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On extensions of bounded subgroups in Abelian groups

S.S. Gabriyelyan

Abstract. It is well-known that every bounded Abelian group is a direct sum of
finite cyclic subgroups. We characterize those non-trivial bounded subgroups H

of an infinite Abelian group G, for which there is an infinite subgroup G0 of G
containing H such that G0 has a special decomposition into a direct sum which
takes into account the properties of G, and which induces a natural decomposi-
tion of H into a direct sum of finite subgroups.
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Classification: Primary 20K21; Secondary 20K27

1. Introduction

Recall that an Abelian group G is of finite exponent or bounded if there exists
a positive integer n such that ng = 0 for every g ∈ G. The minimal integer n
with this property is called the exponent of G and is denoted by exp(G). When
G is not bounded, we write exp(G) = ∞ and say that G is of infinite exponent

or unbounded .
The structure theory of infinite Abelian groups is sufficiently difficult and com-

plicated. Fortunately, for a bounded Abelian group G there is a complete and
clear description of its structure: G is a direct sum of finite cyclic subgroups. If
G is not of finite exponent, G can even not be decomposable into a direct sum of
two non-trivial subgroups.

Let now H be a bounded subgroup of an infinite Abelian group G. As simple
examples show, even in the case H is finite and cyclic, H may not be a direct
summand of G. So it is important to find a subgroup G0 of G containing H
such that G0 has a decomposition into a direct sum of subgroups having simple
forms which takes into account the properties of G (as exp(G)), and which in-
duces a decomposition of H into a direct sum of finite subgroups. The existence
of such extensions of H plays an essential role in particular for constructing of
Hausdorff group topologies on G having specific properties with respect to H . We
demonstrate this by the following examples.

Let G = Z(3) ⊕ Z(2)ω, G0 = Z(2)ω, H1 is the first Z(2) × Z(2) in G and
H2 = Z(3). It is easy to see that G does not admit a connected Hausdorff group
topology (see [4, §9]). On the other hand, Markov showed in [5] that there is a
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locally connected Hausdorff group topology τ on G such that G0 is the connected
component of (G, τ). So, algebraically H1 can be extended to a subgroup G0

which is connected. However, there is no Hausdorff group topology τ ′ on G in
which H2 is contained in a connected subgroup of (G, τ ′) because G0 is clopen
in any group topology on G [4, §9]. Further, it can be proved that there is a
Hausdorff group topology ν on G such that H1 is the von Neumann radical of
(G, ν), but for H2 such topologies do not exist (see [2]). Actually, these positive
and negative results for H1 and H2 in G (and more generally, for subgroups of
Abelian groups of finite exponent) depend on the possibility to extend them to an
infinite subgroup G0 (maybe of a big cardinality) such that G0 is a direct sum of
finite subgroups of the same exponent (see [3]). Between all infinite extensions of
H1 in G, which can be represented as a direct sum of finite subgroups of the same
exponent, there is the smallest one by cardinality, for example G1 = Z(2)(ω). So,
the subgroup G1 has the following properties: (1) G1 is of finite exponent as G,
(2) G1/H1 is countable, (3) G1 =

⊕

i∈ω Si with exp(Gi) = exp(H1) for all i ∈ ω,
and (4) this decomposition of G1 induces a natural decomposition of H (see the
conditions (2b) and (3) in the definition below).

Assume now that H is a finite non-trivial subgroup of an Abelian group G of
infinite exponent. It is well-known that G contains a subgroup S which has one of
the form Z, Z(p∞) or

⊕

i∈ω Si with exp(H) ≤ exp(S0) < exp(S1) < . . . . So it is
quite natural to consider the subgroup G0 := S+H . Then G0 takes into account
the properties of G and has infinite exponent as G, and G0/H is countable.

For infinite bounded subgroups H of G the situation is more delicate, but these
examples explain our definition of simple extension given below. We note that
the main result of the article plays a crucial role for a description of bounded
subgroups H of an Abelian non-torsion-free group G for which there exists a
Hausdorff group topology τ such that H is the von Neumann radical of (G, τ)
(see [3]).

Denote by o(g) the order of an element g of an Abelian group G. The subgroup
of G generated by a subset A is denoted by 〈A〉. We shall say that an Abelian
group X satisfies condition (Λ) if X is a finite direct sum of groups of the form
Z(pa)(κ), where p is prime, a is a natural number and the cardinal κ is infinite.

