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Abstract. In this paper, we mainly use the properties of the minimum eigenvalue of the
Fan product of M -matrices and Cauchy-Schwarz inequality, and propose some new bounds
for the minimum eigenvalue of the Fan product of twoM -matrices. These results involve the
maximum absolute value of off-diagonal entries of each row. Hence, the lower bounds for the
minimum eigenvalue are easily calculated in the practical examples. In theory, a comparison
is given in this paper. Finally, to illustrate our results, a simple example is also considered.
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1. Introduction

For convenience, the set {1, 2, . . . , n} is denoted by N, where n is any positive

integer. A matrix A = (aij) ∈ R
n×n is called a nonnegative (positive) matrix if

aij > 0 (aij > 0). A matrix A ∈ R
n×n is called a nonsingular M -matrix [1] if there

exists P > 0 and α > 0 such that

A = αI − P and α > ̺(P ),

where ̺(P ) is the spectral radius (Perron root) of the nonnegative matrix P and I is

the n×n identity matrix. Denote byMn the set of all n×n nonsingularM -matrices.

Denote

τ(A) = min{Reλ : λ ∈ σ(A)},

where σ(A) denotes the spectrum of A. If A ∈ Mn, then

τ(A) =
1

̺(A−1)

is a positive real eigenvalue, and the corresponding eigenvector is nonnegative [3].
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A matrix A is irreducible if there does not exist a permutation matrix P such that

PAPT =

[

A1,1 A1,2

0 A2,2

]

,

where A1,1 and A2,2 are square matrices.

Let A,B ∈ C
n×n. The Fan product of A and B is denoted by A⋆B ≡ C = (cij) ∈

C
n×n and is defined by

cij =

{

−aijbij , i 6= j,

aiibii, i = j.

If A,B ∈ Mn, then A⋆B is aM -matrix. Let A,B ∈ Mn. In [2], Fang gave a lower

bound for τ(A ⋆ B) as follows:

(1.1) τ(A ⋆ B) > min
16i6n

{aiiτ(B) + biiτ(A) − τ(A)τ(B)}.

In [4], Liu and Chen gave a sharper lower bound for τ(A ⋆ B) as follows:

(1.2) τ(A ⋆ B) > 1

2
min
i6=j

{aiibii + ajjbjj − [(aiibii − ajjbjj)
2

+ 4(aii − τ(A))(bii − τ(B))(ajj − τ(A))(bjj − τ(B))]1/2}.

In this paper, our aim is to propose some new lower bounds for the minimum

eigenvalue of the Fan product of two M -matrices.

2. Some lower bounds for the minimum eigenvalue of the

Fan product of M -matrices

Lemma 2.1 ([1]). If A ∈ Mn is irreducible, Az > kz for a nonnegative nonzero

vector z, then k 6 τ(A).

Lemma 2.2 (Cauchy-Schwarz inequality). For any vectors u = (u1, u2, . . . , un) ∈

R
n and v = (v1, v2, . . . , vn) ∈ R

n, it holds that

∣

∣

∣

∣

n
∑

i=1

uivi

∣

∣

∣

∣

6

( n
∑

i=1

u2

i

)( n
∑

i=1

v2i

)

.

Theorem 2.1. If A = (aij) ∈ Mn and B = (bij) ∈ Mn, then

(2.1) τ(A ⋆ B) > min
16i6n

{(aii − αi)bii + αiτ(B)},

where αi = max
k 6=i

{|aik|}, for all i ∈ N.
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P r o o f. It is easy to see that (2.1) holds with equality for n = 1. Next, we assume

that n > 2. Two cases will be discussed in the following.

Case 1. If A ⋆ B is irreducible, then A and B are irreducible. Hence, there exists

a positive vector v = (v1, v2, . . . , vn)
T such that

Bv = τ(B)v.

So, we have

biivi −
∑

j 6=i

|bij |vj = τ(B)vi, ∀i ∈ N,

i.e.,

(2.2)
∑

j 6=i

|bij |vj = [bii − τ(B)]vi, ∀i ∈ N.

Let αi = max
k 6=i

{|aik|}, for all i ∈ N. Denote C = A ⋆ B. For all i ∈ N, by (2.2), we

have

(Cv)i = aiibiivi −
∑

j 6=i

|aij ||bij |vj = aiibiivi −
∑

j 6=i

|bij ||aij |vj

> aiibiivi − αi

∑

j 6=i

|bij |vj = aiibiivi − αi[bii − τ(B)]vi

= [(aii − αi)bii + αiτ(B)]vi.

By Lemma 2.1, we obtain

τ(A ⋆ B) > min
16i6n

{(aii − αi)bii + αiτ(B)}.

Case 2. If A ⋆ B is reducible, let T = (tij) be the permutation matrix such that

t12 = t23 = . . . = tn−1,n = tn,1 = 1 and the remaining tij = 0. Then there exists

a positive real number ε such that A−εT and B−εT are two irreducibleM -matrices,

i.e., (A − εT ) ⋆ (B − εT ) is irreducible. Apply Case 1 and then use the continuity

argument to complete the proof. �

Since the Fan product is commutative, the inequality (2.1) remains correct if A

and B are switched. Moreover, the following result can be immediately obtained.

