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Seeable matter; unseeable antimatter

Geoffrey Dixon

The universe we see gives every sign of being composed of mat-
ter. This is considered a major unsolved problem in theoretical
physics. Using the mathematical modeling based on the algebra
T := C ⊗ H ⊗ O, an interpretation is developed that suggests
that this seeable universe is not the whole universe; there is an
unseeable part of the universe composed of antimatter galaxies
and stuff, and an extra 6 dimensions of space (also unseeable)
linking the matter side to the antimatter — at the very least.

Bases for the real division algebras, C, H, O (complex algebra, quaternions,
and octonions), are [1], [2], [7]:

C {1, i}
H {q0 = 1, qk, k = 1, 2, 3}
O {e0 = 1, ea, a = 1, . . . , 7}

The algebra

T = C⊗H⊗O

is 2 × 4 × 8 = 64-dimensional. It is noncommutative, nonassociative, and nonal-
ternative.

Although I consider it but a restricted model of reality, the basis of what I
will do here is the 10-dimensional space-time model developed in [1] (Chapters
2 to 6), with mathematical expansion to be found in [2] (Chapters 2, 3 and 11).
In this model, which accounts for a single family of quarks and leptons, and a
corresponding antifamily, the foundation is the 128-dimensional hyperspinor space

T
2

(the doubling of T in the spinor space is modeled on the notion that a Dirac
spinor is a double Pauli spinor).

A Dirac spinor is acted upon by the Dirac algebra,

C(4) ≃ P(2),
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where the Pauli algebra

P ≃ C(2) ≃ C⊗H.

This is the complexification of the Clifford algebra of 1,3-spacetime. Likewise T
2

is acted upon by the complexification of the Clifford algebra of 1,9-spacetime,
represented by

TL(2),

where TL is the algebra of left actions of T on itself, which in the octonion
case, due to nonassociativity, requires the nesting of actions (see, for example, [1,
Chapter 2] and [2, Section 2.4]; and for more background material, [3], [4], and
[5] (the work of Gürsey at Yale University during the 1970s was the inspiration
for all of my work — and that of many others — applying the octonion algebra
to physics)).

The work of Gürsey (and Günaydin) was inspired by the work of von Neumann,
Jordan and Wigner [8], who investigated an expansion of quantum theory from a
foundation on C to one on O. They linked quantum observability with algebraic
associativity, and unobservability with nonassociativity, thinking along these lines
being forced by the nonassociativity ofO. (I do not know the details of their work,
but the notion that nonassociativity could be associated with things unseen, and
unseeable, partly motivated this work.)

The quantum notion of unobservable is more restrictive than the notion of
unseeable being used here. In particular, quarks are unseeable, but they are
detectable, and they supply the paradigm — albeit not well defined — of what
is meant by unseeable. But being not well defined is not a problem. My working
assumption is that this model is but a kernel of something much larger, much
deeper, and, I hope, ultimately knowable. It may not be.

The model building in [1], [2] relies heavily on a resolution of the identity of

S := C⊗O

into a pair of orthogonal idempotents,

ρ± =
1

2
(1± ie7).

These satisfy

ρ±epρ± = epρ∓ρ± = 0, p = 1, 2, 3, 4, 5, 6,

and

ρ±ekρ± = ekρ±ρ± = ekρ±, k = 0, 7

(nonassociativity does not play a role here, so no parentheses are required; also
note that e7ρ± = ∓iρ±). (This is the same resolution exploited by Gürsey, et
al. [5], and numerous other places in the years following. As is done here, it is
how they gave rise to the SU(3) color group out of the octonion automorphism
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group, G2 (see [1, Chapter 2]).) With these projectors S can be divided into 4
orthogonal subspaces:

S++ = ρ+Sρ+,

S−− = ρ−Sρ−,

S+− = ρ+Sρ−,

S−+ = ρ−Sρ+.

Both S++ and S−− are associative subalgebras of S isomorphic to C. S+− and
S−+ are not subalgebras, and they are highly nonassociative (this nonassociativity
implying S

2
±∓ = S∓± (you’d better check that — it is not relevant, but I never

noticed that before — hmm)). Anyway, elements of the first two sets are linear
(over C) in the octonions {e0 = 1, e7}, and the second two sets linear over
{ep, p = 1, 2, 3, 4, 5, 6}.