Definition 1. Let G be an infinite Abelian non-torsion-free group and H its
non-zero bounded subgroup. We say that H has a simple extension in G if there
is a subgroup G0 of G which has a decomposition of the form

G0 = X ⊕
⊕

i∈ω

Si,

where:

(1) if X 6= {0}, then X is a subgroup of H satisfying condition (Λ);
(2) one of the following conditions holds:

(a) Si = {0} for every i ∈ N, and S0 has one of the form Z ⊕ H0 or
Z(p∞) +H0, where H0 is a finite (maybe trivial) subgroup of H ;
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(b) for every i ∈ ω, Si is a finite non-trivial subgroup of G such that
either

exp(H) ≤ exp(S0) < exp(S1) < . . . , or

exp(H) = exp(S0) = exp(S1) = . . . ;

(3) H = X ⊕
⊕

i∈ω(Si ∩H).

Returning to the first above-mentioned example we see that H1 has a simple
extension (for instance, G1), but H2 does not have simple extensions in G.

The main goal of the article is to characterize all bounded subgroups of an
infinite Abelian non-torsion-free group G which have a simple extension in G.

Theorem 2. Let H be a non-zero bounded subgroup of an infinite Abelian

group G. Then:

(i) if exp(G) = ∞, then H has a simple extension in G;

(ii) if exp(G) < ∞, then H has a simple extension in G if and only if G
contains a subgroup of the form Z(exp(H))(ω).

In Theorems 9 and 10 below we prove more precise results.

2. The proof of Theorem 2

We shall use the following easy corollary of Prüfer-Baer’s theorem [1, 11.2].

Lemma 3. Let G be an infinite Abelian group of finite exponent. Then G is the

direct sum G = G0 ⊕G1 of a finite (maybe trivial) subgroup G0 and a subgroup

G1 satisfying condition (Λ).

Let us recall that a subset X of an Abelian group G is called independent if
for every finite sequence x1, . . . , xn of pairwise distinct elements of X and each
sequence m1, . . . ,mn of integers m1x1 + · · ·+mnxm = 0 implies mixi = 0 for all
i = 1, . . . , n.

Proposition 4. Let G = Z(p∞) + H , where H is an infinite Abelian group of

finite exponent. Then there is a finite (maybe trivial) subgroup H0 of H and an

infinite subgroup H1 of H such that

(1) H = H0 ⊕H1;

(2) G = (Z(p∞) +H0)⊕H1;

(3) H1 satisfies condition (Λ).

Proof: By Prüfer-Baer’s theorem [1, 11.2], H has a decomposition H = ⊕i∈ICi,
where Ci are cyclic finite groups. As H is bounded, Z(p∞) ∩H is finite, so there
exists a finite subset J ⊆ I such that Z(p∞) ∩H ⊆ ⊕i∈JCi.

We claim that the sum

G =

(

Z(p∞) +
⊕

i∈J

Ci

)

+





⊕

i∈I\J

Ci




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is direct. Indeed, let t = f+g ∈ (Z(p∞)+⊕i∈JCi)∩(⊕i∈I\JCi), where f ∈ Z(p∞)
and g ∈ ⊕i∈JCi. Then f = t−g ∈ ⊕i∈JCi by the definition of J . Thus t ∈ ⊕i∈JCi.
Since also t ∈ ⊕i∈I\JCi, we obtain t = 0 and the sum is direct.

Using Lemma 3, decompose ⊕i∈I\JCi = H ′
0 ⊕H1, where H ′

0 is finite and H1

satisfies condition (Λ). Put H0 = H ′
0 ⊕ (⊕i∈JCi). Then H0 is a finite (maybe

trivial) subgroup of H and H1 is infinite. By construction and the claim, H0 and
H1 satisfy conditions (1)–(3) of the proposition. �

The next proposition is not trivial only for uncountable subgroups and its proof
essentially repeats the proof of Proposition 4.

Proposition 5. Let an Abelian p-group G have the form G = 〈A〉 +H , where

H is an uncountable subgroup of G of finite exponent and A = {gi}
∞
i=1 is an

independent sequence in G. Then there is a countable (maybe trivial) subgroup
H0 of H and an uncountable subgroup H1 of H such that

(1) H = H0 ⊕H1;

(2) G = (〈A〉+H0)⊕H1;

(3) H1 satisfies condition (Λ).

