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Abstract. Let R be a commutative Noetherian ring and a an ideal of R. We introduce the
concept of a-weakly Laskerian R-modules, and we show that if M is an a-weakly Laskerian

R-module and s is a non-negative integer such that Extj
R
(R/a, Hi

a(M)) is a-weakly Laske-
rian for all i < s and all j, then for any a-weakly Laskerian submodule X of Hs

a(M), the
R-module HomR(R/a,Hs

a(M)/X) is a-weakly Laskerian. In particular, the set of associated
primes of Hs

a(M)/X is finite. As a consequence, it follows that if M is a finitely generated

R-module and N is an a-weakly Laskerian R-module such thatHi
a(N) is a-weakly Laskerian

for all i < s, then the set of associated primes of Hs
a(M,N) is finite. This generalizes the

main result of S. Sohrabi Laleh, M.Y. Sadeghi, and M.Hanifi Mostaghim (2012).

Keywords: local cohomology module; weakly Laskerian module; a-weakly Laskerian mod-
ule; associated prime
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1. Introduction

Throughout the paper, R is a commutative Noetherian ring with identity and all

modules are unitary. Also, a and b are ideals of R and V (a) is the set of all prime

ideals of R containing a. Let M be an R-module. For each i > 0, the i-th local

cohomology module of M with respect to a is defined as

Hi
a(M) = lim−→

n∈N

ExtiR(R/an,M).

For the basic properties of local cohomology the reader can refer to [5] of Brodmann

and Sharp. An important problem in commutative algebra is to determine when the

set of associated primes of the local cohomology module Hi
a(M) is finite. Huneke

[10] raised the following conjecture:
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If M is a finitely generated R-module, then the set of associated primes of Hi
a(M)

is finite for every ideal a and every i > 0.

Singh [17] and Katzman [11] have given counterexamples to this conjecture. How-

ever, this problem has been studied by many authors and it is shown that this

conjecture is true in many situations; for examples see [3], [4], [6], [8] and [12]. In

particular, it is shown in [13, Theorem B] that if for a finitely generated R-moduleM

and an integer s, the local cohomology modules Hi
a(M) are finitely generated for all

i < s, then the set AssRH
s
a(M) is finite. After a few months, it has been shown in [4,

Theorem 2.2] that under this assumptions, AssRH
s
a(M)/N is finite for any finitely

generated submodule N ofHs
a(M). There are several papers devoted to the extension

of the above results to more general situations. For example, Dibaei and Yassemi in

[6, Theorem 2.1] showed that for a finitely generated R-moduleM and an integer s, if

ExtjR(R/a, Hi
a(M)) is finitely generated for all j and i < s, then HomR(R/a, Hs

a(M))

is finitely generated and so the set AssRH
s
a(M) is finite. The generalizations of this

result to the class of minimax modules, weakly Laskerian modules and a-minimax

modules have been proved in [3], [8] and [1], respectively. This paper is concerned

with what might be considered a generalization of the above-mentioned results. To

do this, in Section 2 we introduce a new Serre class of R-modules which contains

all weakly Laskerian modules. We define M to be an a-weakly Laskerian R-module

if for any submodule N of M , the set AssRΓa(M/N) is finite, and we give some

properties of a-weakly Laskerian modules.

In Section 3, we will prove that if M is an a-weakly Laskerian R-module and

s is a non-negative integer such that ExtjR(R/a, Hi
a(M)) is a-weakly Laskerian for

all i < s and all j, then for any a-weakly Laskerian submodule X of Hs
a(M), the

R-module HomR(R/a, Hs
a(M)/X) is a-weakly Laskerian. In particular, the set of

associated primes of Hs
a(M)/X is finite. This is a generalization of [4, Theorem 2.2],

[6, Theorem 2.1], [3, Theorem 2.2], [13, Theorem B(β)], [1, Theorem 4.2] and [16,

Proposition 3.1].

