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POSITIVE SOLUTIONS OF THE p-LAPLACE EMDEN-FOWLER

EQUATION IN HOLLOW THIN SYMMETRIC DOMAINS

Ryuji Kajikiya, Honjo-machi

(Received September 3, 2013)

Abstract. We study the existence of positive solutions for the p-Laplace Emden-Fowler
equation. Let H and G be closed subgroups of the orthogonal group O(N) such that H  

G ⊂ O(N). We denote the orbit of G through x ∈ RN by G(x), i.e., G(x) := {gx : g ∈ G}.
We prove that if H(x)  G(x) for all x ∈ Ω and the first eigenvalue of the p-Laplacian is
large enough, then no H invariant least energy solution is G invariant. Here an H invariant
least energy solution means a solution which achieves the minimum of the Rayleigh quotient
among all H invariant functions. Therefore there exists an H invariant G non-invariant
positive solution.

Keywords: Emden-Fowler equation; group invariant solution; least energy solution; pos-
itive solution; variational method
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1. Introduction

In this paper, we study the existence of positive solutions with partial symmetry

for the p-Laplace Emden-Fowler equation

(1.1) −∆pu = uq−1, u > 0 in Ω, u = 0 on ∂Ω.

Here ∆pu := div(|∇u|p−2∇u) is the p-Laplacian and Ω is a bounded domain in RN

with N > 2. Denote the critical exponent by p∗ := Np/(N−p) if p < N and p∗ := ∞

if N 6 p. We assume that 2 6 p < q < p∗. We define the Rayleigh quotient R(u)
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and the Nehari manifold N by

R(u) :=

(
∫

Ω

|∇u|p dx

)(
∫

Ω

|u|q dx

)−p/q

,

N :=

{

u ∈ W 1,p
0 (Ω) \ {0} :

∫

Ω

(|∇u|p − |u|q) dx = 0

}

,

where W 1,p
0 (Ω) denotes the Sobolev space. Let G be a closed subgroup of the or-

thogonal group O(N). We call Ω a G invariant domain if g(Ω) = Ω for any g ∈ G.

We call u(x) a G invariant solution if u(gx) = u(x) for any g ∈ G and x ∈ Ω. Then

(1.1) has a G invariant positive solution. However, we are looking for an H invariant

G non-invariant solution under a certain assumption on H and G, where H and G

are closed subgroups of O(N) such that H  G ⊂ O(N). When Ω is a G invariant

domain, we denote the set of G invariant functions inW 1,p
0 (Ω) byW 1,p

0 (Ω, G). Define

N (G) := N ∩W 1,p
0 (Ω, G) and put

(1.2) RG := inf{R(u) : u ∈ W 1,p
0 (Ω, G) \ {0}} = inf{R(u) : u ∈ N (G)}.

We call RG a G invariant least energy and u a G invariant least energy solution if

u ∈ N (G) and R(u) = RG. Such a minimizer exists and becomes a G invariant

positive solution of (1.1). For x ∈ RN , we define the orbit G(x) through x by

(1.3) G(x) := {gx : g ∈ G}.

Let λp(Ω) denote the first eigenvalue of the p-Laplace eigenvalue problem

(1.4) −∆pu = λ|u|p−2u in Ω, u = 0 on ∂Ω.

It is well known that the first eigenvalue is simple and the corresponding eigenfunc-

tion is positive (see [7]). We state the main result of this paper.

Theorem 1.1. Assume that 2 6 p < q < p∗. Let G and H be closed subgroups

of O(N) and let U be a G invariant bounded domain in RN such that H  G and

H(x)  G(x) for all x ∈ U . Then there exists a constant C > 0 depending only on

G, H , U , p and q such that if Ω is a G invariant subdomain of U and if λp(Ω) > C,

then RH < RG. Therefore no H invariant least energy solution is G invariant.

The existence of multiple positive solutions of (1.1) on the sphere has been obtained

by Kristály [6] also, in which the nonlinear term is asymptotically critical. We

observe the Faber-Krahn inequality (see [1]), λp(Ω) > CN,p|Ω|−p/N , where CN,p > 0

is a constant independent of Ω and |Ω| denotes the volume of Ω. Then we obtain the

next corollary.
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Corollary 1.2. Under the assumption of Theorem 1.1, there exists a constant

δ > 0 depending only on G, H , U , p and q such that if Ω is a G invariant subdomain

of U and if |Ω| < δ, then RH < RG.

We give a simple example of H , G and Ω. A subgroup H of O(N) is said to be

transitive on the sphere SN−1 if H(x) = SN−1 for x ∈ SN−1. All transitive Lie

groups were classified by Montgomery and Samelson [8] and Borel [2].