Proof: By [1, 11.2], H has a decomposition H = ⊕i∈ICi, where Ci are cyclic
finite groups. As 〈A〉 is countable, there exists a countable subset J ⊆ I such
that 〈A〉 ∩H ⊆ ⊕i∈JCi. We claim that the sum

G =

(

〈A〉 +
⊕

i∈J

Ci

)

+





⊕

i∈I\J

Ci





is direct. Indeed, let t = f + g ∈ (〈A〉+⊕i∈JCi)∩ (⊕i∈I\JCi), where f ∈ 〈A〉 and
g ∈ ⊕i∈JCi. Then f = t − g ∈ ⊕i∈JCi by the definition of J . Thus t ∈ ⊕i∈JCi.
Since also t ∈ ⊕i∈I\JCi, we obtain t = 0 and the sum is direct.

Using Lemma 3, decompose ⊕i∈I\JCi = H ′
0 ⊕H1, where H ′

0 is finite and H1

satisfies condition (Λ). Put H0 = H ′
0⊕ (⊕i∈JCi). Then H0 is a countable (maybe

trivial) subgroup of H and H1 is infinite. By construction and the claim, H0 and
H1 satisfy conditions (1)-(3) of the proposition. �

We omit the proof of the following simple lemma.

Lemma 6. Let a sequence {bn} in an Abelian group G be independent and H
be a finite subgroup of G. Then there is n0 such that H ∩〈bn0

, bn0+1, . . . 〉 = {0}.

We denote division by “:”. In the next proposition we set ∞− 1 = ∞.

Proposition 7. Let G be an Abelian p-group of the form G = 〈A〉+H , where H
is a nonzero countable group of finite exponent and A = {gi}

∞
i=0 is an independent

sequence such that either

(a) exp(H) ≤ N ≤ o(g0) < o(g1) < . . . for some natural number N , or

(b) exp(H) = o(gi) for every i ≥ 0.
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Then G has a subgroup G0 of the form

G0 =
∞
⊕

i=0

(Hi + 〈ei〉),

where

(1) the independent sequence {ei} satisfies the same condition (a) or (b) as

the sequence {gi};
(2) there is 0 < M ≤ ∞ such that Hj is a finite nonzero subgroup of G for

every 0 ≤ j < M , and, if M < ∞, Hj = {0} for each j ≥ M ;

(3) H =
⊕∞

i=0 Hi.

Proof: We distinguish between two cases.

Case 1. 〈A〉 ∩ H is finite (maybe trivial). By Lemma 6 we can choose k ≥ 0
such that (〈A〉 ∩H) ∩ 〈gk, gk+1, . . . 〉 = {0}. Then also H ∩ 〈gk, gk+1, . . . 〉 = {0}.

Set ei = gk+i, for every i ≥ 0. Let H =
⊕M−1

i=0 〈hi〉, where M ≤ ∞ and i ∈ N [1,
11.2]. Set G0 = 〈e0, e1, . . . 〉+H . Then we have

G0 =

∞
⊕

i=0

(Hi ⊕ 〈ei〉),

where Hi = 〈hi〉 if i < M , and Hi = 0 for i ≥ M . Then G0 is as desired.

Case 2. 〈A〉 ∩H is infinite. Then H is countably infinite. Let H =
⊕∞

i=0〈hi〉
[1, 11.2]. We shall construct the sequences {Hn} and {en} by induction. Set

G0 = G, H0 = H, and g0j = gj , ∀j ≥ 0.

Put e0 = g00 . Choose the minimal index κ1 ≥ 0 such that

H0 ∩ 〈e0〉 =

(

κ1
⊕

i=0

〈hi〉

)

∩ 〈e0〉.

Set

Y 1
k = 〈

{

g0k+i

}∞

i=1
〉, k ≥ 0, H0 =

κ1
⊕

i=0

〈hi〉, and X1 =
∞
⊕

i=κ1+1

〈hi〉.

Then H0 6= 0 and H0 = H0 ⊕X1. We will need that

(1) (H0 + 〈e0〉) ∩X1 = {0}.

