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Abstract. In this paper we study J-EP matrices, as a generalization of EP-matrices in
indefinite inner product spaces, with respect to indefinite matrix product. We give some
properties concerning EP and J-EP matrices and find connection between them. Also, we
present some results for reverse order law for Moore-Penrose inverse in indefinite setting.
Finally, we deal with the star partial ordering and improve some results given in the “EP
matrices in indefinite inner product spaces” (2012), by relaxing some conditions.
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1. Introduction

An indefinite inner product in C
n is a sesquilinear form [x, y], x, y ∈ C

n, defined

by the equation

[x, y] = 〈x, Jy〉.

Here, 〈., .〉 is the standard Euclidean inner product, J is an invertible Hermitian

matrix. We make an additional assumption that J2 = I, motivated by the notion

of Minkowski space which has been studied by physicists in optics. In some results

herein this assumption is not restrictive at all. On the other hand, it lets us make

a nice comparison with results in the Euclidean case. As in [8], we use a new matrix

product, called the indefinite matrix multiplication. We give some basic notions.

Definition 1.1. Let Jn ∈ C
n×n be such that Jn = J∗

n = J−1
n . The indefinite

matrix product of matrices A ∈ C
m×n and B ∈ C

n×l is defined by A ◦B = AJnB.

The author is supported by the Ministry of Science, Republic of Serbia, grant no. 174007.
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Definition 1.2. Let A be an m × n complex matrix. The adjoint A[∗] of A is

defined by A[∗] = JnA
∗Jm.

Definition 1.3. For A ∈ C
m×n, a matrixX ∈ C

n×m is called the Moore-Penrose

inverse of A if it satisfies the following equations: A ◦X ◦ A = A, X ◦ A ◦X = X ,

(A ◦X)[∗] = A ◦X and (X ◦A)[∗] = X ◦A.

Definition 1.4. For A ∈ C
n×n, a matrix X ∈ C

n×n is called the group inverse of

A if it satisfies the following equations: A◦X ◦A = A, X ◦A◦X = X , A◦X = X ◦A.

We are familiar with the fact that for A ∈ C
m×n the Moore-Penrose inverse has

the form A[†] = JnA
†Jm, and it always exists because the condition rank(A

[∗] ◦A) =

rank(A ◦ A[∗]) = rank(A) is always satisfied. On the other hand, it is not the

case that a similar formula for the group inverse holds. It may happen that the

group inverse in the Euclidean space exists, but in the space with indefinite matrix

product it does not, and vice versa, for example, for A =
(

1 1

1 1

)

and J =
(

1 0

0 −1

)

.

Anyway, A[#] = (AJ)#J , and it exists if and only if rank(A(2)) = rank(A), i.e.

rank(AJA) = rank(A), while A# exists if and only if rank(A2) = rank(A). Clearly,

if A and J commute, then both the group inverses exist at the same time and, in

that case, A[#] = A#.

Definition 1.5. Let A ∈ C
m×n. Then the range space Ra(A) is defined by

Ra(A) = {y = A ◦ x ∈ C
m : x ∈ C

n} and the null space Nu(A) is defined by

Nu(A) = {x ∈ C
n : A ◦ x = 0}.

It is easy to see that Ra(A) = R(AJ) = R(A) and Nu(A) = N(AJ). It is also clear

that Ra(A[∗]) = R((AJ)∗) and Nu(A[∗]) = N(A∗), where R(A) and N(A) denote the

standard range and null space of A, respectively.

Definition 1.6. A matrix A ∈ C
n×n is called range-Hermitian if R(A∗) = R(A),

or, equivalently, if N(A∗) = N(A).

Definition 1.7. LetM be a subset of Cn. The orthogonal companion ofM in Cn

with respect to the indefinite inner product is defined byM [⊥] = {x ∈ C
n : [x, y] = 0

for all y ∈ M}.

In this paper we establish some properties of J-EP matrices and their connection

with other classes of matrices. Besides the new results, the improvement of existing

ones is also made.

This paper is organized as follows. In Section 2, we give some results concerning

EP and J-EP matrices. We also investigate the relation between them. Some of

the results in this section are nice generalizations of theorems which deal with EP
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matrices. It is important to mention that we also improve some of the results from [7].

In many theorems here we relaxed the conditions from [7] (Theorems 2.3, 2.4, 2.11).

