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Boolean differential operators

Jorge Catumba, Rafael Dı́az

Abstract. We consider four combinatorial interpretations for the algebra of Boo-
lean differential operators and construct, for each interpretation, a matrix rep-
resentation for the algebra of Boolean differential operators.
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1. Introduction

A Boolean function with n-arguments, n ∈ N, is a map f : Zn
2 −→ Z2, where

Z2 = {0, 1} is the field with two elements. The Z2-algebra BFn of Boolean
functions on n-arguments, with pointwise sum and multiplication, is isomorphic
to the Boolean algebra PP[n] of sets of subsets of [n] = {1, . . . , n}. Indeed, we
identify a vector in Z

n
2 with an element of P[n] via the characteristic function,

and we identify a map P[n] −→ Z2 with a subset of P[n] again with the help of
characteristic functions. The sum and product of Boolean functions correspond to
the symmetric difference and the intersection of subsets of P[n], respectively. The
canonical isomorphism BFn ≃ PP[n] just described establishes the link between
classical propositional logic and set theory [1].

The partial derivative ∂if : Z
n
2 −→ Z2, for i ∈ [n], of a Boolean function

f : Zn
2 −→ Z2, see [3], is given by

(1) ∂if(a) = f(a+ ei) + f(a),

where a ∈ Z
n
2 and ei is the vector with 1 at the i-th position and 0′s at the other

positions.

We define the Z2-algebra BDOn of Boolean differential operators on Z
n
2 in

analogy with the definition of differential operators on the affine space kn, for a
field k of characteristic zero, i.e. BDOn is the subalgebra of EndZ2

(BFn) generated
by the operators of multiplication by Boolean functions, and the partial derivative
operators ∂i defined in (1).

It turns out that BDOn = EndZ2
(BFn), see [2], i.e. any Z2-linear operator

from BFn to itself is actually given by a Boolean differential operator. Therefore
a Boolean differential operator A ∈ BDOn is just a map

A : BFn −→ BFn such that A(f + g) = A(f) +A(g), for f, g ∈ BFn.
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We are interested in finding a suitable set theoretical interpretation for the
algebras BDOn that extends the above mentioned interpretation of BFn as the
Boolean algebra PP[n], and may shed a light towards a logical understanding
of the Z2-algebras BDOn. Indeed, we believe that the Z2-algebras BDOn may
play a semantic role, analogous to that played by truth functions in classical
logic, within the context of a “quantum like” operational logic yet to be fully
understood. A few steps in that direction are taken in [2].

Our main goal in this work is to find suitable matrix representations for the Z2-
algebras BDOn. By dimension counting BDOn = EndZ2

(BFn) is non-canonically
isomorphic to the Z2-algebra M2n×2n(Z2) of square matrices of size 2n with 0-1
entries. Note that M2n×2n(Z2) may be identified, via characteristic functions,
with P(P[n] × P[n]) the set of subsets of P[n] × P[n], or equivalently, with the
set DGP[n] of simple directed graphs (possibly with loops) with vertex set P[n].
A matrix A ∈ M2n×2n(Z2) = P(P[n]× P[n]) is regarded as a directed graph with
vertex set P[n] by drawing an edge from b ∈ P[n] to a ∈ P[n] if and only if
(a, b) ∈ A. The sum and product of matrices in M2n×2n(Z2) induce operations
of sum and product of digraphs in DGP[n]. The sum on DGP[n] is the symmetric
difference. The product AB of digraphs A,B ∈ DGP[n] is such that the pair
(a, b) ∈ AB if and only if there is an odd number of sets c ∈ P[n] such that
(a, c) ∈ A and (c, b) ∈ B.

To define an explicit isomorphism BDOn ≃ M2n×2n(Z2) a choice of basis for
BFn must be made. In this work we only consider the basis {ma | a ∈ P[n]} for
BFn, where the Boolean function ma : Zn

2 −→ Z2 is given on b ∈ P[n] by:

(2) ma(b) =

{
1 if a = b,

0 otherwise.

We let [A] ∈ M2n×2n(Z2) be the matrix of the Boolean differential operator A ∈
BDOn in the basis {ma | a ∈ P[n]}.

We are going to use the following simple algebraic construction. Let A be a
Z2-algebra, V a Z2-vector space, and l : V −→ A be a Z2-linear bijective map.
We use l to pullback the product on A to a product on V given for v, w ∈ V by

vw = l−1(l(v)l(w)).

With this product on V the map l becomes an algebra isomorphism.

As we shall see each of our choices of bases for BDOn induces a Z2-linear
bijective map from DGP[n] to BDOn. In [2] we use four such bijections to pullback
the composition product on BDOn to DGP[n], thus we obtain four products on
DGP[n] denoted, respectively, by ⋆, ◦, •, ∗. Having various presentations for the
product on BDOn is desirable, just as it is useful to generate truth functions by
several types of logical connectives.
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Our main goal in this work is to explicitly describe matrix representations for
the products ⋆, ◦, •, ∗ on DGP[n]. It turns out that the product ⋆ is the easiest to
handle, in Section 2 we discuss some of its basic properties and describe an explicit
isomorphism with M2n×2n(Z2). In the remaining sections, we present explicit
isomorphisms between the products ◦, •, ∗ and the product on M2n×2n(Z2), the
algebra of square matrices of size 2n with entries in Z2.