Indeed, let ae0 + h0 = x, where a is integer, h0 ∈ H0 and x ∈ X1. Then
ae0 = x − h0 ∈ H0 and hence ae0 ∈ H0. Thus x = ae0 + h0 ∈ H0 ∩ X1 = {0},
and hence x = 0.

We distinguish between two subcases.
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Subcase 2.1. There is k ≥ 0 such that

(

Y 1
k +X1

)

∩ (H0 + 〈e0〉) = {0}.

Then we set

H1 = X1 =

∞
⊕

i=κ1+1

〈hi〉, g1j = g0k+1+j , ∀j ≥ 0, and G1 = 〈
{

g1j
}∞

j=0
〉+H1.

So H = H0 = H0 ⊕H1 and (H0 + 〈e0〉) ∩G1 = {0}, and we can proceed to the

second step for G1, H1 and the independent sequence
{

g1j
}∞

j=0
satisfying the same

condition (a) or (b) as the sequence {g0j }.

Subcase 2.2. For every k ≥ 0,

(

Y 1
k +X1

)

∩ (H0 + 〈e0〉) 6= {0}.

In this case, because of finiteness of H0 + 〈e0〉 and since exp(X1) < ∞, we can
choose the maximal natural number m satisfying the following condition:

(∗) there is a nonzero element h 6= 0 of H0+〈e0〉 such that for infinitely many
indices k, there are yk ∈ Y 1

k and zk ∈ X1 for which

yk + zk = h and o(yk) = pm.

Fix h satisfying (∗) and choose the following:

(i) a sequence of indices of the form

(2) 0 < i01 < · · · < i0s0 < i11 < · · · < i1s1 < i21 < · · · ;

(ii) a sequence of integers ak1 , . . . , a
k
sk
, where (aji , p) = 1 for all i and j;

(iii) a sequence of natural numbers rk1 , . . . , r
k
sk
, ∀k ≥ 0; and

(iv) a sequence z0, z1, . . . in X1,

such that, for every k ≥ 0,

(3) 0 6= h = ak1p
rk1 g0

ik
1

+ · · ·+ akskp
rksk g0iksk

+ zk and o(h− zk) = pm.

Set tk = min{rk1 , . . . , r
k
sk
} and

y′k = ak1p
rk1−tkg0

ik
1

+ · · ·+ akskp
rksk

−tkg0iksk
, ∀k ≥ 0.

So o(ptky′k) = pm and o(y′k) = ptk+m for all k ≥ 0. By (2), the sequence {y′k}
∞
k=0

is independent and ptky′k + zk = h ∈ H0 + 〈e0〉 for every k ≥ 0.

Subcase 2.2(a). Assume that exp(H) ≤ N ≤ o(g0) < o(g1) < . . . . Then,
by (2), exp(H) ≤ N ≤ o(y′0) < o(y′1) < . . . , and hence t0 < t1 < . . . . Set

g′k = pt2k+1−t2ky′2k+1 − y′2k, ∀k ≥ 0.
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Subcase 2.2(b). Assume that exp(H) = o(gk), ∀k ≥ 0. Then tk = tk+1 and
ptk+m = exp(H) for every k ≥ 0. Put

g′k = y′2k+1 − y′2k, ∀k ≥ 0.

In both subcases 2.2(a) and 2.2(b) we have the following:

(α1) the sequence {g′j}
∞
j=0 is independent by (2),

(α2) the sequence {g′j}
∞
j=0 satisfies the same condition (a) or (b) as {g0j },

(α3) o(g′k) = o(y′2k) = pt2k+m, for every k ≥ 0,
(α4) pt2kg′k = pt2k+1y′2k+1 − pt2ky′2k = z2k − z2k+1 ∈ X1 by (3).

Set Y ′
k = 〈{g′j}

∞
j=k〉, k ≥ 0. Let us prove the following:

Claim. There is k ≥ 0 such that

(Y ′
k +X1) ∩ (H0 + 〈e0〉) = {0}.

