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Abstract. In this paper, some new results on complete convergence and complete mo-
ment convergence for sequences of pairwise negatively quadrant dependent random variables
are presented. These results improve the corresponding theorems of S. X. Gan, P.Y. Chen
(2008) and H.Y.Liang, C. Su (1999).
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1. INTRODUCTION

A sequence of random variables {U,,n > 1} is said to converge completely to a
constant a if for any € > 0,

oo

ZP(|U” —al >¢) < 0.

n=1
This concept of complete convergence was given for the first time by Hsu and Rob-
bins [6].
Let {Z,,n > 1} be a sequence of random variables and a,, > 0, b, > 0, ¢ > 0. If

o0
Z anE{b,'|Z,| —€}% < oo for some or all € > 0,

n=1
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then the above result was called the complete moment convergence. This concept
was introduced by Chow [3].

Definition 1.1. Two random variables X and Y are said to be negatively quad-
rant dependent (abbreviated to NQD) if

P(X <z,Y <y)<P(X<z)P(Y <y) forallzandy.

A sequence of random variables {X,,,n > 1} is said to be pairwise NQD if every two
random variables are NQD. This concept was introduced by Lehmann [8].

Definition 1.2. A finite family of random variables { Xy, 1 < k < n} is said to
be negatively associated (abbreviated to NA) if for any disjoint subsets A and B of
{1,2,...,n} and any real coordinate-wise nondecreasing functions f on R* and ¢
on RB,

Cov(f(X;,i€ A),9(X;,j€B)) <0

whenever the covariance exists. An infinite family of random variables is NA if every
finite subfamily is NA. This concept was introduced by Joag and Proschan [7].

As pointed out in Joag and Proschan [7], NA class is a special case of pairwise
NQD sequences. NA has been applied to reliability theory, multivariate statistical
analysis and percolation theory, and attracted extensive attentions. So it is very
significant to study probabilistic properties of this wider pairwise NQD class. Since
the paper of Lehmann [8] appeared, the convergence properties of pairwise NQD ran-
dom sequences were studied in various aspects: the moment inequalities (Wu [16]),
the strong convergence (Matula [12], Liang et al. [10], Li and Yang [9], Wu and
Jiang [18]), the weak convergence (Meng and Lin [13], Gan and Chen [5]), the com-
plete convergence (Wu [16], Wan [15], Gan and Chen [4], Baek et al. [1]), the mean
convergence (Cabrera and Volodin [2], Sung et al. [14], Wu and Guan [17]).

Recently Gan and Chen [4] proved the following theorems.

Theorem A. Let 1 < p < 2, ap > 1, and let {X,,,n > 1} be a pairwise
NQD sequence with EX,, = 0. Suppose that there exists a constant C > 0 and
a nonnegative random variable X such that

sup P(|X,| > 2) < CP(X > x)

n>1

for all x > 0 and EXP < oo. Then for all € > 0,

[ee] n
(1.1) Znap—QP( > Xk
n=1 k=1

> E’I’La> < 00.
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Theorem B. Let {X,,n > 1} be a pairwise NQD sequence with mean zero,
{an,n > 1} a positive number sequence with a,, T co and {¥,,(t),n > 1} a sequence
of nonnegative and even functions such that for eachn > 1, ¥,,(t) > 0 as t > 0 and

v, v,
(1.2) Ln([t]) 1T and Ln([t) + oaslt| 1.

2] t?
If

o BUL(X)
1.3 SERLASLVAP YN
) 22 e
then for all € > 0,
(1.4) P(ZXk >5an> < 00
n=1 k=1

Liang and Sung [11] obtained the following complete convergence theorem.
Theorem C. Suppose p > 2. Let {Xi,k > 1} be a sequence of zero mean

NA random variables, and let {ank,1 < k < n,n > 1} be an array of real numbers
satisfying the conditions

n
(1.5) Z a2, =0(n°) asn — oo,
lank] = O(1), 1<k<n, n=1, forsome0<d<2/p.

If B, =: sup E| Xy P < oo, then for alle > 0,
k>1

E anz

> 6n1/p> < 0.

(19 IS

In this work, we will improve Theorem A under some weaker conditions, and will
improve Theorem B by obtaining a stronger conclusion under some weaker condi-
tions. In addition, we will improve Theorem C under some similar conditions.