Let us comment on some conventions assumed in this work. In the figures
we draw a subset of P[n] × P[n] as a subset of the real plane, and we use the
bijective correspondence between P[n] = Z

n
2 and the natural numbers in the

interval [0, 2n−1] resulting in ordering P[n] by cardinality and lexicographic order
within a given cardinality. For example P[2] and [0, 3] are in correspondence as
follows ∅ → 0, {1} → 1, {2} → 2, {1, 2} → 3. When drawing a product, the
elements of the first factor are drawn as triangles; the elements of the second
factor are drawn as circles; and the elements in the product are drawn as stars.
We identify matrices in M2n×2n(Z2) with maps P[n] × P[n] −→ Z2 using again
the cardinality-lexicographic order on Z

n
2 = P[n]. We use juxtaposition for the

product of matrices, and rank(A) for the rank of matrix A.

2. MS basis and the ⋆-product

As mentioned in the introduction we are going to consider four different bases
for the Z2-algebra BDOn of Boolean differential operators on Z

n
2 . In this section

we consider the MS-basis

{mcsd | c, d ∈ P[n]},

where the Boolean functions mc were described in the introduction, and the shift
operators sd : BFn −→ BFn are given by

sd =
∏

i∈d

si, where sif(a) = f(a+ ei), for a ∈ Z
n
2 , i ∈ [n], f ∈ BFn.

Note that ∂i = si + 1 and si = ∂i + 1, where 1 stands for the identity operator;
thus one can move back and forward from the shift operators sd =

∏
i∈d si to the

partial derivative operators ∂d =
∏

i∈d ∂i. Indeed, it is easy to check that

(3) ∂d =
∑

c⊆d

sc and sd =
∑

c⊆d

∂c.

Consider the identifications

DGP[n] ≃ Map(P[n]× P[n],Z2) ≃ BDOn,

where the identification on the left is given by characteristic functions and we
use it freely without change of notation; the non-canonical identification on the
right is obtained via the bijective Z2-linear map l1 : DGP[n] → BDOn sending
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a directed graph A ∈ DGP[n] to the Boolean differential operator given by

l1(A) =
∑

(c,d)∈A

mcsd =
∑

c,d∈P[n]

A(c, d)mcsd.

The ⋆-product on DGP[n] is the pullback via the map l1 of the composition product
on BDOn. The ⋆-product, see [2], is given for A,B ∈ DGP[n] by the equivalent
identities:

A ⋆ B = l−1
1 (l1(A)l1(B));

A ⋆ B(c, d) =
∑

e∈P[n]

A(c, e)B(c+ e, d+ e);(4)

A ⋆ B = {(c, d) ∈ P[n]× P[n] | O{e ∈ P[n] | (c, e) ∈ A, (c+ e, d+ e) ∈ B}},

where the notation OC means that the finite set C has odd cardinality.

We proceed to introduce a matrix representation for the algebra (DGP[n], ⋆).
Consider the map M1 : DGP[n] −→ M2n×2n(Z2) sending a directed graph A ∈
DGP[n] to the matrix of the operator

l1(A) =
∑

c,d∈P[n]

A(c, d)mcsd

in the basis {ma | a ∈ P[n]}, i.e. we have that

M1(A) = [l1(A)].

Note that M1 is a Z2-linear map since it is the composition of two Z2-linear maps.

Theorem 1. The map M1 : (DGP[n], ⋆) −→ (M2n×2n(Z2), ·) is an algebra iso-

morphism given for A ∈ DGP[n] by

(5) M1(A)a,b = A(a, a+ b).

The inverse map D1 : (M2n×2n(Z2), ·) −→ (DGP[n], ⋆) sends a matrix N ∈
M2n×2n(Z2) to the directed graph D1(N) with characteristic function given by

(6) D1(N)(a, b) = Na,a+b.

Proof: First note that mcsd(mb) = δ(b, c+d)mc, where δ is the Kronecker delta
function. Therefore the matrix [mcsd] ∈ M2n×2n(Z2) is such that:

(7) [mcsd]a,b = δ(a, c)δ(b, c+ d).
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Thus for A ∈ DGP[n] we have that:

M1(A)a,b =




∑

c,d∈P[n]

A(c, d)mcsd



a,b

=
∑

c,d∈P[n]

A(c, d)[mcsd]a,b

=
∑

c,d∈P[n]

A(c, d)δ(a, c)δ(b, c + d) = A(a, a+ b).

The maps M1 and D1 are inverse of each other, indeed we have that

D1(M1(A))(a, b) = M1(A)a,a+b = A(a, a+ a+ b) = A(a, b),

M1(D1(N))a,b = D1(N)(a, a+ b) = N(a, a+ a+ b) = N(a, b)

for A ∈ DGP[n] and N ∈ M2n×2n(Z2).