In Section 3, the reverse order law with respect to the indefinite matrix product is

studied. There are several theorems which give necessary and sufficient conditions for

that. We also give a theorem and example (Theorem 3.3 and Example 3.1) showing

that in Theorem 3.14, [7], the assumption that a matrix B is J-EP can be totally

excluded. Moreover, it does not have to be an EP matrix, either.

Section 3 deals with the notion and properties of the star partial ordering with

respect to an indefinite matrix product and gives the parallel with the original star

ordering. Theorem 4.1 and Corollary 4.1 give a generalization of some results from

[10]. They are also the improvements of Theorem 4.3 and Theorem 4.4 from [7].

2. EP and J-EP matrices

We start by introducing the notion of J-EP matrices and giving some of their

properties.

Definition 2.1. A matrix A ∈ C
n×n is J-EP if A ◦A[†] = A[†] ◦A.

The next well known lemma is often used to establish the relationship between

J-EP and EP matrices.

Lemma 2.1. A matrix A ∈ C
n×n is a J-EP matrix if and only if AJ is an EP

matrix.

We have to emphasize that most of the properties of EP matrices can be gener-

alized to J-EP matrices with respect to an indefinite matrix product. Also, their

characterization can be given according to EP matrices. All of that can be done

by using Lemma 2.1, i.e., by considering the AJ matrix instead of a matrix A and

vice versa. Some of these results (without proofs) we give here as Theorem 2.1 (as

a generalization of Theorem 7.5.1 in [3]).

Theorem 2.1. Let A ∈ C
n×n. Then the following statements are equivalent:

(1) A is J-EP;

(2) A ◦A[†] = A(2) ◦ (A[†])(2);

(3) A[†] ◦A = (A[†])(2) ◦A(2);

(4) A ◦A[†] ◦A[∗] ◦A = A[∗] ◦A ◦A ◦A[†];

(5) A[†] ◦A ◦A ◦A[∗] = A ◦A[∗] ◦A[†] ◦A;

(6) A ◦A[†] ◦ (A ◦A[∗] −A[∗] ◦A) = (A ◦A[∗] −A[∗] ◦A) ◦A ◦A[†];

(7) A[†] ◦A ◦ (A ◦A[∗] −A[∗] ◦A) = (A ◦A[∗] −A[∗] ◦A) ◦A ◦A[†];
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(8) A[∗] ◦A[#] ◦A+A ◦A[#] ◦A[∗] = 2A[∗];

(9) A[†] ◦A[#] ◦A+A ◦A[#] ◦A[†] = 2A[†];

(10) A ◦A ◦A[†] +A[†] ◦A ◦A = 2A;

(11) A ◦A ◦A[†] + (A ◦A ◦A[†])[∗] = A+A[∗];

(12) A[†] ◦A ◦A+ (A[†] ◦A ◦A)[∗] = A+A[∗].

Theorem 2.2. Let A ∈ C
n×n, B ∈ C

n×n and A[∗] = A. Then A ◦ B is J-EP if

and only if A∗B is EP.

P r o o f. If A[∗] = A then JA∗J = A, i.e. A∗J = JA and JA∗ = AJ . Thus,

we have (A ◦ B)[†] ◦ A ◦ B = A ◦ B ◦ (A ◦ B)[†] if and only if J(AJB)†AJB =

AJB(AJB)†J if and only if J(JA∗B)†JA∗B = JA∗B(JA∗B)†J , which is equiv-

alent to J(A∗B)†A∗B = JA∗B(A∗B)†. Now, by premultiplying this by J we get

(A∗B)†A∗B = A∗B(A∗B)†.

This theorem can be proved in a much easier way, so we give the alternative proof:

Under the hypothesis that A[∗] = A, we have A ◦B is J-EP if and only if AJB is J-

EP, which is equivalent to JA∗B is J-EP. Now, by Lemma 2.1 we get the equivalence

with A∗B is EP. �

Theorem 2.3. Let J commute with A†A. Then A is J-EP if and only if A is EP.

P r o o f. Let J commute with A†A and let A be a J-EP matrix. Then A†A =

A†AJJ = JA†AJ = JA†JJAJ = A[†] ◦ AJ = A ◦ A[†]J = AA†. Thus, A is an

EP-matrix.

Conversely, let J commute with A†A and let A be an EP matrix. Now, we have

A ◦A[†] = AJJA†J = AA†J = A†AJ = JA†A = A[†] ◦A, proving that A is a J-EP

matrix. �

Also, we have an analogous theorem.