It is shown in [14] that if M and N are finitely generated R-modules such that

SuppRM ⊆ V (a) and Hi
a(N) is minimax for all i < s, then the set of associated

prime ideals of the generalized local cohomology module Hs
a(M,N) is finite. As a

consequence of the main result, in Theorem 3.5 we extend this result to any finitely

generated R-module M not necessarily a-torsion and with the a-weakly Laskerian

condition on N and Hi
a(N) instead of finitely generated and minimax conditions.
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2. a-weakly Laskerian modules

Recall that for an R-module M , the Goldie dimension of M is defined as the

cardinal number of the set of indecomposable submodules of E(M) which appear in

a decomposition of E(M) into a direct sum of indecomposable submodules. We use

GdimM to denote the Goldie dimension of M . For a prime ideal p, let µ0(p,M)

denote the 0-th Bass number ofM with respect to the prime ideal p. It is known that

µ0(p,M) > 0 if and only if p ∈ AssRM . So, by definition of the Goldie dimension it

follows that

GdimM =
∑

p∈AssRM

µ0(p,M).

Also, for any ideal a of R, the a-relative Goldie dimension of M, which is introduced

in [7], is defined as

Gdima M :=
∑

p∈AssRM∩V (a)

µ0(p,M).

In [18], Zöschinger introduced the class of minimax modules. An R-module M is

called minimax if there is a finite submodule N of M such that M/N is Artinian. It

is shown in [18] that when R is a Noetherian ring, an R-moduleM is minimax if and

only if for any submodule N ofM , GdimM/N < ∞. Later, authors in [1] introduced

the concept of an a-minimax module. An R-module M is said to be a-minimax if

for any submodule N of M , GdimaM/N < ∞.

On the other hand, anR-moduleM is called weakly Laskerian if for any submodule

N of M , the set AssRM/N is finite.

Note that Gdima M = GdimΓa(M) by [7, Lemma 2.6]. This motivates the fol-

lowing definition:

Definition 2.1. An R-module M is said to be a-weakly Laskerian if the set of

associated primes of the a-torsion submodule of any quotient module of M is finite;

i.e., for any submodule N of M , the set AssRΓa(M/N) is finite.

We claim that the class of a-weakly Laskerian modules is strictly larger than

the class of weakly Laskerian modules. To see this, consider the Z-module M =
⊕

p∈Ω

Z/pZ, where Ω is the set of all prime integers. It is easy to see that AssZ(M) =

{pZ; p ∈ Ω}. So, M has infinitely many associated prime ideals. Hence, M is not

weakly Laskerian, but if q is a fixed prime integer, then AssZΓqZ(M/N) = {qZ} for

any submodule N of M . Therefore, M is a qZ-weakly Laskerian Z-module.

Let a be an ideal of R and M an R-module. Any weakly Laskerian module is

a-weakly Laskerian. So, any Noetherian and any Artinian R-module is a-weakly

Laskerian. Also, any a-minimax R-module is a-weakly Laskerian. In particular, any
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minimax R-module is a-weakly Laskerian. If either a = 0 or M is a-torsion, then M

is a-weakly Laskerian if and only if M is weakly Laskerian. If b is a second ideal of

R such that a ⊆ b and M is a-weakly Laskerian, then M is b-weakly Laskerian.

Now, we state an important property of the class of a-weakly Laskerian modules.

Proposition 2.2. Let a be an ideal of R and let 0 → M ′ → M → M ′′ → 0 be

an exact sequence of R-modules. Then M is a-weakly Laskerian if and only if both

M ′ and M ′′ are a-weakly Laskerian.

P r o o f. We may assume that M ′ is a submodule of M and M ′′ = M/M ′. If

M is a-weakly Laskerian, it is easy to see that M ′ and M ′′ are a-weakly Laskerian.