Next we show that M1 is an algebra morphism. Thus we have that:

M1(A ⋆ B) = [l1(A ⋆ B)] = [l1(A)l1(B)] = [l1(A)][l1(B)] = M1(A)M1(B).

Explicitly, for A,B ∈ DGP[n], we have using (4) and (5) that:

M1(A ⋆ B)a1,a2
= A ⋆ B(a1, a1 + a2)

=
∑

b∈P[n]

A(a1, b)B(a1 + b, a1 + a2 + b)

=
∑

b∈P[n]

M1(A)(a1, a1 + b)M1(B)(a1 + b, a2)

=
∑

b∈P[n]

M1(A)(a1, b)M1(B)(b, a2) = (M1(A)M1(B))a1,a2
.

�

Corollary 2. |Ker(l1(A))| = 2r and |Im(l1(A))| = 2n−r, where r = rank(M1(A)).

Example 3. Consider the Jordan-like matrices M2n×2n(Z2) having 1 on the prin-
cipal diagonal and on the diagonal directly above the principal. The associated
Boolean differential operators in the MS-basis, for n ∈ [4], are given in Table 1.

Example 4. The multiplication table of (DGP[1], ⋆) is given in Table 2.

It would be nice to have an intuitive understanding of the ⋆-product, say in the
spirit of Venn diagrams. In order to gain a better understanding of the meaning
of the ⋆-product we consider several examples. The first example is the simple
case of the product of graphs with a unique edge.

Lemma 5. Let a, b, c, d ∈ P[n], then we have that:

{(a, b)} ⋆ {(c, d)} =

{
{(a, b+ d)} if a = b+ c,

∅ if a 6= b+ c.



146 J. Catumba, R. Dı́az

n Operator

1 m∅s{1} + 1

2 m∅s{1} +m{1}s{1,2} +m{2}s{1} + 1

3 m∅s{1} +m{1}s{1,2} +m{2}s{2,3} +m{3}s{1,2,3} +m{1,2}s{2,3} +m{1,3}s{1,2} +
m{2,3}s{1} + 1

4 m∅s{1} +m{1}s{1,2} +m{2}s{2,3} +m{3}s{3,4} +m{4}s{1,2,4} +m{1,2}s{2,3} +
m{1,3}s{3,4} + m{1,4}s{1,2,3,4} + m{2,3}s{3,4} + m{2,4}s{2,3} + m{3,4}s{1,2,4} +
m{1,2,3}s{3,4} +m{1,2,4}s{2,3} +m{1,3,4}s{1,2} +m{2,3,4}s{1} + 1

Table 1. Associated Boolean differential operators of Jordan-
like matrices.

Proof: Let (a1, a2) ∈ {(a, b)} ⋆ {(c, d)}, then there is an odd number of sets
e ∈ P[n] such that

(a1, e) = (a, b) and (a1 + e, a2 + e) = (c, d).

Thus a1 = a, e = b, a = b + c, a2 = b+ d. So, there is no such e if a 6= b + c. In
the case a = b+ c, we have that (a1, a2) = (a, b+ d). �

In the next examples we consider the ⋆-product on graphs using suitable de-
compositions of the graphs.

Proposition 6. Let A,B ∈ DGP[n] be given by

A =
∑

b∈P[n]

Ab × {b} and B =
∑

c∈P[n]

Bc × {c},

where Ab is the set endpoints of edges in A starting at b, and Bc is similarly

defined. Then we have that:

A ⋆ B =
∑

b,c∈P[n]

(Ab ∩ (Bc + b))× {b+ c}.

Proof: Using the distributive property, recall that (DGP[n], ⋆) ≃ (M2n×2n(Z2), ·),
we get

A ⋆ B =
∑

b,c∈P[n]

(Ab × {b}) ⋆ (Bc × {c}) .

Suppose (a1, a2) ∈ (Ab × {b}) ⋆ (Bc × {c}), then there is an odd number of sets
e ∈ P[n] such that (a1, e) ∈ Ab × {b} and (a1 + e, a2 + e) ∈ Bc × {c}. Clearly,
the only possible set e with those properties is e = b, and furthermore a1 ∈ Ab,
a2 = b+ c, and a1 ∈ Bc + b. Therefore, we have that:

(Ab × {b}) ⋆ (Bc × {c}) = (Ab ∩ (Bc + b))× {b+ c},

yielding the desired result. �
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Remark 7. To contrast the classical intersection ∩ with the ⋆-product note that
the intersection of graphs A,B ∈ DGP[n] can be written as

A ∩B =
∑

b∈P[n]

(Ab ∩Bb)× {b} =
∑

b,c∈P[n]

δ(b, c) (Ab ∩Bb)× {b}.