E x am p l e 1.3. Let G := O(N) and let H be any non-transitive closed subgroup

of O(N). Let Ω be an annulus 1 < |x| < 1 + ε with ε > 0. If ε > 0 is small enough,

then no H invariant least energy solution is radially symmetric.

2. Least energy solutions

Let Lr(Ω, G) denote the set of G invariant functions in Lr(Ω). Define the L2(Ω)

inner product and the H1
0 (Ω) inner product by

(u, v)L2 :=

∫

Ω

uv dx, (u, v)H1

0

:=

∫

Ω

∇u∇v dx.

We define the orthogonal complements of L2(Ω, G) and H1
0 (Ω, G) by

L2(Ω, G)⊥ := {u ∈ L2(Ω): (u, v)L2 = 0 for all v ∈ L2(Ω, G)},

H1
0 (Ω, G)⊥ := {u ∈ H1

0 (Ω): (u, v)H1

0

= 0 for all v ∈ H1
0 (Ω, G)}.

Lemma 2.1 ([3], Lemma 3.2). We have the following assertions.

(i) H1
0 (Ω, G)⊥ ⊂ L2(Ω, G)⊥.

(ii) Let 1 6 r, s 6 ∞ with 1/r+1/s = 1. If u ∈ Lr(Ω)∩L2(Ω, G)⊥ and v ∈ Ls(Ω, G),

then
∫

Ω
uv dx = 0.

Since p > 2, the Rayleigh quotient R is twice differentiable in the sense of the

Fréchet derivative. Then R′′(u)vw is a bilinear form of v and w. We need the

formula of the special case R′′(u)w2 only.
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Lemma 2.2. Let u be a positive solution of (1.1). For w ∈ W 1,p
0 (Ω), we have

(2.1) R′′(u)w2 = p(p− 2)

(
∫

|∇u|p dx

)−p/q ∫

|∇u|p−4(∇u · ∇w)2 dx

+ p

(
∫

|∇u|p dx

)−p/q ∫

|∇u|p−2|∇w|2 dx

+ p(q − p)

(
∫

|∇u|p dx

)−(p+q)/q(∫

uq−1w dx

)2

− p(q − 1)

(
∫

|∇u|p dx

)−p/q ∫

uq−2w2 dx.

Here all integrals are taken over Ω.

P r o o f. Multiplying (1.1) by u or w and integrating it over Ω, we have

∫

|∇u|p dx =

∫

uq dx,

∫

|∇u|p−2∇u∇w dx =

∫

uq−1w dx.

Using the above identities and differentiating R(u + tw) twice at t = 0, we ob-

tain (2.1). �

The next proposition plays the most important role in the paper.

Proposition 2.3. Let u be a G invariant least energy solution of (1.1) and let

Ω1 be a G invariant bounded open set such that Ω ⊂ Ω1. Let ϕ be a function in

H1
0 (Ω1, G)⊥ ∩W 1,∞(Ω1) which satisfies

(2.2)

∫

Ω

|∇u|p−2u2|∇ϕ|2 dx <
q − p

2(2q − p− 1)

∫

Ω

|∇u|pϕ2 dx.

Then R((1 + εϕ)u) < R(u) for ε > 0 small enough.

P r o o f. Set v := (1 + εϕ)u and define w := ϕu. Then v = u + εw. Since

u ∈ C1(Ω) ∩H1
0 (Ω), w and v belong to H1

0 (Ω). Since u is a solution of (1.1), R
′(u)

vanishes. The Taylor theorem ensures that

R(v) = R(u) + (ε2/2)R′′(u)w2 + o(ε2),

as ε → 0. Here o(ε2)/ε2 → 0 as ε → 0. To prove R(v) < R(u) for ε > 0 small

enough, we have only to show that R′′(u)w2 < 0. We substitute w = ϕu in (2.1)

and compute all terms on the right hand side. We extend u by setting u(x) = 0

outside Ω. By Lemma 2.1, we see that

uq ∈ L2(Ω1, G), ϕ ∈ H1
0 (Ω1, G)⊥ ⊂ L2(Ω1, G)⊥.
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Consequently,
∫

Ω

uq−1w dx =

∫

Ω1

uqϕdx = 0.

It is easy to see that

∇u · ∇w = |∇u|2ϕ+ u∇u · ∇ϕ,

|∇w|2 = |∇u|2ϕ2 + 2uϕ∇u · ∇ϕ+ u2|∇ϕ|2.

Substituting the above identities in (2.1) and putting

A :=

(
∫

|∇u|p dx

)−p/q

,

we have

(2.3) R′′(u)w2 = p(p− 1)A

∫

|∇u|pϕ2 dx

+ 2p(p− 1)A

∫

|∇u|p−2uϕ∇u · ∇ϕdx

+ p(p− 2)A

∫

|∇u|p−4u2(∇u · ∇ϕ)2 dx

+ pA

∫

|∇u|p−2u2|∇ϕ|2 dx− p(q − 1)A

∫

uqϕ2 dx.