Theorem 2.4. Let J commute with AA†. Then A is J-EP if and only if A is

EP.

The conditions from the previous theorems are weaker than those in Theorem 3.7,

[7]. We show that by the next theorem and example.

Theorem 2.5. If AJ = JA then A†AJ = JA†A and JAA† = AA†J .

Example 2.1. Let A =
(

1 0

1 1

)

and J =
(

1 0

0 −1

)

. As A is an invertible matrix,

JA†A = A†AJ = J =
(

1 0

0 −1

)

. But neither A nor A† commute with J .

We can find another condition that provides the equivalence between EP and J-EP

matrices, given in the next theorem.
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Theorem 2.6. Let N(AJ) = N(A). Then A is an EP matrix if and only if A is

a J-EP matrix.

P r o o f. From the condition N(AJ) = N(A), taking the direct complements of

both sides, we get R((AJ)∗) = R(A∗).

Let A be a J-EP matrix. Then AJ is an EP matrix, so R((AJ)∗) = R(AJ) and

N((AJ)∗) = N(AJ). Then R(A) = R(AJ) = R((AJ)∗) = R(A∗) and N(A∗) =

N(JA∗) = N((AJ)∗) = N(AJ) = N(A). Thus, A is an EP matrix.

The opposite direction can be shown similarly. �

Of course, if AJ = JA then N(AJ) = N(A). But the opposite does not hold, so

we relaxed the condition from [7], Theorem 3.7, (a).

The next two examples show that there are matrices that do not commute with

a matrix J , which satisfy N(AJ) = N(A) and are both EP-matrices and J-EP

matrices or they are neither EP nor J-EP matrices, respectively.

Example 2.2. Let A =
(

1 0

1 1

)

and J =
(

0 1

1 0

)

. Then AJ =
(

0 1

1 1

)

and JA =
(

1 1

1 0

)

, so AJ 6= JA. As A and AJ are invertible matrices, we have N(AJ) = N(A) =

{0}. Also A† = A−1, so A is an EP and also a J-EP matrix.

Example 2.3. Let A =
(

1 1

0 0

)

and J =
(

0 1

1 0

)

. Then AJ =
(

1 1

0 0

)

= A and

JA =
(

0 0

1 1

)

, so AJ 6= JA. Also, N(AJ) = N(A) and A† = 1
2

(

1 0

1 0

)

. A is neither an

EP matrix, nor a J-EP matrix.

In Example 2.2 A is an invertible matrix. It is not surprising at all because every

invertible matrix is both an EP and J-EP matrix and also N(AJ) = N(A) = {0}

holds. We are giving an example which shows that the matrix A does not have to

be invertible.

Example 2.4. Let A =

(

1 1 1

1 0 0

1 0 0

)

and J =

(

1 0 0

0 −1 0

0 0 −1

)

. We have AJ =

(

1 −1 −1

1 0 0

1 0 0

)

and JA =

(

1 1 1

−1 0 0

−1 0 0

)

, so AJ 6= JA. It is easy to see that N(AJ) = N(A) =

Span{(0, 1,−1)T}. Also, we have A† = 1
4

(

0 2 2

2 −1 −1

2 −1 −1

)

. As AA† = A†A = 1
4

(

4 0 0

0 2 2

0 2 2

)

,

the matrix A is EP.

By direct computation we have A[†] ◦A = A ◦ A[†] = 1
4

(

4 0 0

0 −2 −2

0 −2 −2

)

, proving that

A is also a J-EP matrix.
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Theorem 2.7. Let A be a J-idempotent J-EP matrix. Then A is EP if and only

if A commutes with J .

P r o o f. Let A be a J-idempotent J-EP matrix. Thus,

(1) AJA = A

and

(2) JA†A = AA†J.

By premultiplying and postmultiplying (2) by J we get A†AJ = JAA†. Now,

postmultiplication by A gives A†AJA = JAA†A, which is equivalent to A†A = JA,

as (1) holds.

On the other hand, if we premultiply (2) by AJ we get AJJA†A = AJAA†J or

A = AA†J , which is equivalent to AJ = AA†.

Thus, we have AA† = A†A if and only if AJ = JA. �

To show that the condition A[2] = A cannot be dropped, we give the next example.

Example 2.5. Let A =
(

1 0

1 1

)

and J =
(

0 1

1 0

)

. Then AJA =
(

1 1

2 1

)

, so A[2] 6= A.