We will state the next lemmas (cf. Lehmann [8], Wu [16]), which are very important
in our study.
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Lemma 1.1. Let {X,,,n > 1} be a sequence of pairwise NQD random variables.
Let {fn,n > 1} be a sequence of increasing functions. Then {f,(X,),n > 1} is
a sequence of pairwise NQD random variables.

Lemma 1.2. Let {X,,,n > 1} be a sequence ofpa1rW1se NQD random variables

with mean zero and EX? < oo, and Tj;(k) = Z X;,j>0. Then

1=j5+1
j+k j+n
. 2 < . 2 < 2 2.
E(T;(k)) \C‘ ‘HEX Elglgécn(T](k)) < Clog nzilEXZ
1=7 1=y

Below, C' will denote generic positive constants, whose value may vary from one
application to another, I(A) will indicate the indicator function of A.

2. COMPLETE CONVERGENCE FOR PAIRWISE NQD SEQUENCE

In this section we will give some complete convergence theorems for sequences of
pairwise NQD random variables which improve Theorem A and B.

Theorem 2.1. Let {X,,,n > 1} be a sequence of pairwise NQD random variables,
and {c,,n > 1} a sequence of positive constants. Suppose that for some § > 0

(2.1) ZCHZP (| Xg| > 0)

n=1

and

(2.2) > en > EXRI(|Xk| < 6) < o0

n=1 k=1

Then for all € > 0,

(2.3) ch <
Proof. For any 1 < k < n, we have
ch ( > (Xk — EXpI(|1 X5 < 5))‘ > e>
k=1
< chP< > (Xk — EXpI(|1X5| < 5))‘ >e, ([ J{IXkl > 5})
= k=1 k=1

+ ch ( Z X — EXkI(|Xk| < 5))‘ > e, §1{|Xk| < 5})

k=1
476

3

> (X — EXpI(|Xx| < 5))‘ > 5) < 0.
k=1




n

> (KT <8 - EXI(Xi] <) > )

k=1

Mg

cnzn:P (| X%] >5)+icnP<
k=

1 1 n=1

I+ 1.

3
I

By (2.1), we can get Iy < oo. Then we prove Iy < co. Let

Vi = —61(Xp < —0) + XeI(|Xu| < 8) + 01(Xp > 0),
Z = —5I(Xk < —5) + 6I(Xk > (5)

Clearly {Yx,1 < k < n} is a sequence of pairwise NQD random variables by Lem-
ma 1.1. Then
)

n
> (Vi — EYi — Zp + EZy)| >

n=1 k=1
(o ] n

< chp( Z(Zk —EZ)| > 5/2) ch ( Z Yi — EY)| > 5/2)
n=1 k=1 k=1
=: I3+ 1.

For I5, by Markov inequality, the definition of Zj, and (2.1), we have

o0
I3<CY B
< C’chZE|Zk| < C’chZP(|Xk| > §) < 0.
n=1 k=1 n=1 k=1

> (Zx - EZy)
k=1

For 14, by Markov inequality, Lemma 1.2 and C,-inequality, we have

o0 n
CchZEYk—EYk <CDY ) EY,
n=1 n=1 k=1

—CchZEXk (| Xe| < Z P(|Xy| > 0).

By (2.1) and (2.2), we have Iy < co.
The proof is complete. O
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Corollary 2.1. Let {X,,,n > 1} be a sequence of pairwise NQD random variables
with EX,, =0 for alln > 1, and let {c,,n > 1} be a sequence of positive constants.
Then (2.1), (2.2) and

(2.4) > EXiI(|Xk] < 5)‘ —0 asn— 00

k=1

imply

n
> X

k=1

(2.5) g:lcnp(

>€> < oo foralle> 0.

With Theorem 2.1 in hand, the proof of Corollary 2.1 is obvious and hence is
omitted.

ap—2

Taking ¢, =n , and replacing X, by X /n® in Corollary 2.1, we can get the

following corollary.

Corollary 2.2. Let 1 < p < 2, ap > 1, and let {X,,,n > 1} be a sequence of
pairwise NQD random variables with EX, = 0. Suppose that for some § > 0

(2.6) > 72N " P(|Xg| > o) < oo,
n=1 k=1
oo n
(2.7) D a2 N EXRI(| Xg| < 0n) < oo,
n=1 k=1
and
n
(2.8) n= ZEXkI(|Xk| <o) =0 asn— oo.

k=1
Then (1.1) holds.