With respect to the SU(3) subgroup of the octonion automorphism group G2

that leaves the unit e7 fixed these parts of S transform, respectively, as a singlet,
anti-singlet, triplet, and anti-triplet. That is,

ρ+S is matter;
ρ−S is anti-matter.

The same is true if we replace S by T
2.

An elegant representation of the Clifford algebra CL(1, 9) represented in TL(2),
that is aligned with the choice of the octonion unit e7 to appear in ρ±, arises from
the following set of ten anti-commuting 1-vectors:

β, γqLkeL7, k = 1, 2, 3, γieLp, p = 1, ..., 6,

where

ǫ =

[

1 0
0 1

]

, α =

[

1 0
0 −1

]

, β =

[

0 1
1 0

]

, γ =

[

0 1
−1 0

]

,

and as usual the subscripts “L” and “R” signify an action from the left or the
right on T. (So, for example,

S+− = ρ+Sρ− = ρL+ρR−[S].)

(Note: CL(1, 9) can be represented in other ways, and certainly using only com-
plex matrices. A principal underlying this work is that the division algebras
should be as generative in physics as they are in mathematics, and that, with
the Dirac algebra and its spinors as a guide, this model of 1,9-spacetime, with
its spinor space consisting of a family and antifamily of quark and lepton Dirac
spinors, falls out relatively naturally, if one pays attention to the structure of the
underlying mathematics. The alignment of this representation of CL(1, 9) with
the ρ projectors is not necessary, but then neither is a combination necessary to
open a safe. Dynamite will do. By ordering things as I have, I am attempting to
demonstrate the elegant way the mathematics elucidates the physics — to provide
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a combination with which the goodies in this safe can be more easily grasped, and
the essential nature of the mathematics made more clear.)

Here is the working assumption upon which this work is based: if we project
out from this model those bits we know are unseeable (anything carrying a color
charge), what is left will be seeable, and everything that is gone will be unseeable
(even if it does not carry a color charge). As it stands, this is the model of
a universe with 10 dimensions, containing both matter and anti-matter in the
form of leptons and quarks, and their anti-particles. The quarks and the extra
6 space dimensions are unseeable. There exist models that attempt to explain
quark confinement, but so long as they remain confined we are safe in labeling
them unseeable.

Quarks carry SU(3) color charges, as do the extra 6 spaces dimensions in this
model. Both are unseeable (this is both an assumption, and an observation), and
both can be projected out of the model in the same way. Since the color charges
reside in the octonion units ep, p = 1, . . . , 6, we need merely use the ρ± to get rid
of them.

Start with the 6 extra space dimensions. There are two (what I would call)
canonical ways of reducing the 1-vectors of CL(1, 9), a mix of seeable and unsee-
able dimensions, to the 1-vectors of seeable CL(1, 3) (that is, we are using the ρ

projectors to eliminate bits that carry the unseeable color charge, here the extra
6 space dimensions):

ρL± {β, γqLkeL7, k = 1, 2, 3, γieLp, p = 1, ..., 6}ρL±

= {β, γiqLk, k = 1, 2, 3}ρL±.

These two collections of CL(1, 3) 1-vectors act on half of the full spinor space T2.
In particular, they act respectively on

ρL±[T
2] = ρ±T

2,

where the underlying mathematics implies that these are, respectively, the matter
and anti-matter halves of T2 (ρ+T

2 being a full family of lepton and quark Dirac
spinors, and ρ−T

2 the corresponding anti-family: see [1, Chapters 3 and 4], and
[2, Section 3.2]).

And this is the point: once 1,9-spacetime is reduced to 1,3-spacetime (the
unseeable part projected away), one discovers that half of the hyper-spinor space
is also projected away, and it too — given the interpretation of the mathematics
we are adopting here — should be unseeable, even though bits of it do not carry
the color charge (anti-leptons). That is, from the 1,3-spacetime that is left you
can see only the matter half of T2, or the antimatter half. One or the other is
projected away, along with things carrying the color charge, and so this antimatter
universe should too be unseeable. We think of our universe as being composed of
matter (stars, planets, and such; the production of individual antimatter particles
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is not considered a problem). The antimatter half of T2 is not gone, nor are the
extra 6 space dimensions. We just do not directly see them.