Proof of Claim: Assuming the converse we can find (as in (i)–(iv)) a nonzero
element h′ of H0 + 〈e0〉, a sequence of indices of the form

1 < l01 < · · · < l0q0 < l11 < · · · < l1q1 < l21 < · · · ,

a sequence of integers bk1 , . . . , b
k
qk
, (bji , p) = 1, for all i and j, a sequence of natural

numbers wk
1 , . . . , w

k
qk
, ∀k ≥ 0, and a sequence x0, x1, . . . in X1, such that

0 6= h′ = bk1p
wk

1 g′
lk
1

+ · · ·+ bkqkp
wk

qk g′lkqk
+ xk, ∀k ≥ 0.

Suppose there exists k0 ≥ 0 such that wk
i ≥ t2lki for all 1 ≤ i ≤ lkqk and for each

k ≥ k0. Then, by (α4),

0 6= h′ = bk1p
wk

1−t
2lk

1

(

p
t
2lk

1 g′
lk
1

)

+ · · ·+ bkqkp
wk

qk
−t

2lkqk

(

p
t
2lkqk g′lkqk

)

+ xk ∈ X1,

for every k ≥ k0. This contradicts (1) since h′ ∈ H0 + 〈e0〉.
So we can suppose that there is an infinite set I of indices such that for every

k ∈ I there exists an index 1 ≤ ξk ≤ qk for which wk
ξk

< t2µk
, where µk = lkξk .

For every k ∈ I set λk = min{wk
1 , . . . , w

k
qk
} and

y′′k = bk1p
wk

1−λkg′
lk
1

+ · · ·+ bkqkp
wk

qk
−λkg′lkqk

.

Since lk1 > k it follows that y′′k ∈ Y 1
k for every k ≥ 0. Thus, for all k ∈ I, we

obtain the following:

• y′′k ∈ Y 1
k ,

• 0 6= pλky′′k + xk = h′ ∈ H0 + 〈e0〉,
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• and, by (α1) and (α3),

o
(

pλky′′k
)

= max
{

o
(

y′2lk
1

)

: pw
k
1 , . . . , o

(

y′2lkqk

)

: pw
k
qk

}

≥ o
(

y′2µk

)

: pw
k
ξk (since wk

ξk
< t2µk

)

≥ o
(

y′2µk

)

: pt2µk
−1 = (by (α3)) = pm+1.

Since I is infinite we obtained a contradiction to the choice of m (see condi-
tion (∗)), thus proving the claim. �

By the claim we can choose k such that (Y ′
k +X1)∩ (H0 + 〈e0〉) = {0}. Taking

into account (α1) and (α2), we can put

H1 = X1, g1j = g′k+j , ∀j ≥ 0, and G1 = 〈
{

g1j
}∞

j=0
〉+H1.

So (H0 + 〈e0〉)∩G1 = {0} and we proceed to the second step for G1, H1 and the
independent sequence {g1j }

∞
j=0 satisfying respectively one of the conditions (a) or

(b) as {g0j}.

Iterating this process, we can find a sequence {Hi}
∞
i=0 of finite nonzero sub-

groups ofH and an independent sequence {ei}
∞
i=0 satisfying the same condition (a)

or (b) as the sequence {gi} such that

H =

∞
⊕

i=0

Hi and (Hk + 〈ek〉) ∩

(

∞
∑

i=k+1

(Hi + 〈ei〉)

)

= {0}, for every k ≥ 0.

Hence the sum G0 :=
∑∞

i=0(Hi + 〈ei〉) is direct. Thus G0 is as desired. This
completes the proof of the proposition. �

In what follows we use the next well-known folklore lemma (the proof is similar
to that of Lemma 4.2 of [6]):

Lemma 8. Let G be an Abelian group of infinite exponent. Then one of the

following assertions holds.

(i) G is not torsion. Then G has a subgroup H ∼= Z.

(ii) G is torsion but not reduced. Then G has a subgroup H ∼= Z(p∞) for

some prime p.
(iii) G is both torsion and reduced. Then G has a subgroup H ∼=

⊕∞
i=0 Z(ni),

where n0 < n1 < . . . .

The next two theorems imply and make more precise Theorem 2.

Theorem 9. Let G be an Abelian group of infinite exponent and H its nontrivial

subgroup of finite exponent. Then at least one of the following assertions holds.

