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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 2 , PAGES 2 3 4 – 2 4 5

SCALING OF MODEL APPROXIMATION ERRORS
AND EXPECTED ENTROPY DISTANCES

Guido F. Montúfar and Johannes Rauh

We compute the expected value of the Kullback–Leibler divergence of various fundamental
statistical models with respect to Dirichlet priors. For the uniform prior, the expected diver-
gence of any model containing the uniform distribution is bounded by a constant 1−γ. For the
models that we consider this bound is approached as the cardinality of the sample space tends
to infinity, if the model dimension remains relatively small. For Dirichlet priors with reasonable
concentration parameters the expected values of the divergence behave in a similar way. These
results serve as a reference to rank the approximation capabilities of other statistical models.

Keywords: exponential families, KL divergence, MLE, Dirichlet prior

Classification: 62F25, 68T30

1. INTRODUCTION

Consider a finite set X of cardinality |X | = N . The set ∆ = ∆N−1 of probability
distributions on X can be identified with an (N − 1)-simplex. A (statistical) model is
any subset M⊆ ∆. Given a distribution p ∈ ∆, it is an important problem of statistics
and machine learning to find the best approximation q within a model M.

To quantify how good this approximation is, a natural choice is to use the information
divergence, relative entropy, or Kullback–Leibler divergence from p to q, defined by

D(p‖q) :=
∑
i∈X

pi ln
pi

qi
.

If p is an empirical distribution summarizing the outcome of n statistical experiments,
then the log-likelihood of q equals −n(D(p‖q) + H(p)), where H(p) is the Shannon
entropy of p. Hence finding a maximum likelihood estimate q within a model M is the
same as finding a minimizer of the divergence D(p‖q) with q restricted to M.

To assess the expressive power of a model M, we study the function p 7→ D(p‖M) =
infq∈MD(p‖q). Finding the maximizers of this function corresponds to a worst-case
analysis. This problem was first posed in [1] motivated by infomax principles in the
context of neural networks. The case of exponential families has been studied in detail [4,
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5, 8], and recently also discrete mixture models and restricted Boltzmann machines have
been considered [6].

In addition to the worst-case error, the expected error is of interest. This leads to the
mathematical problem of computing the expectation value

〈D(p‖M)〉 =
∫

∆

D(p‖M)ψ(p) dp , (1)

where p is drawn from a prior probability density ψ on the probability simplex ∆. We
focus on Dirichlet priors. Our analysis leads to integrals that have been studied in the
framework of Bayesian function estimation in [10], and we can take advantage of the
tools developed there. It turns out that for many model classes the worst-case error
diverges as the number of elementary events N = |X | tends to infinity, whereas the
expected error remains bounded.

Our first observation is that, if ψ is the uniform prior, then the expected divergence
from p to the uniform distribution is a monotone function of the system size N and
converges to the constant 1− γ ≈ 0.4228 as N →∞, where γ is the Euler–Mascheroni
constant. Many natural statistical models contain the uniform distribution and their
expected divergence is bounded by the same constant. On the other hand, when p and q
are chosen uniformly at random, the expected divergence 〈D(p‖q)〉p,q is equal to 1−1/N .

We show that the expected divergence of a class of models including independence
models, partition models, mixtures of product distributions with disjoint supports [6],
and decomposable hierarchical models has the same limit, 1−γ, provided the dimension
of the models remains small with respect to N (the usual case in applications). For
Dirichlet priors the results are similar (for reasonable choices of parameters). In contrast,
as shown in [9], if M is an exponential family, then the maximum value of D(·‖M) is
at least ln(N/(dim(M) + 1)).

In Section 2 we define various models and collect basic properties of Dirichlet priors.
Section 3 contains our main results: closed-form expressions for the expectation values
of entropies and divergences. A discussion is given in Section 4.

2. PRELIMINARIES

2.1. Models from statistics and machine learning

As mentioned above, a model is any subset of the probability simplex ∆N−1. The support
sets of a model M ⊆ ∆N−1 are the sets supp(p) = {i ∈ X | pi > 0} for all p = (pi)i∈X
in M.

The K-mixture of a model M is the union of all convex combinations of any K of
its points: MK := {

∑K
k=1 λkp

(k) |λk ≥ 0,
∑

k λk = 1, p(k) ∈ M}. Given a partition
% = {A1, . . . , AK} of X into K support sets of M, the K-mixture of M with disjoint
supports % is the subset of MK defined by

M% =

{
K∑

k=1

λkp
(k) ∈MK

∣∣∣∣∣ p(k) ∈M, supp(p(k)) ⊆ Ak for all k

}
.
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Let % = {A1, . . . , AK} be a partition of X . The partition model M% consists of all
p ∈ ∆N−1 that satisfy pi = pj whenever i, j belong to the same block in the partition %.
Partition models are closures of convex exponential families with uniform reference mea-
sures. More generally, the closure of a convex exponential family is a set of the form
(see [4])

M%,ν =

{
K∑

k=1

λk
1Ak

ν

ν(Ak)

∣∣∣∣∣λk ≥ 0,
K∑

k=1

λk = 1

}
,

where ν : X → (0,∞) is a positive function on X called reference measure, and 1A is the
indicator function of A. Note that all measures ν with fixed conditional distributions
ν(·|Ak) = ν(·)/

∑
j∈Ak

ν(j) on Ak, for all k, yield the same model. In fact, M%,ν is the
K-mixture of the set {ν(·|Ak) | k = 1, . . . ,K}.