Now, suppose that M ′ and M/M ′ are a-weakly Laskerian. Let N be an arbitrary

submodule of M . Then the exact sequence

0 →
M ′ +N

N
→

M

N
→

M

M ′ +N
→ 0

induces the exact sequence

0 → Γa

( M ′

M ′ ∩N

)

→ Γa

(M

N

)

→ Γa

( M

M ′ +N

)

.

Now, since AssRΓa(M/N) ⊆ AssRΓa(M
′/M ′ ∩N) ∪ AssRΓa(M/M ′ +N) and the

sets AssRΓa(M
′/M ′ ∩N) and AssRΓa(M/M ′ +N) are finite, it follows that the set

AssRΓa(M/N) is finite, and so M is a-weakly Laskerian. �

Corollary 2.3. Let a be an ideal of R.

(i) The class of a-weakly Laskerian modules is closed under taking submodules,

quotients and extensions, i.e., it is a Serre subcategory of the category of all

R-modules. In particular, any finite sum of a-weakly Laskerian modules is a-

weakly Laskerian.

(ii) Let M and N be two R-modules. If M is finitely generated and N is a-weakly

Laskerian, then ExtiR(M,N) and TotRi (M,N) are a-weakly Laskerian for all

i > 0.

Corollary 2.4. If M is an a-weakly Laskerian R-module, then Γa(M) is weakly

Laskerian.

Proposition 2.5. Let a and b be ideals of R. Let M be an a-weakly Laskerian

R-module such that AssRM ⊆ V (b). Then Hi
b(M) is a-weakly Laskerian for all

i > 0.
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P r o o f. For i = 0, H0
b(M) = Γb(M) is a-weakly Laskerian by Proposition 2.2.

Since AssRM/Γb(M) ⊆ AssRM , it follows from AssRM ⊆ V (b) that M = Γb(M).

Hence, by [5, Corollary 2.1.7 (ii)], Hi
b(M) = 0 for all i > 0. So, Hi

b(M) is a-weakly

Laskerian for all i > 0, as required. �

Remark 2.6. It is clear that for any ideals a and b of R,

AssRΓa(HomR(R/b,M)) = AssRHomR(R/b,Γa(M))

= AssRΓa(M) ∩ V (b).

So, if (0 :M b) is an a-weakly Laskerian R-module and SuppRM ∩V (a) ⊆ V (b), then

the set AssRΓa(M) is finite.

The following theorem is useful for the proof of the main result of the paper.

Theorem 2.7. Let a be an ideal of R,M a finitely generated R-module and N an

arbitraryR-module. Suppose that for some s > 0, ExtiR(M,N) is a-weakly Laskerian

for all i 6 s. Then for any finitely generated R-module L with SuppRL ⊆ SuppRM ,

ExtiR(L,N) is a-weakly Laskerian for all i 6 s.

P r o o f. By Gruson’s Theorem, since SuppL ⊆ SuppM , there exists a finite fil-

tration

0 = L0 ⊂ L1 ⊂ . . . ⊂ Ln = L

of submodules of L such that each of the factors Lj/Lj−1 is a homomorphic image

of a direct sum of finitely many copies of M . In view of the short exact sequence

0 → Lj−1 → Lj → Lj/Lj−1 → 0 for j = 1, . . . , n and induction on n, it suffices

to prove the case when n = 1. So, for some positive integer t and some finitely

generated R-module K we have an exact sequence

0 → K → M t → L → 0.

This induces the long exact sequence

. . . → Exts−1
R (K,N) → ExtsR(L,N) → ExtsR(M

t, N) → . . . .