(1) G contains an element g of infinite order. If we set G0 = 〈g〉 +H , then

G0
∼= (Z⊕H0)⊕X , where

(a) H0 is a finite (maybe trivial) subgroup of H ,

(b) H = H0 ⊕X ,
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(c) X 6= {0} if and only if H is infinite. In this case X satisfies condi-

tion (Λ).
(2) G contains a subgroup Y of the form Z(p∞). If we set G0 = Y +H , then

G0
∼= (Z(p∞) +H0)⊕X , where

(a) H0 is a finite (maybe trivial) subgroup of H ,

(b) H = H0 ⊕X ,

(c) X 6= {0} if and only if H is infinite. In this case X satisfies condi-

tion (Λ).
(3) G is both torsion and reduced. Then G has a subgroup G0 of the form

G0 = X ⊕

∞
⊕

i=0

(Hi + 〈ei〉),

where

(a) the independent sequence {ei} satisfies the condition

exp(H) ≤ o(e0) < o(e1) < . . . ;

(b) there is 0 ≤ M ≤ ∞ such that Hj is a finite nonzero subgroup of G
for every 0 ≤ j < M , and, if M < ∞, Hj = {0} for each j ≥ M ;

(c) H = X ⊕
⊕∞

i=0 Hi;

(d) X 6= {0} if and only if H is uncountable. In this case X satisfies

condition (Λ).

Proof: (1) Let G contain an element g of infinite order . It is clear that G0 is a
direct sum, i.e., G0 = 〈g〉 ⊕H .

If H is infinite, by Lemma 3, H can be represented in the form H = H0 ⊕X ,
where H0 is finite (maybe trivial) and X satisfies condition (Λ). So G0

∼= (Z ⊕
H0)⊕X .

If H is finite we set H0 = H . Then G0
∼= Z⊕H0.

(2) Let G contains a subgroup Y of the form Z(p∞).
If H is infinite, the assertion follows from Proposition 4.
If H is finite, it is enough to set H0 = H (and X = 0).
(3) Let G be both torsion and reduced . For a prime p, let Hp and Gp be the

p-components of H and G respectively. Since H is of finite exponent, there are
pairwise disjoint primes p1, . . . , pn, pn+1, . . . , pN , where n < ∞ and n ≤ N ≤ ∞,
such that (see [1, Theorem 2.1])

H =

n
⊕

i=1

Hpi
and G =

n
⊕

i=1

Gpi
⊕G1,

where G1 =
⊕N

i=n+1 Gpi
and all the groups Hpi

and Gpi
are nonzero.

We distinguish between the following two cases.

Case 1. exp(G1) = ∞. By Lemma 8, there is an independent sequence {en}
∞
n=0

in G1, where exp(H) ≤ o(e0) < o(e1) < . . . .



184 S.S. Gabriyelyan

Subcase 1.1. Assume that H is uncountable. By Lemma 3, H = H0⊕X ′, where
H0 is finite (maybe trivial) and X ′ is an uncountable subgroup of H satisfying
condition (Λ). Set X = X ′.

If H0 6= 0, we set

G0 =

(

(H0 ⊕ 〈e0〉)⊕

∞
⊕

i=1

〈ei〉

)

⊕X, and Hi = 0, for every i ≥ 1.

Then we obtain the desired (with M = 1).
If H0 = 0 and hence H = X , we set

G0 =

(

∞
⊕

i=0

〈ei〉

)

⊕X, and Hi = 0, for every i ≥ 0.

Then we obtain the desired (with M = 0).

Subcase 1.2. Assume that H is countably infinite. By Lemma 3, H = H0⊕X ′,
where H0 is finite (maybe trivial) and X ′ is a countably infinite subgroup of H
satisfying condition (Λ). By [1, 11.2] we have X ′ =

⊕∞
i=1〈hi〉. Set

G0 = (H0 ⊕ 〈e0〉)⊕

∞
⊕

i=1

(Hi ⊕ 〈ei〉) , where Hi = 〈hi〉 for every i ≥ 1.

Then we obtain the desired (in this case X = 0 and M = ∞).

Subcase 1.3. Assume that H is finite and non-trivial . In this case we set

H0 = H, G0 = (H0 ⊕ 〈e0〉) ⊕

∞
⊕

i=1

〈ei〉, and Hi = 0, for every i ≥ 1.

