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ON DISCRETENESS OF SPECTRUM OF A FUNCTIONAL
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Abstract. We study conditions of discreteness of spectrum of the functional-differential
operator

Lu = −u
′′ + p(x)u(x) +

∫ ∞

−∞
(u(x)− u(s)) dsr(x, s)

on (−∞,∞). In the absence of the integral term this operator is a one-dimensional
Schrödinger operator. In this paper we consider a symmetric operator with real spec-
trum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated
operator. We also obtain one simple condition for discreteness of spectrum.
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1. The problem

1.1. Introduction. The first result about discreteness of the spectrum for the

Schrödinger operator

(1.1) L0u = −u′′ + pu

where u(x) is defined on the whole axis R = (−∞,∞) and p(x) assumed to be

continuous (and its n-dimensional variant) was obtained by K. Friedrichs [4], [5].

The spectrum is discrete and bounded from below if lim
x→∞

p(x) = +∞. A necessary
and sufficient condition of discreteness of spectrum for the differential operator (1.1)

was obtained by A.M.Molchanov [14]. The spectrum is discrete and bounded from

below if and only if for any a > 0

lim
x→∞

∫ x+a

x

p(t) dt = +∞.
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Note the result of R. S. Ismagilov [8]: let λ(∆) be the minimal eigenvalue of the

operator −u′′ + pu considered on the segment ∆ with Dirichlet conditions on ∆.

For discreteness and boundedness from below of the spectrum of the operator L0

a necessary and sufficient condition is that λ(∆) → ∞ when∆moves to∞ conserving
its length. But the same result can be seen in the article of A.M.Molchanov [14].

Molchanov called this the principle of localization.

For further generalizations see for example [13] and references therein.

Here we study the functional differential operator

(1.2) Lu(x) = −u′′(x) + p(x)u(x) +

∫ ∞

−∞

(u(x)− u(s)) dsr(x, s)

on x ∈ (−∞,∞). This expression contains an expression with deviating argument

as a special case:

−u′′ + p(x)u(x) +

n∑

i=1

qi(x)(u(x) − u(hi(x))).

Expression (1.2) is not only a generalization but may perhaps also have applications

in quantum mechanics. In the case of finite interval [0, l] this operator describes the

behavior of a loaded string. The singular problem

−(pu′)′ + qu+

∫ l

0

(u(x) − u(s)) dsr(x, s) = λ̺u

with Sturm-Liouville boundary conditions is studied in [11], [12]. A particular case

L1u = −u′′ + p(x)u(x) + q(x)(u(x) − u(x− δ)) + q(x+ δ)(u(x) − u(x+ δ))

of (1.2) is considered in [7].

Our aim is to generalize the principle of localization. However, for the operator

(1.2) it cannot be obtained directly. This is a special feature of an ordinary differential

operator. We introduce a pseudo eigenvalue µ̃(∆), and use it to compare it with the

eigenvalues of the truncated problem.

1.2. Results. This subsection summarizes the main results of the paper. Assume

that the function p in (1.2) is locally integrable (Lebesgue integrable on any segment),

and essentially bounded from below. We can assume that p(x) > 1. The function

r(x, s) is nondecreasing in s on R for almost all x ∈ R, measurable and locally

integrable in x for any s ∈ R. We also assume that the function ξ(x, s) =
∫ x

0 r(t, s) dt

is symmetric: ξ(x, s) = ξ(s, x), x, s ∈ R. Denote q(x) = r(x,∞) − r(x,−∞).
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Let ∆ = [a, b] ⊂ (−∞,∞), and

(1.3) L∆u = −u′′ + p(x)u(x) +

∫ b

a

(u(x) − u(s)) dsr(x, s).

It may be called a truncated operator. Consider two eigenvalue problems

(1.4) L∆u = λu, u(a) = u(b) = 0

and

(1.5) L∆u = µu, u′(a) = u′(b) = 0.

Let λ(∆) be the minimal eigenvalue of the problem (1.4), and µ(∆) the minimal

eigenvalue of the problem (1.5).

Theorem 1.1. For discreteness of the spectrum of L it is sufficient that one of
the following conditions holds:

⊲ spectrum of L0 is discrete,

⊲ for any sequence of segments ∆n of fixed length that tend to infinity,

(1.6) limµ(∆n) = ∞.