Quarks, like the extra 6 dimensions of space in this model, are also unseeable.
And like the extra 6 dimensions of space, they owe their existence to the octonion
units ep, p = 1, 2, 3, 4, 5, 6. To reduce the spinor space T

2 all the way to its
observable lepton part (the anti-lepton part is similar) we need an extra ρ+.
Specifically,

ρL±ρR±[T
2] = ρ+T

2ρ+

is a lepton doublet, consisting of 2 Dirac spinors, one for the electron, one for
its neutrino. (The particle identifications are not arbitrary. See particularly
[2, Section 3.2] for the mathematics behind that statement.) Interestingly, this
further reduction does not result in any further reduction of the 1-vector space
of our original Clifford algebra, CL(1, 9). We are still left with a version of 1-
vectors for CL(1, 3). However, the story is different for the space of 2-vectors.
Initially they form a representation of the 1,9-Lorentz Lie algebra, so(1, 9). After
the initial reduction we get something more than so(1, 3):

ρL+so(1, 9)ρL+ = (so(1, 3)× so(6))ρL+,

and after the second spinor reduction,

ρR+ρL+so(1, 9)ρL+ρR+ = (so(1, 3)× u(1)× su(3))ρL+ρR+.

This is precisely what it seems, and precisely the part of so(1, 9) we observe to
function in our seeable part of the universe. (Isospin SU(2) arises from HR (see
[1, Section 3.5]; [2, Chapter 3]; and [6] for an extension of these ideas). In short,
HR is isomorphic to H; the elements of unit norm are the 3-sphere, S3 ≃ SU(2);
and this SU(2) commutes with the Clifford algebra for 1,9-spacetime developed
above, so it is an internal symmetry with respect to that spacetime.)

The situation is more complicated than this (see [1], [2]), but the overriding
point being made here is that the mathematics of T can be viewed as implying
we exist in an observable universe that must be dominantly matter, or anti-
matter (if we accept that everything carrying nontrivial SU(3) color charges is
not directly observable by us, which in this context includes quarks, anti-quarks,
and the extra 6 dimensions of spacetime, all of which involve the octonion units,
ep, p = 1, 2, 3, 4, 5, 6, which carry those charges). Acceptance of this notion has
the potential to imply far more profound things about physics.

I consider this an elegant explanation of why we perceive our universe to be
composed of matter. There are many (a great many) open questions that will
not be resolved here. Quarks, as mentioned, are unseeable, but detectable. This
color confinement is thought to be related to energy considerations of the strong
force — but confinement it is. So the question arises: are the extra 6 (or more)
dimensions of space detectable, and if so, what is the mechanism that hides them
from us? Is the antimatter universe detectable, and what mechanism hides it?
(Note: our observable universe has the occasional antimatter particle whizzing
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around. It is not being suggested that these should be unseeable, but that there
is an antimatter universe out there (whatever “there” means) that we do not see.)
And beyond this, what is really needed is a (much) deeper theory from which one
might glean insights into these unresolved problems.

A penultimate note: in [1, Section 6.3] it was pointed out that the original
model allowed algebraically for matter-antimatter mixing via the extra 6 dimen-
sions, but that reasonable conditions put on the dependence of the various particle
fields on these extra dimensions led to these mixing pathways disappearing. What-
ever the case, this idea of mixing is mediated by those extra 6 dimensions, which
provide channels from the matter part of the overall universe to the antimatter
part. Were these channels viable they would allow, for example, an electron from
our matter part to channel through to the antimatter part, appearing on the other
side as an antiquark (it necessarily picks up an anti-color charge en route). But
this idea just scratches the surface.

And finally, I would like to add that this exploitation of T as the foundation
of a model of reality is not the only one, it is the one I like best (well, I’ve been
at it for over 30 years, so changing now is not going to happen). For an alternate
approach, see [9].
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