Example 8. Let A{1,2} = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}} ∈ PP[4], then

(A{1,2} × {1, 2}) ⋆ (A{1,2} × {1, 2}) = {{1}, {2}}× {∅},

since {1, 2}+ {1, 2} = ∅, {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}}+ {1, 2} is equal to

{∅, {1}, {2}, {2, 3}, {2, 3}, {1, 2, 4}}= {∅, {1}, {2}, {1, 2, 4}},

and {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}}∩ {∅, {1}, {2}, {1, 2, 4}}= {{1}, {2}}.

Figure 1 shows a graphical representation of the product (A{1,2}×{1, 2})⋆(A{1,2}×
{1, 2}).

Figure 1. Representation of the product (A{1,2} × {1, 2}) ⋆
(A{1,2} × {1, 2}), Example 8.

Proposition 9. Let A,B ∈ DGP[n] be written as

A =
∑

b∈P[n]

Ab × {b} and B =
∑

c∈P[n]

{c} ×Bc.

Then we have that:

A ⋆ B =
∑

b+c∈Ab

{b+ c} × (Bc + b).
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Proof: Using the distributive property for the ⋆-product we get:

A ⋆ B =
∑

b,c∈P[n]

(Ab × {b}) ⋆ ({c} ×Bc) =
∑

b+c∈Ab

{b+ c} × (Bc + b).

We show the second identity. Suppose (a1, a2) ∈ (Ab×{b})⋆({c}×Bc), then there
is an odd number of sets e ∈ P[n] such that (a1, e) ∈ Ab×{b} and (a1+e, a2+e) ∈
{c} ×Bc. Clearly, the only possibility is e = b, and furthermore b+ c = a1 ∈ Ab,
a2 ∈ Bc + b. �

Example 10. Let A{1,2} and B∅ in PP[4] be given, respectively, by

A{1,2} = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and

B∅ = {{2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}}.

Then we have, see Figure 2, that:

(A{1,2}×{{1, 2}})⋆({∅}×B∅) = {{1, 2}}×{∅, {1}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}}.

Figure 2. Representation of the product (A{1,2}×{1, 2}) ⋆ (∅×
B∅) from Example 10.

Proposition 11. Let A,B ∈ DGP[n] be written as

A =
∑

b∈P[n]

{b} ×Ab and B =
∑

c∈P[n]

{c} ×Bc.
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Then we have that:

A ⋆ B =
∑

b+c∈Ab

{b} × (Bc + b+ c) .

Proof: Using the distributive property for the ⋆-product we have that:

A ⋆ B =
∑

b,c∈P[n]

({b} ×Ab) ⋆ ({c} ×Bc).

A pair (a1, a2) ∈ P[n]×P[n] belongs to ({b} ×Ab) ⋆ ({c} ×Bc) if there is an odd
number of sets e ∈ P[n] such that (a1, e) ∈ {b}×Ab and (a1+e, a2+e) ∈ {c}×Bc.
Thus we have that a1 = b, e ∈ Ab, e = b+ c, a2 ∈ Bc + b + c. The desired result
follows. �

Example 12. Let B{1,3} and A∅ in PP[4] be given by

A∅ = {{2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}}

and

B{1,3} = {∅, {1}, {2}, {3}, {4}, {1, 2}}.

Then, see Figure 3, we have that:

({∅}×A∅)⋆ ({{1, 3}}×B{1,3}) = {∅}×{{1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 3, 4}}.

Figure 3. Representation of the product ({∅}×A∅)⋆({{1, 3}}×
B{1,3}), Example 12.

Example 13. Let A,B ∈ DGP[4] be given by

A = {({4}, {4}), ({4}, {1, 2}), ({4}, {1, 3}), ({1, 2}, {4}), ({1, 2}, {1, 2}),



150 J. Catumba, R. Dı́az

({1, 2}, {1, 3}), ({1, 3}, {4}), ({1, 3}, {1, 2}), ({1, 3}, {1, 3})}, and

B = {({1, 3}, {1, 3}), ({1, 3}, {1, 4}), ({1, 3}, {2, 3}), ({1, 4}, {1, 3}), ({1, 4}, {1, 4}),

({1, 4}, {2, 3}), ({2, 3}, {1, 3}), ({2, 3}, {1, 4}), ({2, 3}, {2, 3})}.

The product A ⋆ B, see Figure 4, is given by

{({1, 2}, ∅), ({1, 2}, {1, 2}), ({1, 2}, {3, 4}), ({1, 3}, {1, 3}), ({1, 3}, {2, 3}), ({1, 3}, {2, 4})}.

Figure 4. Graphical representation of the product of the di-
graphs from Example 13.

3. M∂ basis and ◦-product

In this section we consider the M∂ basis for BDOn, thus we regard a directed
graph A ∈ DGP[n] as a Boolean differential operator via the map l2 : DGP[n] −→
BDOn given by

l2(A) =
∑

(c,d)∈A

mc∂d =
∑

c,d∈P[n]

A(c, d)mc∂d,

where for d ∈ P[n] we set ∂d =
∏

i∈d ∂i.