Remark 2.1. The following statements show that the conditions of Corollary 2.2
are weaker than those of Theorem A.
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From the conditions of Theorem A and Lemma 1.4 of Gan and Chen [4], we have

D n 2N U P(1Xg| > 0n%) < C Y nPTIP(X > 6n®) < CEXP < oo,

n=1
oo n
D nPTE N EXRI(| Xk| < 6n%)
n=1 k=1

<CY nPITPEXPI(X < on®)+C Y n"T'P(X > 6n®)

n=1 n=1

<O a2 N EXPI(6(m — 1) < X < 0m®) + CEXP
=C Y EX’I(6(m—1)* <X <dm®) > n*P7' 72 4 CEXP

<C Y mPPEX?I(3(m —1)* < X < 6m®) + CEX? < CEXP < o0

m=1

and

n—()’

n
> EXiI(|Xy| > on®)
k=1

n
n ) EXpI(|Xk| < 6n%)
k=1

n-¢ ZE|Xk|I(|Xk| > 6n®) < Cn'"*PEXP -0 asn — oo.
k=1
Therefore, we know that Corollary 2.2 improves Theorem A.
Let {an,n > 1} be a positive number sequence with a, 1 oco. Taking ¢, = 1
and 6 = 1, and replacing X by Xi/a, in Corollary 2.1, we can get the following
corollary.

Corollary 2.3. Let {X,,,n > 1} be a sequence of pairwise NQD random variables
with EX,, =0 for alln > 1, and {a,,n > 1} a positive number sequence with a,, T cc.
Suppose

(2.9) SN P(1Xk| > an) < 0,

n=1k=1
o0 n
EX?

(2.10) kI (| Xk| < an) < oo,
n=1k=1

and

(2.11) a,? ZEXkI(|Xk| <ap)| —0 asn— oco.

k=1

Then for all € > 0, (1.4) holds.
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Remark 2.2. The following statements show that the conditions of Corollary 2.3
are weaker than those of Theorem B.

From the conditions of Theorem B, we have

i Y P(1X| > an) < ZZE|X’“| I(|X3| > an) < iim’“( < o0,
n=1k=1 n=1k=1 n1k1\1l’“(a
z; =1 Hil s )ér;kzl Yr(an =
and

n

> EXiI(|Xk| > an)

n
—1

a,' | Y EXiI(|Xy| < an)| =a,

k=1 k=1
n
BV (Xy)
kE_ I(| Xk| > an) < E Trlan) —0 asn— oo.

Therefore, we know that Corollary 2.3 improves Theorem B.

Theorem 2.2. Let {X,,,n > 1} be a sequence of pairwise NQD random variables,
and {c,,n > 1} a sequence of positive constants. Suppose that for some § > 0

(o) n
(2.12) Z Cn logQHZP(|Xk| > J) < 00
n=1 k=1
and
(2.13) > enlog?ny  EXFI(|Xk| < 6) < oo
n=1 k=1

Then for all € > 0,

(2.14) f: Cn (1@% Z(Xk — EX,I(|X5| < ))‘ > 5—:) < .
n=1 k=

By means of Lemma 1.2 and an argument similar to that in the proof of The-
orem 2.1, we can easily prove Theorem 2.2. Therefore, we omit the details of the
proof.

The next corollary is similar to Theorem 1.1 of Liang and Su [11]. However, we
consider pairwise NQD instead of NA, and our result does not require the moments
of order p > 2 of random variables {X,,,n > 1} to exist.
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Corollary 2.4. Let {X,,,n > 1} be a sequence of pairwise NQD random variables
with EXy, = 0 and E|Xi|P < oo forallk > 1 and 1 < p < 2. Let {ank, 1 <k < n,
> 1} be an array of real numbers satisfying the condition

n
(2.15) Z lank|PE|Xk|P = O(n®) asn — oo,
k=1

for some 0 < § < 1. Then for alle > 0 and ap > 1,

Zanka

>en ) < 0.
1<j<n

o0
(2.16) Znap2P< max
n=1

Proof. Taking ¢, = n®~2 and replacing X by a,,Xx/n® for 1 < k < n,

n > 1 in Theorem 2.2, by (2.15) and 0 < § < 1 we have
o0 n
Z n®?~2log?n Z P(lank Xg| > dn)
n=1 k=1

n~?log* n2|ank|pE|Xk|pI(|anka| > on®)
k=1

3 HMX

<CZ n~ 0 log?n < 0o

n=1

and

(o) n
Z nP=2-2%og? Z a2 EXZI(|ank Xk| < 0n%)
n=1 k=1

o0 n
<C Z n"2log’n Z |ank|P Bl Xk [P I(|ank Xi| < 0n)
n=1 k=1

[ee]
C Z n~ 2t 10g? n < 0.