Thus, if lim
x→∞

∫ x+a

x
p(t) dt = ∞ for any a > 0, then the spectrum of operator (1.2)

is discrete.

Let us introduce the following condition:

(1.7) M = ess sup
x∈R

q(x)

p(x)
< ∞.

Theorem 1.2. Suppose (1.7) holds. For discreteness of the spectrum of (1.2) it

is necessary that the relation

(1.8) lim
n→∞

λ(∆n) = ∞

holds for any sequence of segments ∆n of fixed length that tend to infinity.

Theorem 1.3. Suppose the condition (1.7) holds, then the spectra of both the

operators L and L0 are discrete or neither of them is discrete.
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2. Abstract scheme

We use a simple scheme, sufficient for our purpose. In contrast to the general

spectral theory [1], [2], we avoid the use of unbounded operators. But actually this

scheme is the same as that in [2], Chapter 10, except for notation. We also find it

convenient explicitly use the embedding T from W to H (see below). This scheme is

also used in [10], [11], [12].

Let W and H be Hilbert spaces with inner products [u, v] and (f, g), respectively.

Let T : W → H be a linear bounded operator. The equation

(2.1) [u, v] = (f, T v), ∀v ∈ W,

has a unique solution u = T ∗f for any f ∈ H , where T ∗ is the adjoint operator. Let

DL = T ∗(H). Assume that

(1) the image T (W ) of the operator T is dense in H ,

(2) dimkerT = 0.

Lemma 2.1. If the image T (W ) of the operator T is dense in H , then T ∗ is an

injection.

P r o o f. Suppose T ∗f = 0 for a f ∈ H . Then for any g ∈ T (W )

(f, g) = (f, Tu) = [T ∗f, u] = 0.

Since T (W ) is dense in H , f = 0. �

Corollary 2.1 (Euler equation). The operator T ∗ has an inverse L defined on
the set DL. The equation (2.1) is equivalent to

(2.2) Lu = f.

The spectral problem for the operator L we write in the form

(2.3) Lu = λTu.

Let λ0 be the greatest lower bound of the spectrum of L. It is well known (see for
example [2], Chapter 6) that

λ0 = inf
u6=0

(Lu, Tu)
(Tu, Tu)

.
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Since (Lu, Tu) = [T ∗Lu, u] = [u, u],

(2.4) λ0 = inf
u6=0

[u, u]

(Tu, Tu)
= ‖T ‖−2 .

Since the equation (2.3) is equivalent to u = λT ∗Tu, discreteness of the spectrum of

the problem (2.3) is equivalent to compactness of T ∗T . However, both the operators

T ∗T and T ∗ are compact [2], Chapter 10. Thus the following theorem holds.

Theorem 2.1. The spectrum of L is discrete if and only if T is compact.

Theorem 2.2. Suppose T is compact. Then the equation (2.3) has a nonzero

solution un only in the case of λ = λn, n = 0, 1, 2, . . ., i.e.

Lun = λnTun, n = 1, 2, . . .

The system un forms an orthogonal basis in W . The sequence λn forms a nonde-

creasing sequence of positive numbers

0 < λ0 6 λ1 6 λ2 6 . . .

and limλn = ∞.

R em a r k 2.1. The minimal eigenvalue satisfies the equality (2.4).

3. Notation and important relations

According to the scheme in Section 2, we introduce two spaces W and H .

3.1. Basic notation. Let L2(S, p) be the space
1 of square integrable on S with

the weight p functions, L2(S) = L2(S, 1). Let R = (−∞,∞), let L2 = L2(R) be the

Hilbert space of funcions measurable and square integrable on R with scalar product

(3.1) (f, g) =

∫

R

f(x)g(x) dx.

Let us consider real functions having in view complex functions involved in the

spectral problem. Let

(3.2) [u, v] =

∫ ∞

−∞

(u′v′ + puv) dx+
1

2

∫

R×R

(u(x)− u(s))(v(x) − v(s)) dξ,

1 where S is a measurable space; we accept also the measure, instead of the weight

217



where the function ξ(x, s) =
∫ x

0
r(t, s) dt defines a measure on R × R. It is easy to

see that this form is symmetric independently of the symmetry of ξ.