The ◦-product on DGP[n] is the pullback via the map l2 of the composition
product on BDOn, i.e. the ◦-product is given for A,B ∈ DGP[n] by A ◦ B =

l−1
2 (l2(A)l2(B)). Explicitly, see [2], we have that

A ◦B(c, d) =
∑

g⊆d,e,f
d\g⊆c+f⊆e

A(c, e)B(f, g).
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Equivalently, a pair (c, d) ∈ P[n]× P[n] belongs to A ◦B ∈ DGP[n] if and only if
there is an odd number of sets e ∈ P[n] and (f, g) ∈ B such that

g ⊆ d, (c, e) ∈ A, d \ g ⊆ c+ f ⊆ e.

Note that we can go back and forward from the MS-basis to the M∂-basis for
Boolean differential operators as follows:

A =
∑

c,d∈P[n]

A(c, d)mc∂d =
∑

c,d∈P[n]

Â(c, d)mcsd,

indeed with the help of the identities (3) we get that

Â(c, d) =
∑

d⊆e

A(c, e) and A(c, d) =
∑

d⊆e

Â(c, e).

Consider the map M2 : DGP[n] −→ M2n×2n(Z2) sending a directed graph
A ∈ DGP[n] to the matrix of the operator

l2(A) =
∑

c,d∈P[n]

A(c, d)mc∂d =
∑

c,e⊆d

A(c, d)mcse

in the basis {ma | a ∈ P[n]}, i.e. we have that M2(A) = [l2(A)].

Theorem 14. The map M2 : (DGP[n], ◦) −→ (M2n×2n(Z2), ·) is an algebra iso-

morphism given for A ∈ DGP[n] by

M2(A)a,b =
∑

a+b⊆c

A(a, c).

The inverse map D2 : (M2n×2n(Z2), ·) −→ (DGP[n], ◦) sends N ∈ M2n×2n(Z2) to
the directed graph D2(N) with characteristic function given by

D2(N)(a, b) =
∑

b⊆c

Na,a+c.

Proof: For A ∈ DGP[n], identifying A with l2(A) and using (7), we get that

M2(A)a,b =


 ∑

c,d∈P[n]

A(c, d)mc∂d



a,b

=


 ∑

c,e⊆d

A(c, d)mcse



a,b

=
∑

c,e⊆d

A(c, d)[mcse]a,b =
∑

c,e⊆d

A(c, d)δ(a, c)δ(b, c+ e) =
∑

a+b⊆d

A(a, d),

since c = a, and b = c+ e implies that e = a+ b.
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We show that D2 is indeed the inverse of M2. We have for A ∈ DGP[n] that:

D2(M2(A))(a, b) =
∑

b⊆c

M2(A)a,a+c

=
∑

b⊆c


 ∑

a+a+c⊆d

A(a, d)


 =

∑

b⊆c⊆d

A(a, d) = A(a, b),

where the last identity is shown as follows:

∑

b⊆c⊆d

A(a, d) =
∑

b⊆d




∑

b⊆c⊆d

1


A(a, d) =

∑

b⊆d

2|d\b|A(a, d) = A(a, b).

M2 is an algebra morphism since M2(A) = [l2(A)], and thus we have that:

M2(A ◦B) = [l2(A ◦B)] = [l2(A)l2(B)] = [l2(A)][l2(B)] = M2(A)M2(B).

�

Corollary 15. |Ker(l2(A))| = 2r and |Im(l2(A))| = 2n−r, where r = rank(M2(A)).

4. XS-basis and the ∗-product

For a ∈ P[n] consider the Boolean function xa ∈ BFn given on b ∈ P[n] by:

(8) xa(b) =

{
1 if a ⊆ b,

0 otherwise.

One can go back and forward from the {ma} basis to the {xa} basis as follows:

(9) ma =
∑

a⊆b

xb and xa =
∑

a⊆b

mb.

Indeed, the identity on the right follows directly from definitions (2) and (8); the
identity on the left follows from the Möbius inversion formula for modules over a
Z2-ring, see [4], which states that for arbitrary maps

f, g : P[n] −→ M,

with M a module over a Z2-ring, the identities

g(d) =
∑

c⊆d

f(c) and f(d) =
∑

c⊆d

g(c) are equivalent.
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Note that x + x = 2x = (1 + 1)x = 0x = 0 for all x ∈ M . The Möbius inversion
formula follows from the identities (valid for c ∈ P[n] fixed):

(10)
∑

a⊆b⊆c

f(a) =
∑

a⊆c




∑

a⊆b⊆c

1


 f(a) =

∑

a⊆c

2|c\a|f(a) = f(c).

In this section we regard elements of DGP[n] as Boolean differential operators
via the map l3 : DGP[n] → BDOn given by

l3(A) =
∑

(c,d)∈A

xcsd =
∑

c,d∈P[n]

A(c, d)xcsd.

The ∗-product on DGP[n] is the pullback via the map l3 of the composition

product on BDOn, i.e. for A,B ∈ DGP[n] we have that A ∗B = l−1
3 (l3(A)l3(B)).