Now, multiplying (1.1) by uϕ2 and integrating over Ω, we see that

∫

uqϕ2 dx =

∫

(|∇u|pϕ2 + 2|∇u|p−2uϕ∇u · ∇ϕ) dx.

Substituting the above identity in (2.3), we obtain

(2.4) R′′(u)w2 = − p(q − p)A

∫

|∇u|pϕ2 dx

− 2p(q − p)A

∫

|∇u|p−2uϕ∇u · ∇ϕdx

+ p(p− 2)A

∫

|∇u|p−4u2(∇u · ∇ϕ)2 dx

+ pA

∫

|∇u|p−2u2|∇ϕ|2 dx.

We use the Schwarz inequality

|uϕ∇u · ∇ϕ| 6
1

4
|∇u|2ϕ2 + u2|∇ϕ|2
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in the second integral on the right hand side of (2.4) and employ |∇u·∇ϕ| 6 |∇u||∇ϕ|

in the third integral. Then we obtain

R′′(u)w2 6 −
1

2
p(q − p)A

∫

|∇u|pϕ2 dx

+ p(2q − p− 1)A

∫

|∇u|p−2u2|∇ϕ|2 dx.

The right hand side is negative because of (2.2). The proof is complete. �

To prove the main theorems, we need the Haar measure. Since G is a compact Lie

group, it has a unique Haar measure dg. It is a positive Lebesgue measure which

satisfies
∫

G

f(hg) dg =

∫

G

f(gh) dg =

∫

G

f(g−1) dg =

∫

G

f(g) dg,

∫

G

f(g) dg > 0 if f > 0, f 6≡ 0,

∫

G

1 dg = 1,

for any h ∈ G and any real valued integrable function f on G (see [9] for more

details).

LetM(N) be a linear space consisting of allN×N real matrices, which is equipped

with the norm

‖g‖ := max
|x|61

|gx| for g ∈ M(N).

For g0 ∈ G and r > 0 we define a ball B(g0, r;G) in G by

B(g0, r;G) := {g ∈ G : ‖g − g0‖ < r}.

Then the volume of B(g0, r;G) is defined by

|B(g0, r;G)| :=

∫

B(g0,r;G)

1 dg.

Using the invariance of the Haar measure, we have the next lemma.

Lemma 2.4 ([4], Lemma 5.6). Let G be a closed subgroup of O(N). Then the

volume |B(g0, r;G)| does not depend on g0 ∈ G but does on r only.

3. Proof of the main results

In this section, we prove the main theorem. Let H and G be as in Theorem 1.1.

Since G and H are compact groups, we can define

Q(x, g) := min
h∈H

|gx− hx|, P (x) := max
g∈G

Q(x, g).
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Lemma 3.1. We have

|P (x)− P (y)| 6 2|x− y| for x, y ∈ RN .

P r o o f. By the same computation as in our paper [3], Lemma 2.1 or [4],

Lemma 5.5, we obtain the lemma. �

Recall the assumption of Theorem 1.1 that H(x)  G(x) for all x ∈ U . This

implies that P (x) > 0 for x ∈ U . Since P (x) is continuous by Lemma 3.1, the

minimum of P (x) on U is positive. We define

(3.1) δ := 1
4 min

U
P (x) > 0.

Then for any x ∈ U there exists a g ∈ G such that

(3.2) |gx− hx| > 4δ > 0 for any h ∈ H.

To prove Theorem 1.1, we shall construct a function ϕ which satisfies (2.2) and

belongs to H1
0 (Ω1, H). Let δ > 0 be defined by (3.1). Choose Φ ∈ C1(R) which

satisfies 0 6 Φ(r) 6 1 in R, Φ(r) = 1 for r 6 δ, Φ(r) = 0 for r > 2δ and −2/δ 6

Φ′(r) 6 0 in (δ, 2δ). Put r = |x|. Then Φ(|x|) is a radial function whose support is

in |x| 6 2δ.

Definition 3.2. We denote the Haar measures on H and G by dh and dg,

respectively. Let x0 ∈ Ω be determined later on. We define

ϕ(x) :=

∫

G

Φ(|x− gx0|) dg −

∫

H

Φ(|x − hx0|) dh,

dist(x,Ω) := inf{|x− y| : y ∈ Ω},

Ω1 := {x ∈ RN : dist(x,Ω) < 2δ}.

Lemma 3.3 ([4], [5]). Function ϕ belongs to H1
0 (Ω1, G)⊥ ∩H1

0 (Ω1, H).

