length one, while the

indegree of each cycle vertex is pn−1. Moreover, by Lemma 1.3, Mn = {0}. Since

pn−1 | k, we derive that k > n. Thus for γ ∈ M , γk = 0. So indegR(0) = |M | = pn−1.

Hence we can see that G(R, k) has precisely p components, and all these components

are isomorphic. �
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