For a composite system with n variables X1, . . . , Xn, the set of elementary events is
X = X1 × · · · × Xn, |Xi| = Ni for all i. A product distribution is a distribution of the
form

p(x1, . . . , xn) = p{1}(x1) · · · p{n}(xn) for all x ∈ X ,

where p{i} ∈ ∆Ni−1. The independence model M1 is the set of all product distributions
on X . The support sets of the independence model are the sets of the form A =
Y1 × · · · × Yn with Yi ⊆ Xi for each i.

Let S be a simplicial complex on {1, . . . , n}. The hierarchical model MS consists of
all probability distributions that have a factorization of the form p(x) =

∏
S∈S ΦS(x),

where ΦS is a positive function that depends only on the S-coordinates of x. The
model MS is called reducible if there exist simplicial subcomplexes S1,S2 ( S such that
S1 ∪ S2 = S and S1 ∩ S2 is a simplex. In this case, the set (

⋃
Y∈S1

Y) ∩ (
⋃
Y∈S2

Y) is
called a separator. Furthermore, MS is decomposable if it can be iteratively reduced to
simplices. Such an iterative reduction can be described by a junction tree, which is a
tree (V,E) with vertex set the set of facets of S and with edge labels the separators.
The independence model is an example of a decomposable model (where all separators
are empty sets). We give another example in Fig. 1, and refer to [2] for more details. In
general, the junction tree is not unique, but the multi-set of separators is unique.

For most models there is no closed-form expression for D(·‖M), since there is no
closed formula for arginfq∈MD(p‖q). However, for some of the models mentioned above
a closed formula does exist: The divergence of the independence model is called multi-
information and satisfies

MI(X1, . . . , Xn) = D(p‖M1) = −H(X1, . . . , Xn) +
n∑

k=1

H(Xk). (2)

If n = 2 it is also called the mutual information of X1 and X2. The divergence of the
convex exponential family M%,ν is given by (see [4, eq. (1)])

D(p‖M%,ν) = D

(
p

∥∥∥∥∥
K∑

k=1

p(Ak)ν(x|Ak)

)
. (3)
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Fig. 1. An example of a decomposable model and its junction tree.

For a decomposable model MS with junction tree (V,E),

D(p‖MS) =
∑
S∈V

Hp(XS)−
∑
S∈E

Hp(XS)−Hp(X), (4)

where Hp(XS) denotes the joint entropy of the variables {Xi}i∈S under p.

2.2. Dirichlet priors

The Dirichlet prior with concentration parameter α = (α1, . . . , αN ) ∈ RN
>0 is the proba-

bility distribution on ∆N−1 with density

Dirα(p) :=
1√
N

Γ(
∑N

i=1 αi)∏N
i=1 Γ(αi)

N∏
i=1

pαi−1
i for all p = (p1, . . . , pN ) ∈ ∆N−1, (5)

where Γ is the gamma function. In particular, Dir(1,...,1) is the uniform probability
density on ∆N−1. Moreover, lima→0 Dir(a,...,a) assigns mass 1/N to δx for all x ∈ X ,
and lima→∞Dir(a,...,a) is concentrated at the uniform distribution u := (1/N, . . . , 1/N).
For an arbitrary concentration parameter α let α =

∑N
i=1 αi. Then α/α ∈ ∆N−1, and

limκ→∞Dirκα is the Dirac distribution concentrated at α/α.
The Dirichlet distributions satisfy the following aggregation property (see, e.g., [3]):

If p = (p1, . . . , pN ) ∼ Dir(α1,...,αN ) and % = {A1, . . . , AK} is a partition of X , then
(
∑

i∈A1
pi, . . . ,

∑
i∈AK

pi) ∼ Dir(P
i∈A1

αi,...,
P

i∈AK
αi). We write α% = (α%

1, . . . , α
%
K),

α%
k =

∑
i∈Ak

αi for the concentration parameter induced by the partition %. The ag-
gregation property is useful when treating marginals of composite systems. Given a
composite system with X = X1 × · · · × Xn, |X | = N , Xk = {1, . . . , Nk}, we write
αk = (αk

1 , . . . , α
k
Nk

), αk
j =

∑
x∈X : xk=j αx for the concentration parameter of the Dirich-

let distribution induced on the Xk-marginal (
∑

x∈X : xk=1 p(x), . . . ,
∑

x∈X : xk=Nk
p(x)).