Since U is bounded, we define M := sup
x∈U

|x| and µ := δ/M . Then µ depends only

on G, H and U . We denote the volume of B(g0, µ;G) by c0, i.e.,

(3.3) c0 := |B(g0, µ;G)| =

∫

B(g0,µ;G)

1 dg.

By Lemma 2.4, c0 depends not on g0 but on µ, hence it depends only on G, H and U .

Let B(x, r) denote the ball in RN which is centered at x with radius r > 0.
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Lemma 3.4 ([4], [5]). For any x0 ∈ Ω, there exists a g0 ∈ G such that

(3.4) ϕ(x) > c0 > 0 for x ∈ B(g0x0, δ/2).

In particular, ϕ 6≡ 0 in Ω.

Let δ be defined by (3.1). We choose a finite coveringB(yi, δ/4)with y1, . . . , yk ∈ U

such that

(3.5) U ⊂
k
⋃

i=1

B(yi, δ/4) with some k ∈ N.

Hereafter we fix k and y1, . . . , yk which satisfy the above inclusion.

Lemma 3.5. Let Ω be a G invariant subdomain of U and let u be a G invariant

least energy solution. Extend u by setting u(x) = 0 outside Ω. Then there exists an

x0 ∈ Ω such that
∫

Ω

|∇u|p dx 6 k

∫

B(x0,δ/2)

|∇u|p dx.

P r o o f. Choose i ∈ {1, 2, . . . , k} such that

∫

B(yi,δ/4)

|∇u|p dx = max
j

∫

B(yj,δ/4)

|∇u|p dx.

Then we have
∫

Ω

|∇u|p dx 6 k

∫

B(yi,δ/4)

|∇u|p dx.

Observe that Ω∩B(yi, δ/4) 6= ∅. Otherwise the right hand side vanishes. We choose

an x0 ∈ Ω ∩B(yi, δ/4). Then we have

∫

B(yi,δ/4)

|∇u|p dx 6

∫

B(x0,δ/2)

|∇u|p dx.

Combining the two above inequalities, we obtain the conclusion. �
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Lemma 3.6. Let λp be the first eigenvalue of (1.4). Then

∫

Ω

|∇v|p−2v2 dx 6 λ−2/p
p ‖∇v‖pp for any v ∈ W 1,p

0 (Ω).

P r o o f. From the variational characterization of the first eigenvalue, it follows

that for v ∈ W 1,p
0 (Ω),

λp

∫

Ω

|v|p dx 6

∫

Ω

|∇v|p dx,

or equivalently

‖v‖p 6 λ−1/p
p ‖∇v‖p.

Using this inequality with the Hölder inequality, we get

∫

Ω

|∇v|p−2v2 dx 6 ‖∇v‖p−2
p ‖v‖2p 6 λ−2/p

p ‖∇v‖pp.

�

Define δ, c0 and k by (3.1), (3.3) and (3.5), respectively, and then determine x0

by Lemma 3.5. Thus ϕ(x) is well defined by Definition 3.2. To prove Theorem 1.1,

we define

C := [32δ−2kc−2
0 (2q − p− 1)/(q − p)]p/2,

which depends only on G, H , U , p and q. We conclude this paper by proving

Theorem 1.1.

P r o o f of Theorem 1.1. Let C be as above. Suppose that λp(Ω) > C. We

shall show that ϕ satisfies (2.2). Since |Φ′(r)| 6 2/δ by the definition of Φ, we have

|∇ϕ| 6 4/δ. This inequality and Lemmas 3.6 and 3.5 show that

∫

Ω

|∇u|p−2u2|∇ϕ|2 dx 6 16δ−2λ−2/p
p ‖∇u‖pp

6 16δ−2λ−2/p
p k

∫

B(x0,δ/2)

|∇u|p dx.

By Lemma 3.4, we choose g0 ∈ G satisfying (3.4). Since u is G invariant, the last

integral is estimated as

∫

B(x0,δ/2)

|∇u|p dx =

∫

B(g0x0,δ/2)

|∇u|p dx 6 c−2
0

∫

B(g0x0,δ/2)

|∇u|pϕ2 dx.

Combining the two above inequalities, we have

∫

Ω

|∇u|p−2u2|∇ϕ|2 dx 6 16δ−2λ−2/p
p kc−2

0

∫

B(g0x0,δ/2)

|∇u|pϕ2 dx.
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Since λp(Ω) > C, we obtain (2.2). Since ϕ ∈ H1
0 (Ω1, H) by Lemma 3.3, v := (1+εϕ)u

belongs to H1
0 (Ω, H). By Proposition 2.3, we conclude that RH 6 R(v) < R(u) =

RG. The proof is complete. �
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