Theorem 2.2. If A = (aij) ∈ Mn and B = (bij) ∈ Mn, then

(2.3) τ(A ⋆ B) > min
16i6n

{(bii − βi)aii + βiτ(A)},

where βi = max
k 6=i

{|bik|}, for all i ∈ N.

From Theorem 2.1 and Theorem 2.2 we can obtain the following result.
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Theorem 2.3. If A = (aij) ∈ Mn and B = (bij) ∈ Mn, then

τ(A ⋆ B) > max{ min
16i6n

{(aii − αi)bii + αiτ(B)}, min
16i6n

{(bii − βi)aii + βiτ(A)}},

where αi = max
k 6=i

{|aik|} and βi = max
k 6=i

{|bik|}, for all i ∈ N.

Theorem 2.4. If A = (aij) ∈ Mn and B = (bij) ∈ Mn, then

(2.4) τ(A ⋆ B) > min
16i6n

{aiibii − α
1/2
i β

1/2
i [aii − τ(A)]1/2[bii − τ(B)]1/2},

where αi = max
k 6=i

{|aik|} and βi = max
k 6=i

{|bik|}, for all i ∈ N.

P r o o f. It is easy to see that (2.4) holds with equality for n = 1. Next, we assume

that n > 2. Two cases will be discussed in the following.

Case 1. If A ⋆ B is irreducible, then A and B are irreducible. There exist two

positive vectors u = (u2

1
, u2

2
, . . . , u2

n)
T and v = (v2

1
, v2

2
, . . . , v2n)

T such that

Au = τ(A)u,

and

Bv = τ(B)v.

In order to prove the following, let ui > 0 and vi > 0 for all i ∈ N. Hence, we have

aiiu
2

i −
∑

j 6=i

|aij |u
2

j = τ(A)u2

i , ∀i ∈ N,

and

biiv
2

i −
∑

j 6=i

|bij |v
2

j = τ(B)v2i , ∀i ∈ N,

i.e.,

(2.5)
∑

j 6=i

|aij |u
2

j = [aii − τ(A)]u2

i , ∀i ∈ N,

and

(2.6)
∑

j 6=i

|bij |v
2

j = [bii − τ(B)]v2i , ∀i ∈ N.

Let αi = max
k 6=i

{|aik|} and βi = max
k 6=i

{|bik|}, for all i ∈ N. Define a positive vector

z = (z1, z2, . . . , zn)
T , where

zi = uivi, ∀i ∈ N.
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Denote C = A ⋆ B. For all i ∈ N, by Lemma 2.2 and equalities (2.5), (2.6), we have

(Cz)i = aiibiizi −
∑

j 6=i

|aij ||bij |zj = aiibiizi −
∑

j 6=i

|bij ||aij |ujvj

> aiibiizi −

(

∑

j 6=i

|aij |
2u2

j

)1/2(
∑

j 6=i

|bij |
2v2j

)1/2

> aiibiizi − α
1/2
i β

1/2
i

(

∑

j 6=i

|aij |u
2

j

)1/2(
∑

j 6=i

|bij |v
2

j

)1/2

= aiibiizi − α
1/2
i β

1/2
i [aii − τ(A)]1/2[bii − τ(B)]1/2uivi

= (aiibii − α
1/2
i β

1/2
i [aii − τ(A)]1/2[bii − τ(B)]1/2)zi.

By Lemma 2.1, we get

τ(A ⋆ B) > min
16i6n

{aiibii − α
1/2
i β

1/2
i [aii − τ(A)]1/2[bii − τ(B)]1/2}.

Case 2. If A ⋆ B is reducible, the proof is similar to the one of Theorem 2.1. �

3. Example

In this section, we will show an example to illustrate our results.

Example 3.1 ([4]). Consider two 3× 3 M -matrices as follows.

A =





2 −1 0

0 1 −0.5

−0.5 −1 2



 , B =





1 −0.25 −0.25

−0.5 1 −0.25

−0.25 −0.5 1





By direct calculation, τ(A) = 0.5402, τ(B) = 0.3432 and τ(A ⋆ B) = 0.9377.

According to inequalities (1.1) and (1.2), we have

τ(A ⋆ B) > min
16i63

{aiiτ(B) + biiτ(A) − τ(A)τ(B)]} = 0.6980

and

τ(A ⋆ B) > 1

2
min
i6=j

{aiibii + ajjbjj − [(aiibii − ajjbjj)
2

+ 4(aii − τ(A))(bii − τ(B))(ajj − τ(A))(bjj − τ(B))]1/2} = 0.7654.
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According to inequalities (2.1), (2.3) and (2.4), we have

τ(A ⋆ B) > min
16i63

{(aii − αi)bii + αiτ(B)} = 0.6716,

τ(A ⋆ B) > min
16i63

{(bii − βi)aii + βiτ(A)} = 0.7701,

and

τ(A ⋆ B) > min
16i63

{aiibii − α
1/2
i β

1/2
i [aii − τ(A)]1/2[bii − τ(B)]1/2} = 0.7252,

respectively.

Although we can not prove that our results are sharper than the ones of [2], [4]

in theory, we can see that our results are sharper than the ones of [2], [4] for some

matrices from Example 3.1.

Addendum. After this paper was accepted, I learned that Theorem 2.3 is the

same as Theorem 2 in the paper H. Li: New estimation of the eigenvalue bounds of

the Hadamard product and the Fan product of matrices, Henan Science, 30 (2012),

680–683; but my results are independent and obtained by a different method.
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