Explicitly, see [2], we have that

A ∗B(c, d) =
∑

e⊆c,g,h

|{k ⊆ g ∩ h | e ∪ h \ k = c }|A(e, g)B(h, d+ g).

Equivalently, a pair (c, d) ∈ P[n]× P[n] belongs to A ∗B ∈ DGP[n] if and only
if there is an odd number of sets e, g, h, k ∈ P[n] such that

e ⊆ c, k ⊆ g ∩ h, e ∪ h \ k = c, (e, g) ∈ A, (h, d+ g) ∈ B.

Note that we can go back and forward from the MS-basis to the XS-basis for
differential operators as follows:

A =
∑

c,d∈P[n]

A(c, d)xcsd =
∑

c,d∈P[n]

Â(c, d)mcsd.

Indeed using (9) we have that

Â(c, d) =
∑

e⊆c

A(e, d) and A(c, d) =
∑

e⊆c

Â(e, d).

Consider the map M3 : DGP[n] −→ M2n×2n(Z2) sending a directed graph
A ∈ DGP[n] to the matrix of the operator

l3(A) =
∑

c,d∈P[n]

A(c, d)xcsd =
∑

c⊆e,d

A(c, d)mesd

in the basis {ma | a ∈ P[n]}, thus we have that M3(A) = l3(A).
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Theorem 16. The map M3 : (DGP[n], ∗) −→ (M2n×2n(Z2), ·) is an algebra iso-

morphism given for A ∈ DGP[n] by

M3(A)a,b =
∑

c⊆a

A(c, a+ b).

The inverse map D3 : (M2n×2n(Z2), ·) −→ (DGP[n], ∗) sends N ∈ M2n×2n(Z2) to
the directed graph D3(N) with characteristic function given by

D3(N)(a, b) =
∑

c⊆a

Nc,b+c .

Proof: We have that

M3(A)a,b =


 ∑

c,d∈P[n]

A(c, d)xcsd



a,b

=


 ∑

c⊆e,d

A(c, d)mesd



a,b

=
∑

c⊆e,d

A(c, d)[mesd]a,b =
∑

c⊆e,d

A(c, d)δ(e, a)δ(e, b + d)

=
∑

c⊆a

A(c, a+ b).

The map D3 is inverse to M3 since for A ∈ DGP[n] we have that:

D3(M3(A))(a, b) =
∑

c⊆a

M3(A)c,b+c

=
∑

c⊆a


∑

d⊆c

A(d, b)


 =

∑

d⊆c⊆a

A(d, b) = A(a, b).

We show that M3 is an algebra morphism. By definition M3(A) = [l3(A)], thus:

M3(A ◦B) = [l3(A ◦B)] = [l3(A)l3(B)] = [l3(A)][l3(B)] = M3(A)M3(B).

�

Corollary 17. |Ker(l3(A))| = 2r and |Im(l3(A))| = 2n−r, where r = rank(M3(A)).

5. X∂-basis and the •-product

In this section we regard elements of DGP[n] as Boolean differential operators
via the bijective map l4 : DGP[n] −→ BDOn given by

l4(A) =
∑

(c,d)∈A

xc∂d =
∑

c,d∈P[n]

A(c, d)xc∂d.
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The •-product on DGP[n] is the pullback via l4 of the composition product on

BDOn, thus for A,B ∈ DGP[n] we have that A ◦B = l−1
4 (l4(A)l4(B)). Explicitly

[2] we have that:

A•B(c, d)=
∑

e⊆c,h⊆d,f,g

|{k1 ⊆ k2 ⊆ f ∩ g | e ∪ (g \ k2)= c, f \ k1 = d \ h}|A(e, f)B(g, h).

Equivalently, a pair (c, d) ∈ P[n]× P[n] belongs to A •B ∈ DGP[n] if and only
if there is an odd number of sets (e, f) ∈ A, (g, h) ∈ B, k1 ⊆ k2 ⊆ [n] such that

e ⊆ c, h ⊆ d, k2 ⊆ f ∩ g, e ∪ (g \ k2) = c, f \ k1 = d \ h.

Note that we can go back and forward from the MS-basis to the X∂-basis for
Boolean differential operators, using equations (3) and (9), as follows:

A =
∑

c,d∈P[n]

A(c, d)xc∂d =
∑

c,d∈P[n]

Â(c, d)mcsd,

where

Â(c, d) =
∑

e⊆a, b⊆f

A(e, f) and A(c, d) =
∑

e⊆a, b⊆f

Â(e, f).

Consider the map M4 : DGP[n] −→ M2n×2n(Z2) sending a directed graph
A ∈ DGP[n] to the matrix of the operator

l4(A) =
∑

c,d∈P[n]

A(c, d)xc∂d =
∑

c⊆e, f⊆d

A(c, d)mesf

in the basis {ma | a ∈ P[n]}.

Theorem 18. The map M4 : DGP[n] −→ M2n×2n(Z2) defines an algebra isomor-

phism between (DGP[n], •) and M2n×2n(Z2). Explicitly, for A ∈ DGP[n] we have

that:

M4(A)a,b =
∑

c⊆a, a+b⊆d

A(c, d).