Now, we use induction on s. If s = 0, the result holds by Corollary 2.3. So, assume

that ExtiR(L
′, N) is a-weakly Laskerian for all i < s and all finitely generated R-

modules L′ with SuppRL
′ ⊆ SuppRM . Since SuppRK ⊆ SuppRM , by induction

hypothesis on s we have Exts−1
R (K,N) is a-weakly Laskerian. As ExtsR(M

t, N) ∼=

ExtsR(M,N)t, the result follows from Corollary 2.3. �
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Corollary 2.8. Let a and b be ideals of R, letM be a finitely generated R-module

and N an arbitrary R-module. Then the following conditions are equivalent:

(i) ExtiR(M/bM,N) is a-weakly Laskerian for all i > 0;

(ii) ExtiR(M/cM,N) is a-weakly Laskerian for all i > 0 and all ideals c ⊇ b;

(iii) ExtiR(L/bL,N) is a-weakly Laskerian for all i > 0 and any finitely generated

R-module L with SuppRL ⊆ SuppRM ;

(iv) ExtiR(M/pM,N) is a-weakly Laskerian for all i > 0 and every minimal prime

ideal p over b.

P r o o f. In view of Theorem 2.7, it suffices to show that (iv) implies (i). Let

p1, . . . , pn be the minimal primes over b and T = M/p1M ⊕ . . .⊕M/pnM . Then by

Corollary 2.3, ExtiR

( n
⊕

j=1

M/pjM,N
)

∼=
n
⊕

j=1

ExtiR(M/pjM,N) is a-weakly Laskerian.

Since

SuppR

( n
⊕

j=1

M/pjM

)

= SuppRM/bM,

it follows from Theorem 2.7 that ExtiR(M/bM,N) is a-weakly Laskerian, as required.

�

Corollary 2.9. Let a be an ideal of R, M a finitely generated R-module and N

an arbitrary R-module. Then the set

B = {b E R; ExtiR(M/bM,N) is a-weakly Laskerian for all i > 0}

is closed under multiplication of ideals.

P r o o f. Let b, c ∈ B. The exact sequence

0 → bM/bcM → M/bcM → M/bM → 0

induces the long exact sequence

. . . → ExtiR(M/bM,N) → ExtiR(M/bcM,N) → ExtiR(bM/bcM,N) → . . .

for all i > 0. So, by the assumption and Corollaries 2.3 and 2.8, it follows that

bc ∈ B. �
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3. Finiteness of the associated primes of local cohomology modules

In this section, we use the arguments of the previous section and we prove our main

theorem. Next, we give a finiteness result about the generalized local cohomology

modules that generalizes the main result of [14].

Proposition 3.1. Let a, b and c be ideals of R with b ⊆ c and let M be

an R-module. Let s be a non-negative integer such that ExtsR(R/c,M) and

ExtjR(R/c, Hi
b(M)) are a-weakly Laskerian for all i < s and all j. Then for any sub-

module X of Hs
b(M) such that Ext1R(R/c, X) is a-weakly Laskerian and any finitely

generated R-module T with SuppRT ⊆ V(c), the R-module HomR(T,H
s
b(M)/X) is

a-weakly Laskerian. In particular, the set AssRH
s
b(M) ∩ V (c) is finite.

P r o o f. The exact sequence

0 → X → Hs
b(M) → Hs

b(M)/X → 0

induces the following exact sequence:

. . . → HomR(T,H
s
b(M)) → HomR(T,H

s
b(M)/X) → Ext1R(T,X) → . . . .

So, by Corollary 2.3 and Gruson,s theorem, it is enough to show that HomR(R/c,

Hs
b(M)) is a-weakly Laskerian. For do this, we use induction on s. If s = 0, the

assertion is clear since

HomR(R/c, H0
b(M)) = HomR(R/c,M).

Now, suppose that s > 0 and that the claim has been proved for s − 1. Since

ExtjR(R/c,Γb(M)) is a-weakly Laskerian for all j > 0, in view of the exact sequence

0 → Γb(M) → M → M/Γb(M) → 0,

it follows that ExtsR(R/c,M/Γb(M)) is a-weakly Laskerian and

Hi
b(M) ∼= Hi

b(M/ΓbM).