We can see that A is J-EP and A is an EP matrix, as A† =
(

1 0

−1 1

)

and A[†] =
(

1 −1

0 1

)

.

It is easy to see that AJ =
(

0 1

1 1

)

and JA =
(

1 1

1 0

)

, so AJ 6= JA.

The following example shows that the condition that A is a J-EP matrix cannot

be omitted, either.

Example 2.6. Let A =
(

2
√
2√

2 1

)

and J =
(

1 0

0 −1

)

. Then, A ◦ A = AJA =
(

2
√
2√

2 1

)(

1 0

0 −1

)(

2
√
2√

2 1

)

= A and A† = 1
9A, so A is an EP-matrix. On the other

hand A[†] ◦ A = 1
3JA = 1

3

(

2
√
2

−
√
2 −1

)

and A ◦ A[†] = 1
3AJ = 1

3

(

2 −
√
2√

2 −1

)

, which

means that A is not a J-EP matrix.

Of course, AJ 6= JA, either.

We are familiar with the fact that Ra(A[∗]) = (Nu(A))⊥, where the orthogonality

is meant with respect to the standard inner product in C
n. We also know that it

is not true that Ra(A[∗]) = (Nu(A))[⊥]. In [11], Theorem 2.5, it was shown that for

any n×m real matrix Ra(I ◦A) = Nu(A[∗])[⊥] holds.
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Theorem 2.8. Let A ∈ C
n×n. Each two of the following statements imply the

third one.

(1) Ra(A[∗]) = (Nu(A))[⊥],

(2) A is an EP matrix,

(3) A is a J-EP matrix.

P r o o f. (1,2)=⇒(3) (and (1,3)=⇒(2)): Let Ra(A[∗]) = (Nu(A))[⊥]. Then we

have R(JA∗) = (N(AJ))[⊥]. By [5], (2.2.3), we have R(JA∗) = J(N(AJ))⊥. If

we premultiply this equality by J , we get R(A∗) = (N(AJ))⊥. We also know that

(N(AJ))⊥ = R((AJ)∗) so we finally get R(A∗) = R((AJ)∗) and hence N(A) =

N(AJ). Now, by Theorem 2.6, we have that (3) (or (2)) holds.

(2,3)=⇒(1): Let A be both an EP and a J-EP matrix. Then we have

(3) R(A) = R(A∗) and N(A) = N(A∗)

and also

(4) R(AJ) = R((AJ)∗) and N(AJ) = N((AJ)∗).

Now, Ra(A[∗]) = R(JA∗) = JR(A∗)
(3)
= JR(A) = JN(A∗)⊥

(4)
= JN(AJ)⊥ =

(N(AJ))[⊥] = Nu(A)[⊥]. Thus (1) holds. �

Theorem 2.9. Let A, B be square matrices of the same size. If A commutes

with JB or B commutes with AJ then A ◦B is J-EP if and only if BA is EP.

P r o o f. Let A commute with JB. Then, by Lemma 2.1, A ◦ B is J-EP if and

only if AJBJ is an EP matrix. This is equivalent to JBAJ is EP. Now, by using

Lemma 2.1 twice, we get that BA is EP. The rest of the proof is analogous. �

In [7] the author gave some interesting properties concerning EP and J-EP ma-

trices. One of them is a generalization of Theorem 1, [9].

Theorem 2.10. Let A1, . . . , Am be J-EP matrices and let A := A1 + . . . + Am.

Suppose Nu(A) ⊆ Nu(Ai) for each i = 1, . . . ,m and Ai ◦ Aj = 0 for i 6= j. Then A

is J-EP.

We show that the condition Ai ◦Aj = 0 for i 6= j can be excluded, as well as that

the equivalence holds true, not just the implication.
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Theorem 2.11. Let A1, . . . , Am be J-EP matrices. Then A := A1 + . . .+Am is

J-EP if and only if Nu(A) ⊆ Nu(Ai) for each i = 1, . . . ,m.

P r o o f. Let A1, . . . , Am be J-EP matrices and let A := A1 + . . . + Am be

J-EP, which is, by Lemma 2.1 equivalent to A1J, . . . , AmJ being EP matrices and

AJ := A1J + . . . + AmJ being EP. According to Theorem 1, [9], this is equivalent

to N(AJ) ⊆ N(AiJ) for each i = 1, . . . ,m. It is clear that the last fact is equivalent

to Nu(A) ⊆ Nu(Ai). �

As the previous theorem, the next one gives necessary and sufficient conditions

for sums of J-EP matrices being J-EP. Herein, we use the Theorem 1, [9] for EP

matrices.