The inverse map D4 : M2n×2n(Z2) −→ DGP[n] sends N ∈ M2n×2n(Z2) to the

graph D4(N) ∈ DGP[n] with characteristic function given by:

D4(N)(a, b) =
∑

c⊆a, b⊆d

Nc,c+d.
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Proof: Since xc =
∑

c⊆em
e and ∂d =

∑
f⊆d s

f , we have that

M4(A)a,b =


∑

c,d

A(c, d)xc∂d



a,b

=


 ∑

c⊆e, f⊆d

A(c, d)mesf



a,b

=
∑

c⊆e, f⊆d

A(c, d)[mesf ]a,b =
∑

c⊆e, f⊆d

A(c, d)δ(e, a)δ(e, f + b)

=
∑

c⊆a, a+b⊆d

A(c, d),

as e = a, and e = f + b implies that f = a+ b.

The map D4 is inverse of M4 since applying (10) we have that:

D4(M4(A))(a, b) =
∑

c⊆a, b⊆d

M4(A)c,c+d

=
∑

e⊆c⊆a, b⊆c+c+d⊆f

A(e, f) =
∑

e⊆c⊆a, b⊆d⊆f

A(e, f) = A(a, b).

The map M4(A) = [l4(A)] is an algebra morphism since:

M4(A •B) = [l4(A •B)] = [l4(A)l4(B)] = [l4(A)][l4(B)] = M4(A)M4(B).

�

Corollary 19. |Ker(l4(A))| = 2r and |Im(l4(A))| = 2n−r, where r = rank(M4(A)).

6. Final comments

In this work we considered four combinatorial interpretations for the compo-
sition (together with the symmetric difference) of Boolean differential operators
using directed graphs, and provided a matrix representation for each of these
interpretations. Therefore our work provides set theoretical interpretations for
the algebra of Boolean differential operators. It would be nice to find logical
interpretations as well, i.e. some sort of non-commutative logic where Boolean
differential operators play the role played by Boolean functions in classical propo-
sitional logic. Partial results along this line are developed in [2], where a couple
of explicit presentations by generators and relations of the algebra of Boolean
differential operators are provided.

Acknowledgments. We thank an anonymous referee for many valuable sugges-
tions.
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⋆ 0 {(1, 0)} {(0, 1)} {(0, 0)}

0 0 0 0 0

{(1, 0)} 0 {(1, 0)} 0 0

{(0, 1)} 0 {(0, 1)} 0 0

{(0, 0)} 0 0 {(0, 1)} {(0, 0)}

{(1, 1)} 0 0 {(1, 0)} {(1, 1)}

{(1, 0), (0, 1)} 0 {(1, 0), (0, 1)} 0 0

{(1, 0), (0, 0)} 0 {(1, 0)} {(0, 1)} {(0, 0)}

{(1, 0), (1, 1)} 0 {(1, 0)} {(1, 0)} {(1, 1)}

{(0, 1), (0, 0)} 0 {(0, 1)} {(0, 1)} {(0, 0)}

{(0, 1), (1, 1)} 0 {(0, 1)} {(1, 0)} {(1, 1)}

{(0, 0), (1, 1)} 0 0 {(1, 0), (0, 1)} {(0, 0), (1, 1)}

{(1, 0), (0, 1), (0, 0)} 0 {(1, 0), (0, 1)} {(0, 1)} {(0, 0)}

{(1, 0), (0, 1), (1, 1)} 0 {(1, 0), (0, 1)} {(1, 0)} {(1, 1)}

{(1, 0), (0, 0), (1, 1)} 0 {(1, 0)} {(1, 0), (0, 1)} {(0, 0), (1, 1)}

{(0, 1), (0, 0), (1, 1)} 0 {(0, 1)} {(1, 0), (0, 1)} {(0, 0), (1, 1)}

{(1, 0), (0, 1), (0, 0), (1, 1)} 0 {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 0), (1, 1)}

⋆ {(1, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 0)} {(1, 0), (1, 1)}

0 0 0 0 0

{(1, 0)} {(1, 1)} {(1, 0)} {(1, 0)} {(1, 0), (1, 1)}

{(0, 1)} {(0, 0)} {(0, 1)} {(0, 1)} {(0, 1), (0, 0)}

{(0, 0)} 0 {(0, 1)} {(0, 0)} 0

{(1, 1)} 0 {(1, 0)} {(1, 1)} 0

{(1, 0), (0, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (0, 0)} {(1, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 0)} {(1, 0), (1, 1)}