Let W be the set of all functions u absolutely continuous on any segment [a, b] ⊂
R such that [u, u] < ∞. Then W is a Hilbert space with inner product [u, v]

(Lemma 5.1). Let T : W → L2 be the operator defined by the equality Tu(x) = u(x),

x ∈ R. This operator is continuous (Lemma 5.2).

We can now use the scheme from Section 2. Lemma 5.5 asserts that the operator L
(see (1.2)) is associated with the form (3.2):

form (3.2) → operator (1.2) .

Thus from Theorem 2.1 we have

Theorem 3.1. The spectrum of L is discrete if and only if the operator T is
compact.

3.2. More notation. We need the analogous notation for a finite interval. Let

∆ ⊂ R be a measurable subset (we will use mainly a segment [a, b] ⊂ R), and

(f, g)∆ =

∫

∆

f(x)g(x) dx.

Introduce two truncated forms. For u, v ∈ W

[u, v]∆ =

∫

∆

(u′v′ + puv) dx+
1

2

∫

∆×R

(u(x)− u(s))(v(x) − v(s)) dξ.

Integration on ∆ × R signifies that one variable is in ∆ but the other is in R (for

example, x ∈ ∆, s ∈ R). Note that if ∆ = ∆1 ∪∆2, ∆1 ∩∆2 = ∅, then

(3.3) [u, u]∆ = [u, u]∆1
+ [u, u]∆2

.

The second truncated form is only for functions defined on a segment ∆ = [a, b]:

[u, v]∗∆ =

∫

∆

(u′v′ + puv) dx+
1

2

∫

∆×∆

(u(x)− u(s))(v(x) − v(s)) dξ.

Let W∆ be the set of functions absolutely continuous on ∆, satisfying the inequality

[u, u]∗∆ < ∞.
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The same abstract scheme from Section 2 can be applied to the form [u, v]∗. So, this

corresponds to the operator L∆ (see (1.3)):

[u, u]∗∆ → operator L∆.

We use two different spaces, the actual W∆ and the subspace {u ∈ W∆ : u(a) =

u(b) = 0}. For each of these spaces the scheme from Section 2 can be used. For the
former we have the corresponding spectral problem (1.5), for the latter it is (1.4).

Thus, from (2.4) we have the equalities

λ(∆) = inf
u∈W∆,u6=0
u(a)=u(b)=0

[u, u]∗∆
(Tu, Tu)∆

,(3.4)

µ(∆) = inf
u∈W∆,u6=0

[u, u]∗∆
(Tu, Tu)∆

.(3.5)

We also need similar eigenvalues for the ordinary operator L0 to be considered on

the segment ∆ only. Let

[u, v]0∆ =

∫

∆

(u′v′ + puv) dx

and let W 0
∆ be the set of functions absolutely continuous on ∆, satisfying the in-

equality

[u, u]0∆ < ∞.

Denote the corresponding minimal eigenvalues of the operator L0 on ∆ by λ0(∆)

and µ0(∆). Then

λ0(∆) = inf
u∈W 0

∆
,u6=0

u(a)=u(b)=0

[u, u]0∆
(Tu, Tu)∆

,(3.6)

µ0(∆) = inf
u∈W 0

∆
,u6=0

[u, u]0∆
(Tu, Tu)∆

.(3.7)

The equalities (3.4), (3.5), (3.6), (3.7) immediately imply the inequalities

(3.8) µ(∆) 6 λ(∆), µ0(∆) 6 λ0(∆),

and

(3.9) λ0(∆) 6 λ(∆), µ0(∆) 6 µ(∆).

219



Introduce one more value, analogous to µ(∆). It is

(3.10) µ̃(∆) = inf
u∈W,u6=0

[u, u]∆
(Tu, Tu)∆

.

For any segment ∆ we have

(3.11) µ(∆) 6 µ̃(∆).

This follows from the inequality

[u, u]∗∆ = [u, u]∆ − 1

2

∫

∆×(R\∆)

(u(x)− u(s))2 dξ 6 [u, u]∆.