Theorem 2.12. Let A1, . . . , Am be J-EP matrices. Then A := A1 + . . .+Am is

J-EP if and only if rank(A1 A2 . . . Am)T = rank(A).

P r o o f. Let A1, . . . , Am be J-EP matrices, i.e., AiJ is an EP matrix for every

i = 1, . . . ,m. Then AJ = A1J + . . . + AmJ is EP if and only if rank(A1J A2J . . .

AmJ)T = rank(AJ). It is clear that rank(A1J A2J . . . AmJ)T = rank((A1 A2 . . .

Am)TJ) = rank(A1 A2 . . . Am)T and rank(AJ) = rank(A), which completes the

proof. �

3. The reverse order law

In the sequel, we give some new results for the reverse order law with respect to

the Moore-Penrose inverse in the indefinite setting.

As is well known, and can be found in [2], for matrices P and Q such that PQ

exists, (PQ)† = Q†P † if and only if R(P ∗PQ) ⊆ R(Q) and R(QQ∗P ∗) ⊆ R(P ∗).

Theorem 3.1. If A ∈ C
n×n, B ∈ C

n×n and Ra(A[∗]) = Ra(B), then (A ◦B)[†] =

B[†] ◦A[†].

P r o o f. We have Ra(A[∗]) = Ra(JA∗J) = R(JA∗) and Ra(B) = R(BJ). From

the condition of the theorem we get R(JA∗) = R(BJ). We have R((AJ)∗AJBJ) ⊆

R((AJ)∗) = R(JA∗) = R(BJ) and R(BJ(BJ)∗(AJ)∗) ⊆ R(BJ) = R(JA∗) =

R((AJ)∗). Hence, (AJBJ)† = (BJ)†(AJ)†. Finally, we get (A◦B)[†] = (AJB)[†] =

J(AJB)†J = J†(AJB)†J = (AJBJ)†J = (BJ)†(AJ)†J = JB†JA†J = B[†] ◦A[†].

�

98



Theorem 3.2. If A ∈ C
n×n is a J-EP matrix and B ∈ C

n×n is an EP matrix

and if R(A) = R(B), then (A ◦B)[†] = B[†] ◦A[†].

P r o o f. Let A be J-EP. Then AJ is an EP matrix. Further on, we have

R(AJ) = R(A) = R(B). Since B is an EP-matrix, by Theorem 7.2.4, Chapter 7, [3],

we get (AJB)† = B†(AJ)†.

Now we have (A ◦ B)[†] = (AJB)[†] = J(AJB)†J = JB†(AJ)†J = JB†JA†J =

B[†] ◦A[†]. �

Remark 3.1. In [7], Theorem 3.14 the matrix B was J-EP. We recall that there

are EP matrices that are not J-EP and vice versa.

We can show that the previous statement does not depend of the J-EP-ness or

the EP-ness of the matrix B ∈ C
n×n. The next theorem proves it.

Theorem 3.3. Let A ∈ C
n×n be a J-EP matrix, and B ∈ C

n×n a matrix such

that R(A) = R(B). Then (A ◦B)[†] = B[†] ◦A[†].

P r o o f. Let R(A) = R(B) and let A be a J-EP matrix. That means that

JA†A = AA†J . Then we have

R((AJ)∗AJB) ⊆ R(JA∗) = R(JA†AA∗) ⊆ R(JA†A)

= R(AA†J) = R(AA†) = R(A) = R(B)

and

R(BB∗(AJ)∗) ⊆ R(B) = R(A) = R(AA†J) = R(JA†A) = R(J(A†A)∗)

= R(JA∗(A†)∗) ⊆ R(JA∗) = R((AJ)∗),

so the well-known condition for the reverse order law is satisfied. Thus we have

(AJB)† = B†(AJ)† and (A ◦B)[†] = B[†] ◦A[†]. �

We give an illustration of that by the next example.