So, we may assume that Γb(M) = 0. Let E be the injective hull of M and let

K = E/M . Hence, H0
b(E) = 0. Therefore, HomR(R/c, E) = 0. So, we obtain

the isomorphisms Exti−1
R (R/c, L) ∼= ExtiR(R/c,M) and Hi−1

b (L) ∼= Hi
b(M) for all

i > 0. Now, by induction hypothesis it follows that HomR(R/c, Hs−1
b (L)) is a-

weakly Laskerian and so HomR(R/c, Hs
b(M)) is a-weakly Laskerian. �
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Now we are in position to state our main result which is a generalization of [4,

Theorem 2.2], [3, Theorem 2.2] and [1, Theorem 4.2].

Theorem 3.2. Let M be an a-weakly Laskerian R-module and s be a non-

negative integer such that ExtjR(R/a, Hi
a(M)) is a-weakly Laskerian for all i < s

and all j. Then for any a-weakly Laskerian submodule X of Hs
a(M), HomR(R/a,

Hs
a(M)/X) is an a-weakly Laskerian R-module. In particular, the set of associated

primes of Hs
a(M)/X is finite.

P r o o f. It follows from Proposition 3.1 when a = b = c. Note that

AssR(HomR(R/a, Hs
a(M)/X)) = AssR(H

s
a(M)/X).

�

Remark 3.3. We recall that an R-module M is said to be an FSF module if

there is a finitely generated submodule N of M such that SuppRM/N is a finite set

(see [16]). It is easy to see that the class of weakly Laskerian modules includes the

class of FSF modules and also the class of FSF modules includes the class of minimax

modules. So, the main theorem of [16] is a direct consequence of [8, Corollary 2.7].

Moreover, clearly any R-module with finite support is weakly Laskerian. Hence, the

following result is a generalization of [8, Corollary 2.7] and [13, Theorem B(β)].

Corollary 3.4. Let M be an a-weakly Laskerian R-module and s a non-negative

integer such that Hi
a(M) is weakly Laskerian for all i < s. Then the set of associated

primes of Hs
a(M) is finite.

Now, we state our final result about finiteness of the set of associated prime ideals

of generalized local cohomology modules. The notion of the generalized local coho-

mology of two R-modules on a local ring (R,m) was first introduced by J.Herzog

in [9]. Afterward Bijan-Zadeh [2] generalized it to a system of ideals of an arbitrary

commutative Noetherian ring. For each i ∈ N0, the functor H
i
a(−,−) is defined by

Hi
a(M,N) = lim−→

n∈N

ExtiR(M/anM,N)

for all R-modules M and N . Clearly, this notion is a generalization of the ordinary

local cohomology module Hi
a(N), which corresponds to the case that M = R.

In [15] Mafi shows that if a is an ideal of R, andM is a finitely generatedR-module,

then for every R-module N and any positive integer s we have

AssR(H
s
a(M,N)) ⊆

s
⋃

i=0

AssR(Ext
i
R(M,Hs−i

a (N))).
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By virtue of this result we prove the following theorem which is a generalization of

[14, Theorem 7].

Theorem 3.5. LetM be a finitely generatedR-module andN an a-weakly Laske-

rian R-module. Assume that s is a non-negative integer such that Hi
a(N) is a-weakly

Laskerian for all i < s. Then the set of associated primes of Hs
a(M,N) is finite.

P r o o f. It is enough to show that ExtiR(M,Hs−i
a (N)) has finitely many asso-

ciated prime ideals for all 0 6 i 6 s. By the assumption and Corollary 2.3,

ExtjR(M,Hi
a(N)) is a-weakly Laskerian for all i < s and all j. Therefore, we see

AssR(Ext
i
R(M,Hs−i

a (N))) is finite for all 1 6 i 6 s by the fact that

Γa(Ext
j
R(M,Hi

a(N))) = ExtjR(M,Hi
a(N))

for all i and j. Also, by Theorem 3.2, AssRH
s
a(N) is finite. So, it follows from

AssRHomR(M,Hs
a(N)) = SuppRM ∩ AssRH

s
a(N)

that AssRHomR(M,Hs
a(N)) is a finite set. This completes the proof. �
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