To complete the proof, it suffices to note that by EXj = 0 and (2.15) we get

o EX,1 X
n 1121ja<xn2ank k (|ank k| )

n
<n ¢ Z |ank|E|Xk|I(|anka| > 5’1’La)
k=1

n
< Cn_(’pz |ank|PE| XgPT(Jank Xi| > 0n%) < Cn®~* =0 as n — oco.
k=1
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3. COMPLETE MOMENT CONVERGENCE FOR PAIRWISE NQD SEQUENCE

In this section, we will give some moment complete convergence theorems for
sequences of pairwise NQD random variables, which improve Theorem B.

Theorem 3.1. Let {X,,,n > 1} be a sequence of pairwise NQD random variables,
and {c,,n > 1} a sequence of positive constants. Suppose that for some 6 > 0

(3.1) > en > EIXilI(1Xk| > 6) < o0
n=1 k=1
and
n
(3.2) > EIXi|I(|Xk| > 6) =0 asn— oo.
k=1

Then for all e > 0, (2.2), (3.1) and (3.2) imply

(3.3) nil an{

> (Xk - EXpI(|Xy| < 5))‘ - g} < o0.
k=1 +

n
Proof. Let S, = > (Xi — EXpI(|]Xk| <9)). For any fixed € > 0,
k=1

chE{|S|—e}+—ch/ P(ISn] —e > t)dt
:f: {/ |S|>5+t)dt+/;oP(|Sn|>€+t)dt}

oo

Z |5|>E+ch/ P(|S,| > t)d

= 15 +16.

Noting that (3.1) implies (2.1), by Theorem 2.1 in this paper we have I5 < co. Hence,
we need only to show Ig < co. Clearly,

P(|Sy| > t) = P<|Sn| >t (X > t}) +P(|Sn| >t (){1Xk] < t})

k=1 k=1
n

< P(IX4| >t)+P<
k=1

n

> (NI 1) - EXI(Xi] < 6)| > ).

k=1
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Therefore, we have

n=1 k=1
o0 00
+y° cn/ P( (XpI(|Xk| <t) — EXpI(|X3] < 5))‘ > t) dt
n— 1)
= I; + 18
By (3.1), we have
Z E|Xk|I(|Xk| >4) < oo

For Ig, we let

Y. = —tI(Xk < —t) +XkI(|Xk| < t) +tI(Xk > t),
Z = —tI(Xk < —t) +tI(Xk > t).

Then we have

icn/wP(
n=1 s

< icn/wP<
n=1 4

From (3.2), we have

> (Vi — EYi — Zi + EZy + EXiI(6 < | Xi| < t))‘ > t) dt
k=1

n

> (Yi— EYi — Zu+ EZy)| +

> EXiI(0 < |Xi| < t)‘ > t> dt.
k=1

k=1

n
Y EXLI(0 < |X < Y CB|IXG|I(6 < | Xk| <t
max ; RI(6 < |Xi| < )‘ max Z [ Xk 1(6 < [Xk| <t)
ZP|Xk|>6 1ZE|Xk|I(|Xk|>6)—>O as n — oo.
k=1 k=1

Hence, we have

o] o) n
Ig < ch/ P(Z(Yk—EYk—Zk—i—EZk) >t/2> dt
n=1 6 k=1
o %) n
< ch/ P( (Zi — EZy,) >t/4) de
n=1 6 k=1
+ch/ P( (Y — EY) >t/4> dt
n=1 J k=1
=:Ig+ 1o
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By the Markov inequality, the definition of Z; and (3.1), we have