Example 3.1. Let A =
(

1 1

1 1

)

, J =
(

0 1

1 0

)

and B =
(

1 0

1 0

)

. As we can verify

easily, B is not an EP matrix, and it is not a J-EP matrix, either. A† = 1
4A,

so A is J-EP. We have that R(A) = R(B), as well. Further on, A ◦ B =
(

2 0

2 0

)

,

(A ◦B)[†] = 1
4

(

0 0

1 1

)

and B[†] ◦A[†] = 1
4

(

0 0

1 1

)

, i.e., (A ◦B)[†] = B[†] ◦A[†].

Remark 3.2. Actually, it can be shown that in Theorem 7.2.4 in [3] we do not

need the condition that B is an EP operator.
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Corollary 3.1. Let A and B be J-EP matrices of the same size with R(A) =

R(B). Then A ◦B is a J-EP matrix.

P r o o f. The condition of Theorem 3.14, [7] are satisfied so we have that (A ◦

B)[†] = B[†] ◦ A[†]. Obviously, this is equivalent to (AJBJ)† = (BJ)†(AJ)†. Now,

by Corollary 2 in [6], we get that AJBJ is an EP matrix, which is by Lemma 2.1

equivalent to A ◦B being a J-EP matrix. �

From Theorem 3.2 it is clear that this implication holds true also for an EP

matrix B. That can be proved by appropriate changes in the previous proof.

In [7] there is a theorem which gives a necessary and sufficient condition for the

reverse order law in indefinite product. We give that theorem here.

Theorem 3.4 (Theorem 3.17, [7]). Let A be such that AJ = JA. Then (A ◦

B)[†] = B[†] ◦A[†] if and only if A∗A ◦BB∗ is J-EP.

In the sequel we use the result from [1], saying that (AB)† = B†A† if and only

if A∗ABB∗ is range-Hermitian. That means that (AB)† = B†A† if and only if

A∗ABB∗ is an EP matrix.

We give an analogous result for the indefinite matrix product, proving that the

assumption of commutativity of A and J in the previous theorem can be omitted.

Theorem 3.5. Let A,B ∈ C
n×n. Then (A ◦ B)[†] = B[†] ◦ A[†] if and only if

A∗A ◦BB∗ is a J-EP matrix.

P r o o f. It is obvious that (A ◦ B)[†] = B[†] ◦ A[†] is equivalent to J(AJB)† =

JB†JA†, i.e., (AJBJ)† = (BJ)†(AJ)†. From [2], Ex. 55 and [1], we have that

it is equivalent to (AJ)∗AJBJ(BJ)∗ being range-Hermitian, i.e., JA∗AJBB∗ is

a range-Hermitian matrix. That means that JA∗AJBB∗ is an EP matrix. Now, by

Lemma 2.1 this is equivalent to A∗A ◦BB∗ being a J-EP matrix. �

The next example illustrates that.

Example 3.2. Let A =
(

1 0

1 0

)

, J =
(

1 0

0 −1

)

andB =
(

1 0

0 0

)

. As we see, AJ 6= JA.

Also, A∗A ◦ BB∗ =
(

2 0

0 0

)

, which is a Hermitian and so a range-Hermitian matrix.

We have that A◦B = A, (A◦B)† = 1
2

(

1 1

0 0

)

and (A◦B)[†] = 1
2

(

1 −1

0 0

)

, B† =
(

1 0

0 0

)

,

A† = 1
2

(

1 1

0 0

)

. So, we get B[†] ◦A[†] = 1
2

(

1 −1

0 0

)

. Thus, (A ◦B)[†] = B[†] ◦A[†].
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Theorem 3.6. Let A, B, C be square matrices of the same size such that AJ =

JA, and let A∗ABB∗ and (ABJ)∗ABJCC∗ be EP-matrices. Then (A ◦B ◦C)[†] =

C [†] ◦B[†] ◦A[†].

P r o o f. Since A∗ABB∗ is EP, so it is range-Hermitian and by [1] it fol-

lows that (AB)† = B†A†. Similarly, (ABJ)∗ABJCC∗ is an EP-matrix implies

that (ABJC)† = C†(ABJ)†. Now, using AJ = JA, we have (A ◦ B ◦ C)[†] =

J(AJBJC)†J = J(JABJC)†J = J(ABJC)† = JC†(ABJ)† = JC†J(AB)† =

JC†JB†A†JJ = C [†] ◦B[†] ◦A[†]. �

In the previous theorem, we did not have the condition (A ◦ B)J = J(A ◦ B), as

was the case in Theorem 3.20, [7], but we had the new condition (ABJ)∗ABJCC∗

is EP instead of (AB)∗ABCC∗ is EP.