The principle of localization in our case can be expressed by means of a pseudo-

eigenvalue µ̃(∆) (Corollary 5.1 to Lemma 5.8):

Theorem 3.2. The spectrum of L is discrete if and only if µ̃(∆) → ∞, when the
segment ∆ → ∞, for ∆ of any fixed length.

To conclude this section we present two auxiliary statements.

3.3. Two lemmas.

Lemma 3.1. Suppose (1.7) holds. Then for any ∆

(3.12) λ(∆) 6 (1 + 2M)λ0(∆).

P r o o f. Let u ∈ W∆. We can estimate

1

2

∫

∆×∆

(u(x)− u(s))2 dξ 6

∫

∆×∆

(u(x)2 + u(s)2) dξ = 2

∫

∆×∆

u(x)2 dξ

= 2

∫

∆

u(x)2 dx

∫

∆

dsr(x, s) 6 2

∫

∆

q(x)u(x)2 dx.

Thus

[u, u]∗∆ 6 [u, u]0∆ + 2

∫

∆

q(x)u(x)2 dx

6 [u, u]0∆ + 2M

∫

∆

p(x)u(x)2 dx 6 (1 + 2M)[u, u]0∆.

The statement (3.12) follows from (3.4), (3.6). �
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Lemma 3.2. Suppose (1.7) holds. Let ∆ be a segment, u ∈ W , and u(x) = 0 if

x /∈ ∆. Then

(3.13) [u, u]∆ 6

(
1 +

1

2
M

)
[u, u]∗∆.

P r o o f.

1

2

∫

∆×(R\∆)

(u(x)− u(s))2 dξ =
1

2

∫

∆×(R\∆)

u(x)2 dξ =
1

2

∫

∆

u(x)2 dx

∫

R\∆

dsr(x, s)

6
1

2

∫

∆

q(x)u(x)2 dx.

Hence

[u, u]∆ 6 [u, u]∗∆ +
1

2

∫

∆

q(x)u(x)2 dx 6

(
1 +

1

2
M

)
[u, u]∗∆.

�

4. Proofs of theorems

4.1. Proof of Theorem 1.1. For discreteness of the spectrum of L0 it is necessary

and sufficient that µ0(∆) → ∞ when ∆ → ∞ conserving its length [14]. In view of
inequalities (3.9) and (3.11) and Corollary 5.1 to Lemma 3.2 operator T is compact.

Hence the spectrum of L is discrete. �

4.2. Proof of Theorem 1.2. Suppose T is compact. Let ∆ be a segment, and

let u be the eigenfunction of the problem (1.4) that corresponds to the eigenvalue

λ(∆). We can define u(x) = 0 out of the segment ∆. By virtue of Lemma 3.2

λ(∆) =
[u, u]∗∆

(Tu, Tu)∆
>

2

(2 +M)

[u, u]∆
(Tu, Tu)∆

>
2

(2 +M)
µ̃(∆) → ∞, if N → ∞.

�

4.3. Proof of Theorem 1.3. From Lemma 3.1 and from (3.4), (3.6) it follows

that for any segment ∆

λ(∆) 6 (1 + 2M)λ0(∆).

If the spectrum of L is discrete then λ(∆) → ∞ when ∆ → ∞. Then λ0(∆) → ∞.
But this is the condition of Ismagilov for discreteness of the spectrum of L0. �
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5. Auxiliary propositions

5.1. Properties of the space W .

Lemma 5.1. The space W is a Hilbert space.

P r o o f. The integral
∫
R×R

(u(x)− u(s))(v(x)− v(s)) dξ is finite (convergent), if

u, v ∈ W . Thus [u, v] in (3.2) is defined correctly. Now we have to show that W is

complete. Let un be a sequence satisfying

(5.1) ‖un − um‖2 =

∫ ∞

−∞

((u′
n − u′

m)2 + p(x)(un − um)2) dx

+

∫

R×R

((un(x)− um(x)) − (un(s)− um(s)))2 dξ → 0,

when n,m → 0. Then there exist two functions u ∈ L2(R, p) and ϕ ∈ L2(R) such

that un → u in L2(R, p) and u′
n → ϕ in L2(R).