Then we obtain the desired (in this case X = 0 and M = 1).
Case 2. exp(G1) < ∞. In this case there is 1 ≤ l ≤ n such that exp(Gpl

) = ∞.
If
⊕n

i=1,i6=l Hpi
is finite, we set H ′

0 :=
⊕n

i=1,i6=l Hpi
and X ′ = 0. If

⊕n

i=1,i6=l Hpi

is infinite, then, by Lemma 3,
⊕n

i=1,i6=l Hpi
= H ′

0⊕X ′, where H ′
0 is finite (maybe

trivial) and X ′ satisfies condition (Λ). Set N = exp(H).
Since G is both torsion and reduced, by Lemma 8, there is an independent

sequence {gi}
∞
i=0 in Gpl

satisfying the condition N ≤ o(g0) < o(g1) < . . . . Set
A := {gi}

∞
i=0 and Y := 〈A〉 +Hpl

. Note that Hpl
is nonzero by construction. If

Hpl
is uncountable, we apply Proposition 5 to Y and Hpl

. If H0 6= {0} in that
Proposition 5 or in the case Hpl

is countable, we apply Proposition 7. So we can
find a subgroup Y0 of Y of the form

Y0 = X ′′ ⊕
∞
⊕

i=0

(Hi
pl
+ 〈ei〉),

where
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(a1) the independent sequence {ei} satisfies the condition

N ≤ o(e0) < o(e1) < . . . ;

(a2) there is 0 ≤ M ≤ ∞ such that Hi
pl

is a finite nonzero subgroup of Y for

every 0 ≤ i < M , and, if M < ∞, Hi
pl

= {0} for each i ≥ M ;

(a3) Hpl
= X ′′ ⊕

⊕∞
i=0 H

i
pl
;

(a4) X ′′ 6= {0} if and only if Hpl
is uncountable. In this case X ′′ satisfies

condition (Λ).

Subcase 2.1. Assume that H is uncountable. Set X = X ′ ⊕X ′′. Then X is an
uncountable subgroup of H satisfying the condition (Λ). Set

H0 = H ′
0 ⊕H0

pl
, Hi = Hi

pl
for i ≥ 1, and G0 = X ⊕

∞
⊕

i=0

(Hi + 〈ei〉).

Since H = X ⊕
⊕∞

i=0 H
i we obtain the desired.

Subcase 2.2. Assume that H is countably infinite. Then X ′′ = 0, and X ′ is
either trivial or X ′ =

⊕∞
i=1 H

′
i by [1, 11.2], where H ′

i is a finite (maybe trivial)
cyclic group for every i ≥ 1. Set H0 = H ′

0 ⊕H0
pl
, and for every i ≥ 1 put

Hi = H ′
i ⊕Hi

pl
if X ′ 6= 0, and Hi = Hi

pl
if X ′ = 0.

Then, by (a2), H
i is a finite (maybe trivial) subgroup of H for every i ≥ 0, and

H =
⊕∞

i=0 H
i by (a3). Setting

G0 =

∞
⊕

i=0

(Hi + 〈ei〉),

we obtain the desired by (a1).

Subcase 2.3. Assume that H is finite and non-trivial . In this case we put
H0 = H . By Lemma 6 we can choose k ≥ 0 such that H0 ∩ 〈{gk+i}

∞
i=0〉 = {0}.

Set ei = gk+i for every i ≥ 0. Putting

G0 =
(

H0 ⊕ 〈e0〉
)

⊕

∞
⊕

i=1

〈ei〉, and Hi = 0, for every i ≥ 1,

we obtain the desired (in this case X = 0 and M = 1). �

Theorem 10. Let G be an Abelian group of finite exponent and H its nonzero

subgroup. If G contains a subgroup of the form Z(exp(H))(ω), then G has a

subgroup G0 of the form

G0 = X ⊕

∞
⊕

i=0

(Hi + 〈ei〉),

where
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(1) the independent sequence {ei} satisfies the condition

exp(H) = o(e0) = o(e1) = . . . ;

(2) there is 0 < M ≤ ∞ such that Hj is a finite nonzero subgroup of G for

every 0 ≤ j < M , and, if M < ∞, Hj = {0} for each j ≥ M ;

(3) H = X ⊕
⊕∞

i=0 Hi;

(4) X 6= {0} if and only if H is uncountable. In this case X satisfies condi-

tion (Λ).