{(1, 0), (1, 1)} {(1, 1)} 0 {(1, 0), (1, 1)} {(1, 0), (1, 1)}

{(0, 1), (0, 0)} {(0, 0)} 0 {(0, 1), (0, 0)} {(0, 1), (0, 0)}

{(0, 1), (1, 1)} {(0, 0)} {(1, 0), (0, 1)} {(0, 1), (1, 1)} {(0, 1), (0, 0)}

{(0, 0), (1, 1)} 0 {(1, 0), (0, 1)} {(0, 0), (1, 1)} 0

{(1, 0), (0, 1), (0, 0)} {(0, 0), (1, 1)} {(1, 0)} {(1, 0), (0, 1), (0, 0)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (0, 1), (1, 1)} {(0, 0), (1, 1)} {(0, 1)} {(1, 0), (0, 1), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (0, 0), (1, 1)} {(1, 1)} {(0, 1)} {(1, 0), (0, 0), (1, 1)} {(1, 0), (1, 1)}

{(0, 1), (0, 0), (1, 1)} {(0, 0)} {(1, 0)} {(0, 1), (0, 0), (1, 1)} {(0, 1), (0, 0)}

{(1, 0), (0, 1), (0, 0), (1, 1)} {(0, 0), (1, 1)} 0 {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

⋆ {(0, 1), (0, 0)} {(0, 1), (1, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0)}

0 0 0 0 0

{(1, 0)} 0 {(1, 1)} {(1, 1)} {(1, 0)}

{(0, 1)} 0 {(0, 0)} {(0, 0)} {(0, 1)}

{(0, 0)} {(0, 1), (0, 0)} {(0, 1)} {(0, 0)} {(0, 1), (0, 0)}

{(1, 1)} {(1, 0), (1, 1)} {(1, 0)} {(1, 1)} {(1, 0), (1, 1)}

{(1, 0), (0, 1)} 0 {(0, 0), (1, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1)}

{(1, 0), (0, 0)} {(0, 1), (0, 0)} {(0, 1), (1, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0)}

{(1, 0), (1, 1)} {(1, 0), (1, 1)} {(1, 0), (1, 1)} 0 {(1, 1)}

{(0, 1), (0, 0)} {(0, 1), (0, 0)} {(0, 1), (0, 0)} 0 {(0, 0)}

{(0, 1), (1, 1)} {(1, 0), (1, 1)} {(1, 0), (0, 0)} {(0, 0), (1, 1)} {(1, 0), (0, 1), (1, 1)}

{(0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (0, 1), (0, 0)} {(0, 1), (0, 0)} {(0, 1), (0, 0), (1, 1)} {(1, 1)} {(1, 0), (0, 0)}

{(1, 0), (0, 1), (1, 1)} {(1, 0), (1, 1)} {(1, 0), (0, 0), (1, 1)} {(0, 0)} {(0, 1), (1, 1)}

{(1, 0), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (1, 1)} {(0, 0)} {(0, 1), (0, 0), (1, 1)}

{(0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0)} {(1, 1)} {(1, 0), (0, 0), (1, 1)}

{(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} 0 {(0, 0), (1, 1)}

⋆ {(1, 0), (0, 1), (1, 1)} {(1, 0), (0, 0), (1, 1)} {(0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

0 0 0 0 0

{(1, 0)} {(1, 0), (1, 1)} {(1, 0), (1, 1)} {(1, 1)} {(1, 0), (1, 1)}

{(0, 1)} {(0, 1), (0, 0)} {(0, 1), (0, 0)} {(0, 0)} {(0, 1), (0, 0)}

{(0, 0)} {(0, 1)} {(0, 0)} {(0, 1), (0, 0)} {(0, 1), (0, 0)}

{(1, 1)} {(1, 0)} {(1, 1)} {(1, 0), (1, 1)} {(1, 0), (1, 1)}

{(1, 0), (0, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (0, 0)} {(1, 0), (0, 1), (1, 1)} {(1, 0), (0, 0), (1, 1)} {(0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (1, 1)} {(1, 1)} {(1, 0)} {(1, 0)} 0

{(0, 1), (0, 0)} {(0, 0)} {(0, 1)} {(0, 1)} 0

{(0, 1), (1, 1)} {(1, 0), (0, 1), (0, 0)} {(0, 1), (0, 0), (1, 1)} {(1, 0), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(0, 0), (1, 1)} {(1, 0), (0, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0), (1, 1)}

{(1, 0), (0, 1), (0, 0)} {(1, 0), (0, 0), (1, 1)} {(1, 0), (0, 1), (1, 1)} {(0, 1), (1, 1)} {(1, 0), (1, 1)}

{(1, 0), (0, 1), (1, 1)} {(0, 1), (0, 0), (1, 1)} {(1, 0), (0, 1), (0, 0)} {(1, 0), (0, 0)} {(0, 1), (0, 0)}

{(1, 0), (0, 0), (1, 1)} {(0, 1), (1, 1)} {(1, 0), (0, 0)} {(1, 0), (0, 1), (0, 0)} {(0, 1), (0, 0)}

{(0, 1), (0, 0), (1, 1)} {(1, 0), (0, 0)} {(0, 1), (1, 1)} {(1, 0), (0, 1), (1, 1)} {(1, 0), (1, 1)}

{(1, 0), (0, 1), (0, 0), (1, 1)} {(0, 0), (1, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} 0

Table 2. Multiplication table for (DGP[1], ⋆).
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