Let [a, b] be an arbitrary segment. It is clear that un → u in L2([a, b], p) and

u′
n → ϕ in L2([a, b]). Let u

′
n = ϕ+ δn. Thus,

(5.2) un(x) = un(a) +

∫ x

a

ϕ(s) ds+

∫ x

a

δn(s) ds.

Consequently,

∫ b

a

p(x)

(
un(a) +

∫ x

a

ϕ(s) ds+

∫ x

a

δn(s) ds− u(x)

)2

dx → 0.

The third term tends to zero uniformly on [a, b]:

(∫ x

a

δn(s) ds

)2

6

∫ x

a

δn(s)
2 ds ·

∫ x

a

1 dx 6

∫ b

a

δn(s)
2 ds ·

∫ b

a

1 dx → 0.

Thus, this term converges to zero in L2([a, b], p) and can be excluded:

∫ b

a

p(x)

(
un(a) +

∫ x

a

ϕ(s) ds− u(x)

)2

dx → 0.

It follows that there exists limun(a) = c, and

c+

∫ x

a

ϕ(s) ds− u(x) = 0, x ∈ [a, b].
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Thus, u(x) is absolutely continuous on [a, b] and u′(x) = ϕ(x). Since the segment

[a, b] is arbitrary, u′(x) = ϕ(x) on the whole axis.

To prove the convergence un − u → 0 in W note that the convergence

∫ ∞

−∞

((u′
n − u′)2 + p(un − u)2) dx → 0

follows from the definitions of u and ϕ = u′. To show that

∫

R×R

((un(x) − u(x))− (un(s)− u(s)))2 dξ → 0,

denote g(x, s) = u(x) − u(s), gn(x, s) = un(x) − un(s). From (5.2) it follows that

un → u uniformly on any segment. So, gn(x, s) → u(x)− u(s) for all x, s. By virtue

of (5.1), gn → g̃ in L2(R× R, ξ). Thus, g̃ = u(x)− u(s) for ξ-almost all (x, s). �

Lemma 5.2. The operator T : W → L2 defined by equality Tu(x) = u(x),

x ∈ (−∞,∞), is continuous.

P r o o f. This follows immediately from comparison of norms. �

Lemma 5.32. Let h(x) be a function square integrable on a segment [a, b]. If

∫ b

a

h(x)g(x) dx = 0

for any function g(x) square integrable on [a, b] such that
∫ b

a
g(x) dx = 0, then h(x)

is a constant.

P r o o f. Choose a constant c such that
∫ b

a
(h(x) − c) dx = 0. According to the

requirement of the lemma
∫ b

a
h(x)(h(x) − c) dx = 0. Subtracting from this equality

the equality c
∫ b

a
(h(x) − c) dx = 0 we obtain

∫ b

a

(h(x) − c)2 dx = 0.

Thus, h = c. �

2 This is a well known assertion, see for example [6], Chapter 1, Lemma 2; it is also a simple
fact in functional analysis.
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Lemma 5.4. The image T (W ) of the space W is dense in L2.

P r o o f. Note that W ⊂ L2 as sets. If the closure W̃ in L2 is not the L2, there

exists a function h ∈ L2, h 6= 0, that is orthogonal to W̃ :

∫ ∞

−∞

u(x)h(x) dx = 0, ∀u ∈ W.

Consider now an arbitrary segment [a, b] and all functions u ∈ W that are equal to

zero out of the segment [a, b]. In this case u(a) = u(b) = 0, and

0 =

∫ b

a

u(x)h(x) dx = −
∫ b

a

H(x)u′(x) dx,

where H(x) =
∫ x

a
h(s) ds.

Thus, the last integral is equal to zero for any square integrable function u′(x) that

satisfies the condition
∫ b

a
u′(x) dx = 0. According to Lemma 5.3, H(x) is a constant.

Thus, H(x) = 0 and h(x) = 0 on [a, b]. The segment [a, b] is arbitrary, therefore

h(x) = 0, for all x ∈ R. This contradiction shows that W̃ = L2. �

5.2. Euler equation. According to Lemma 2.1 the equation

[u, v] = (f, T v), ∀v ∈ W,

has the unique solution u = T ∗f and the operator T ∗ is an injection. Thus, the

operator T ∗ has an inverse L = (T ∗)−1 defined on the set DL = T ∗L2.