4. The star partial ordering

There are several types of matrix partial orderings defined on C
n×m. One of

them, the star ordering, was introduced by Drazin in [4] in the following way: If

A,B ∈ C
n×m, then

A
∗
6 B ⇔ A∗A = A∗B and AA∗ = BA∗.

S. Jayaraman in [7] defined a star ordering with respect to the indefinite matrix

product as A
[∗]
6 B ⇔ A[∗] ◦ A = A[∗] ◦ B and A ◦ A[∗] = B ◦ A[∗], and showed that

this is equivalent to the original star ordering of the matrices A and B. Also, he

gave a generalization of Theorem 5.4.3, [10], showing that under the assumption that

A
∗
6 B, we have that A is a J-EP matrix if and only if A[†] ◦ B = B ◦ A[†]. But he

did not show the equivalence with A ◦B[†] = B[†] ◦A.

Now we give a full generalization of Theorem 5.4.3, [10].

Theorem 4.1. Let A and B be square matrices of the same order such that

A
∗
6 B. Then the following statements are equivalent:

(1) A is J-EP;

(2) A[†] ◦B = B ◦A[†];

(3) A ◦B[†] = B[†] ◦A.

P r o o f. First we show the equivalence of A
∗
6 B and JA

∗
6 JB.

(JA)∗JA = (JA)∗JB and JA(JA)∗ = JB(JA)∗
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is equivalent to A∗A = A∗B and JAA∗J = JBA∗J , i.e.,

A∗A = A∗B and AA∗ = BA∗.

Now, we have A[†] ◦B = B ◦A[†] if and only if JA†B = BA†J . Premultiplication

by J gives us the equivalence with (JA)†JB = JB(JA)†. This fact, JA
∗
6 JB and

Theorem 5.4.3, [10] give the equivalence with (JB)†JA = JA(JB)† and with AJ is

EP. After some calculation we get B[†] ◦A = A ◦B[†] and A is J-EP. �

This theorem also relaxed the conditions of Theorem 4.4 in [7], where the author

showed that A[†] ◦ B = B ◦ A[†] implies B[†] ◦ A = A ◦ B[†], under the following

assumptions: AJ = JA, BJ = JB, AB∗ = B∗A and A
∗
6 B. We proved that we do

not need the first three conditions and that even the equivalence holds true.

Corollary 4.1. If A and B are square matrices of the same order such that A
∗
6 B

and A commutes with J , then the following conditions are equivalent:

(i) A is J-EP;

(ii) A is EP;

(iii) A[†] ◦B = B ◦A[†];

(iv) A†B = BA†;

(v) A ◦B[†] = B[†] ◦A;

(vi) AB† = B†A.

P r o o f. The proof follows directly from the equivalence of EP and J-EPmatrices

when they commute with the matrix J , and from Theorem 4.1. �

The equivalence from the previous corollary does not hold without the assumption

of A and B being in the star order. The next example illustrates it.

Example 4.1. Let A = J =
(

1 0

0 −1

)

and B =
(

1 1

0 0

)

. Then we have AJ = JA =

I, so A and J commute. A[†] ◦B = B and B ◦A[†] = B. Hence, A[†] ◦B = B ◦A[†],

but A†B = B and BA† =
(

1 −1

0 0

)

, so A†B 6= BA†. Notice that A 6
∗
6 B.

On the other hand, it can happen that A†B = BA† but A[†] ◦B 6= B ◦A[†]. Take

A = I, J =
(

1 0

0 −1

)

and B =
(

1 1

0 0

)

.

Corollary 4.2. If A and B are square matrices of the same order, then the

following statements are equivalent:

(1) A
∗
6 B;
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(2) A†
∗
6 B†;

(3) AA†B = BA†A = BA†B = A;

(4) A†AB† = B†AA† = B†AB† = A†;

(5) A
[∗]
6 B;

(6) A[†]
[∗]
6 B[†];

(7) A ◦A[†] ◦B = B ◦A[†] ◦A = B ◦A[†] ◦B = A;

(8) A[†] ◦A ◦B[†] = B[†] ◦A ◦A[†] = B[†] ◦A ◦B[†] = A[†].

P r o o f. The equivalence from (1) to (4) was shown in Corollary 5.2.9 in [10].

The rest of the proof follows by the fact that A
∗
6 B, A

[∗]
6 B and AJ

∗
6 BJ are

equivalent. �
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