Proof: For a prime p, let H ′
p and Gp be the p-components of H and G respec-

tively. Since G has finite exponent, by [1, 2.1] there are different primes p1, . . . , pn,
pn+1, . . . , pN , where 1 ≤ n ≤ N < ∞, such that

H =

n
⊕

k=1

H ′
pk

and G =

n
⊕

k=1

Gpk
⊕G1,

where G1 =
⊕N

k=n+1 Gpk
and all the groups H ′

pk
and Gpk

are nonzero.
By assumption, for every 1 ≤ k ≤ n, Gpk

has a subgroup of the form

Z(exp(H ′
pk
))(ω). Thus, for every 1 ≤ k ≤ n, Gpk

has an independent sequence

Ak = {gki }
∞
i=0 such that o(gki ) = exp(H ′

pk) for every i ≥ 0.

Fix arbitrarily k, 1 ≤ k ≤ n, and consider the next two possible cases.

Case 1. H ′
pk

is a (nonzero) countable group. So we can apply Proposition 7 to

the group 〈Ak〉+H ′
pk
(⊆ Gpk

). Thus the group 〈Ak〉+H ′
pk

has a subgroup Gk
0 of

the form

Gk
0 :=

∞
⊕

i=0

(

Hk
i + 〈eki 〉

)

,

where

(a1) the independent sequence {eki } satisfies the condition

exp
(

H ′
pk

)

= o(ek1) = o(ek2) = . . . ;

(a2) there is 0 < Mk ≤ ∞ such that Hk
i is a finite nonzero subgroup of Gk

0 for
every 0 ≤ i < Mk, and, if Mk < ∞, Hk

i = {0} for each i ≥ Mk;
(a3) H ′

pk
=
⊕∞

i=0 H
k
i ;

In this case we also put Xk = {0}.

Case 2. H ′
pk

is an uncountable group. Applying Propositions 5 to the group
〈Ak〉+H ′

pk
(⊆ Gpk

), we can find a countable (maybe trivial) subgroup S′
k of H ′

pk

and an uncountable subgroup S′′
k of H ′

pk
such that

(b1) H ′
pk

= S′
k ⊕ S′′

k ;
(b2) 〈Ak〉+H ′

pk
= (〈Ak〉+ S′

k)⊕ S′′
k ;

(b3) S′′
k satisfies condition (Λ).

Represent S′′
k in the form S′′

k = Xk ⊕ (
⊕∞

i=0 R
k
i ), where
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(c1) Rk
i is nonzero and finite for every i ≥ 0;

(c2) exp(S′
k ⊕

⊕∞
i=0 R

k
i ) = exp(H ′

pk
);

(c3) Xk is uncountable and satisfies condition (Λ).

Now we can apply Proposition 7 to the group

(〈Ak〉+ S′
k)⊕

∞
⊕

i=0

Rk
i = 〈Ak〉+

(

S′
k ⊕

∞
⊕

i=0

Rk
i

)

.

Taking into account (b1)–(b3) and (c1)–(c3), we obtain that the group 〈Ak〉 +
H ′

pk
(⊆ Gpk

) has a subgroup Gk
0 of the form

Gk
0 := Xk ⊕

∞
⊕

i=0

(

Hk
i ⊕ 〈eki 〉

)

,

where

(a4) the independent sequence {eki } satisfies the condition

exp
(

H ′
pk

)

= o(ek1) = o(ek2) = . . . ;

(a5) there is 0 < Mk ≤ ∞ such that Hk
i is a finite nonzero subgroup of Gk

0 for
every 0 ≤ i < Mk, and, if Mk < ∞, Hk

i = {0} for each i ≥ Mk;
(a6) H ′

pk
= Xk ⊕

⊕∞
i=0 H

k
i ;

(a7) Xk is uncountable and satisfies condition (Λ).

Set M = max{M1, . . . ,Mn} and

G0 =

n
⊕

k=1

Gk
0 , X =

n
⊕

k=1

Xk, Hi =

n
⊕

k=1

Hk
i and ei = e1i + · · ·+ eni for every i ≥ 0.

By (a1)–(a7), all the conditions (1)–(4) are fulfilled. The theorem is proved. �

Proof of Theorem 2: (i) immediately follows from Theorem 9.
(ii) If H has a simple extension in G, then G has a subgroup of the form

Z(exp(H))(ω) by item (2b) of the definition of simple extension. The converse
follows from Theorem 10. �
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