Lemma 5.5. The operator L has the representation (1.2). The domain DL

consists of functions u ∈ W with locally on R absolutely continuous derivative, and

u′′ ∈ L2(R).

P r o o f. Let u be the solution of [u, v] = (f, T v). So, for all v ∈ W ,

(5.3)

∫

R

(u′v′ + puv) dx+
1

2

∫

R×R

(u(x)− u(s))(v(x) − v(s)) dξ =

∫

R

fv dx.

By virtue of Lemma 5.9 for a ξ-measurable function f we have
∫

R×R

f(x, s) dξ =

∫

R

dx

∫

R

f(x, y) dsr(x, s).

Using this formula and considering the symmetry of ξ one can represent the second

term in (5.3) in the form

1

2

∫

R×R

(u(x) − u(s))(v(x) − v(s)) dξ =

∫

R

v(x) dx

∫

R

(u(x)− u(s)) dsr(x, s).
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Let [a, b] be a segment. Consider all functions v ∈ W that are equal to zero out

of (a, b): v = 0 if x /∈ [a, b]. Let h(x) = −pu −
∫
R
(u(x) − u(s)) dsr(x, s) + f ,

H =
∫ x

a
h(s) ds. Thus,

∫ b

a

u′v′ dx =

∫ b

a

hv dx = −
∫ b

a

Hv′ dx,

or
∫ b

a
(u′+H)v′ dx = 0.According to Lemma 5.3 this implies that u′+H is a constant,

the derivative u′′ exists, and u′′ + h = 0. Finally, on [a, b]

−u′′ + pu+

∫

R

(u(x) − u(s)) dsr(x, s) = f.

Since [a, b] is an arbitrary interval, the left hand side is an expression for the opera-

tor L. From u′′ + h = 0 it follows that u′′ ∈ L2(R). �

5.3. Compactness of the operator T . By virtue of the criterium of Gelfand,

(see Theorem 5.1) the necessary and sufficient condition of compactness is the uni-

form convergence on {Tu : [u, u] 6 1} of any sequence fn ∈ L2 that converges for

any z ∈ L2, i.e., (fn, z) → 0.

The following theorem [9], page 318, can be used to show compactness.

Theorem 5.1 (Gelfand). A set E from a separable Banach space X is relatively

compact if and only if for any sequence of linear continuous functionals that converge

to zero at each point, i.e.

(5.4) fn(x) → 0, ∀x ∈ X,

the convergence (5.4) is the uniform on E.

Lemma 5.6. Suppose fn ∈ L2, and (fn, z) → 0 for any z ∈ L2. For any segment

∆ = [a, b] the convergence (fn, T u)∆ is uniform for ‖u‖ 6 1.

P r o o f. The set {u ∈ W : ‖u‖ 6 1} is the set of functions u satisfying
∫

R

(u′2 + pu2) dx+
1

2

∫

R×R

(u(x)− u(s))2 dξ 6 1.

Since ∫ b

a

fn(x)u(x) dx = u(a)

∫ b

a

fn(x) dx+

∫ b

a

fn(x)

∫ x

a

u′(s) ds dx
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and u(a) is bounded (because of
∫
R
((u′)2+u2) dx 6 1) on the set ‖u‖ 6 1, it remains

to show that ∫ b

a

fn(x)

∫ x

a

u′(s) ds dx → 0

uniformly. Since

(∫ b

a

fn(x)

∫ x

a

u′(s) ds dx

)2

=

(∫ b

a

u′(s) ds

∫ b

s

fn(x) dx

)2

6

∫ b

a

u′(s)2 ds

∫ b

a

ϕn(s)
2 ds 6

∫ b

a

ϕn(s)
2 ds,

where

ϕn(s) =

∫ b

s

fn(x) dx,

it is sufficient to show that ϕn → 0 in the space L2. In fact, ϕn → 0 uniformly. To

show this consider

zs(x) =

{
0 if x /∈ [s, b],

1 if x ∈ [s, b].

Note that

ϕn(s) = fn(zs)

(on the right hand side fn is considered as a functional). It is clear that the set

S = {zs : s ∈ [a, b]} is relatively compact in L2. By virtue of the same criterium

of Gelfand fn converges uniformly on S. But this is the uniform convergence of

ϕn(s). �

By Lemma 5.6 the question about compactness is reduced to the behavior on

infinity.