czan/ 7 E|Z,| dt < CchZ/ P(| X, > t)d
n=1 n=1
CchZE|Xk|I |Xy| > 0) <
n=1

Let N = [§] + 1, then by Markov inequality, C,-inequality and Lemma 1.2, we

have
2
IIO Czcn/ t 2E< Yk_EYk; > dt CZCnZ/ = 2EYk dt
n=1

:CchZ/ t2EX2I(|X5| < N)dt
n=
—l—CZCnZ/ 75—2EX,c (N < |Xi| <t)dt

n=1

+CZCnZ/ P |Xk|>t dt— 110+110+I{/(;-

n=1

By (2.2) and (3.1), we have
I, < CchZEXk (|1 Xe| < N)
n=1
n

:CZ ZEXk (1X%] < +CNZ k15<|Xk| N)
n=1 k=1 =1 k

Ccy e ZEXk (XKl <O +CND ¢ ZE|Xk|I|Xk|>5)

n=1 n=1 k=

For I}, since

CchZ/ t2EXAI(N < |X;| <t)dt =0,
n=1
we have

I{’()—CchZ/ t2EXZI(N < | X3 <t)dt

n=1
= cicnz > /m+1t—2EX,§I(N < | Xk < t)dt

1 k=1m=N""™
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m2EXFI(N < |Xp| <m+1)

/(/;

M8
613
WK

s
Il
o
I
3

I

z

m
m2 Y EXPI(s < |Xk| <s+1)
s=N

y)
NE
-
NE

3
l‘
>~
l‘
i
2

y)
NE
-
hE

[ee]
EXPI(s < |Xp| <s+1) > m™>
m=s

3
I
—
=~
Il
_
w
I
=z

sTTEXPI(s < |Xi| <s+1)

3
I
—

=

/(/;
[M]8
WK

sl

i
2

N
Q
(]2

en ST EIXLI(IX5] > N) < oo

3
Il
i
ES
I
-

By an argument similar to that in the proof of I7 < oo, we prove I} < co. The
proof is complete. O

Corollary 3.1. Let {X,,,n > 1} be a sequence of pairwise NQD random variables
with EX,, =0 for alln > 1, and {¢,,n > 1} a sequence of positive constants. Then
for alle > 0, (2.2), (3.1) and (3.2) imply

(3.4) g:l an{

n

> X

k=1

—6} < 0.
+

With Theorem 3.1 in hand, the proof of Corollary 3.1 is obvious and hence is
omitted.

Let {an,n > 1} be a positive number sequence with a, 1 co. Taking ¢, = 1
and § = 1, and replacing Xy by Xy /a, in Corollary 3.1, we can get the following
corollary.

Corollary 3.2. Let {X,,,n > 1} be a sequence of pairwise NQD random variables
with EX,, =0 for alln > 1, and {a,,,n > 1} a positive number sequence with a,, 1 co.
Then for all € > 0,

(3.5) i zn: ELXk|I(|Xk| > an) < o0

and (2.10) imply

(3.6) i a;lE{

Moreover, (1.4) holds.
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Remark 3.1. Note that (3.5) implies

—~ E|X
ZMI(|Xk|>an)—>O as n — 00.
a

=1 "
Hence we omit this condition in Corollary 3.2.

The following statements show that the conditions of Corollary 3.2 are weaker
than those of Theorem B, but the conclusion of Corollary 3.2 is much stronger than
that of Theorem B.

First, by an argument similar to that in Remark 2.2, we know that the conditions
of Theorem B imply (3.5) and (2.10).

Secondly, we can get
1E{ Zxk —Ean} = Za;l/ P< > Xk

1 + =1 0 k=1
> X

n=—
o) an o)

>Za;1/0 P( >5an+t>dt>ezP(
n=1 k=1 n=1

To sum up, we know that Corollary 3.2 improves Theorem B.

> eca, + t) dt

D

n
Xl > 2€an>.

k=1

Theorem 3.2. Let {X,,,n > 1} be a sequence of pairwise NQD random variables,
and {c,,n > 1} a sequence of positive constants. Suppose that for some § > 0

o0 n

(3.7) chlog2n2E|Xk|I(|Xk| >J) < o0
n=1 k=1

Then for all € > 0, (2.13), (3.2) and (3.7) imply

> (Xk — EXpI(|1 X5 < 5))‘ - g} < oo.
+

By means of Lemma 1.2 and an argument similar to that in the proof of The-
orem 3.1, we can easily prove Theorem 3.2. Therefore, we omit the details of the
proof.

Acknowledgement. The authors are grateful to the referee for carefully
reading the manuscript and for providing some comments and suggestions which led
to improvements in the paper.
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