Lemma 5.7. The operator T is compact if and only if

lim
N→∞

sup
u∈W,u6=0

(Tu, Tu)|x|>N

[u, u]|x|>N

= 0.

P r o o f. Sufficiency. Let fn be a sequence fn ∈ L2, convergent for any z ∈ L2,

i.e., (fn, z) → 0. Then it is bounded, (fn, fn) 6 M . Let ε > 0. Choose N such that

sup
u∈W,u6=0

(Tu, Tu)|x|>N

[u, u]|x|>N

<
ε

2M
.

Then for ‖u‖ 6 1

(fn, T u)
2
|x|>N 6 (fn, fn)(Tu, Tu)|x|>N 6 M · ε

2M
=

ε

2
.
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On [−N,N ] uniform convergence is fulfilled, and for sufficiently large n and all

‖u‖ 6 1

(fn, T u)
2
[−N,N ] <

ε

2
.

N e c e s s i t y. Suppose T is compact but there exist ε > 0 and sequences Nn → ∞
and un such that [un, un]Dn

= 1, where Dn = {x : |x| > Nn} and

(Tun, T un)Dn
> ε.

Let fn = χDn
Tun/ ‖χDn

Tun‖, where χ is the characteristic function of Dn. This

sequence converges at any z ∈ L2:

(fn, z)
2 = (fn, z)

2
Dn

6 (fn, fn)(z, z)Dn
= (z, z)Dn

→ 0.

However,

fn(Tun) =
1

‖χDn
Tun‖

(Tun, T un)Dn
>

√
ε,

which contradicts the criterium of compactness of Gelfand. �

R em a r k 5.1. From this proof of necessity we can see that instead of |x| > N we

can consider any segment ∆. Since inf
u∈W,u6=0

[u, u]∆/(Tu, Tu)∆ = µ̃(∆) (see (3.10)),

the condition

(5.5) lim
∆→∞

µ̃(∆) = ∞

is necessary for the compactness of T .

Lemma 5.8. If the operator T is not compact, there exists an ε > 0 such that for

any d > 0 there exists a sequence of segments ∆n of length d that tends to infinity

and

(5.6) sup
u∈W,u6=0

(Tu, Tu)∆n

[u, u]∆n

> ε.

P r o o f. According to Lemma 5.7, if T is not compact, there exist an ε > 0,

a sequence Nn → ∞ and a sequence un such that

(5.7) (Tun, T un)|x|>Nn
> ε[un, un]|x|>Nn

.

Let us fix n, N = Nn and u = un. Divide the set {|x| > N} in segments of the
length d, then for one segment ∆ the inequality (5.6) will be satisfied. If not, we

could sum the inequalities

(Tu, Tu)∆ < ε[u, u]∆

and obtain a contradiction with (5.7). �

This together with the remark to Lemma 5.7 yields
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Corollary 5.1. T is compact if and only if µ̃(∆) → ∞ when ∆ → ∞ (for ∆ of
any fixed length).

5.4. One generalization of the Fubini theorem. Reduction of double integral

to repeated integral needs a generalization of the Fubini theorem. We are grateful

to I. Shragin who found the relevant source.

Lemma 5.9 ([3]). Let (X,A) and (Y,B) be measurable spaces, let µ be a measure
on (X,A), andK : X×B → [0,∞] a kernel (i.e. for µ-a.a. x ∈ X , K(x, ·) is a measure
on (Y,B), for all B ∈ B, K(·, B) is µ-measurable on X). Then

(1) The function ν defined on A× B by the equality

ν(E) =

∫

X

K(x,Ex)µ(dx), Ex = {y : (x, y) ∈ E},

is a measure,

(2) if f : X × Y → [−∞,∞] is ν-integrable on X × Y , then

∫

X×Y

f(x, y) dν =

∫

X

(∫

Y

f(x, y)K(x, dy)

)
µ(dx).

R em a r k 5.2. The function ν is the Lebesgue expansion from the set of all

rectangles

ν(A×B) =

∫

A

K(x,B)µ(dx), A ∈ A, B ∈ B.
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