We will use the following Lemma 1 to evaluate the integral (1) in the case of Dirichlet
priors, see [10, Theorem 5]. For any k ∈ N let h(k) = 1+ 1

2 + · · ·+ 1
k be the kth harmonic



238 G.F. MONTÚFAR AND J. RAUH

number. It is known that for large k,

h(k) = ln(k) + γ +O( 1
k ), (6)

where γ ≈ 0.57721 is the Euler–Mascheroni constant. Moreover, h(k)− ln(k) is strictly
positive and decreases monotonically. We also need the natural analytic extension of h
to the non-negative reals, given by h(z) = ∂

∂z ln(Γ(z + 1)) + γ, where Γ is the gamma
function.

Lemma 1. Let ρ = {A1, . . . , AK} be a partition of X = {1, . . . , N}, and let α =
(α1, . . . , αN ) be a vector of positive real numbers. Then

∫
∆N−1

∑
i∈Ak′

pi

 ln

∑
i∈Ak′

pi

 N∏
i=1

pαi−1
i dp =

∫
∆K−1

p∗k′ ln(p∗k′)
K∏

k=1

(p∗k)αρ
k−1 dp∗

=
√
N
αρ

k′
∏K

k=1 Γ(αρ
k)

Γ(α+ 1)
(h(αρ

k′)− h(α)).

3. EXPECTED ENTROPIES AND DIVERGENCES

The following theorems contain formulas for the expectation value of the divergence from
the models defined in the previous section and asymptotic expressions of these formulas.
The results are based on explicit solutions of the integral (1) as derived by Wolpert and
Wolf [10]. Recall that h(z) denotes the analytic extension of the harmonic numbers, see
eq. (6).

Theorem 1. If p ∼ Dirα, then:

• 〈H(p)〉 = h(α)−
∑N

i=1
αi

α h(αi),

• 〈D(p‖u)〉 = ln(N)− h(α) +
∑N

i=1
αi

α h(αi),

where α =
∑N

i=1 αi. In the symmetric case (α1, . . . , αN ) = (a, . . . , a),

• 〈H(p)〉 = h(Na)− h(a)

=


ln(Na)− h(a) + γ +O(1/Na) for large N and const. a
ln(N) +O(1/a) for large a and arb. N
O(Na) as a→ 0 with bounded N
h(c) +O(a) as a→ 0 with Na = c,

• 〈D(p‖u)〉 = ln(N)− h(Na) + h(a)

=


h(a)− ln(a)− γ +O(1/Na) for large N and const. a
O(1/a) for large a and arb. N
ln(N) +O(Na) as a→ 0 with bounded N
ln(N)− h(c) +O(a) as a→ 0 with Na = c.



Scaling of model approximation errors and expected entropy distances 239

P r o o f . The analytic formulas are [10, Theorem 7]. The asymptotic expansions are
direct. �

The entropy H(p) = −
∑

i pi ln pi is maximized at the uniform distribution u, with
H(u) = ln(N). For large N or large a, the average entropy is close to this maximum
value and the expected divergence from the uniform distribution u is bounded. The
fact that the expected entropy is close to the maximal value makes entropy estimation
difficult. See [7] for a discussion and possible solutions.

Theorem 2a. If q ∈ ∆N−1 and p ∼ Dirα, then

〈D(p‖q)〉p =
N∑

i=1

αi

α
(h(αi)− ln(qi))− h(α) = D(α

α ‖q) +O(N/α).

If α = (a, . . . , a), then

〈D(p‖q)〉p = D(u‖q) + h(a) + ln(N)− h(Na)
= D(u‖q) + (h(a)− ln(a))− γ +O(1/(Na)).

Theorem 2b. If p ∈ ∆N−1 and q ∼ Dirα, then

〈D(p‖q)〉q =
N∑

i=1

pi(ln(pi)− h(αi − 1)) + h(α− 1).

If αi > 1 for all i, then

〈D(p‖q)〉q = D(p‖α
α ) +

N∑
i=1

O(1/(αi − 1)).

Theorem 2c. If p ∼ Dirα and q ∼ Dirα̃, then

• 〈
∑

i∈X pi ln(qi)〉p,q =
∑N

i=1
αi

α h(α̃i − 1)− h(α̃− 1),

• 〈D(p‖q)〉p,q = −
∑N

i=1
αi

α (h(α̃i − 1)− h(αi)) + h(α̃− 1)− h(α).

If α = α̃, then 〈D(p‖q)〉p,q = N−1
α .

P r o o f . Theorem 2a follows from D(p‖q) = −H(p) −
∑N

i=1 pi ln(qi), Theorem 1, and
Lemma 1. Similarly, Theorems 2b and 2c follow from Lemma 1 by which∫

∆N−1

ln(pi)
N∏

j=1

p
αj−1
j dp

/∫
∆N−1

N∏
j=1

p
αj−1
j dp = h(αi − 1)− h(α− 1).

�

Consider a sequence of distributions q(N) ∈ ∆N−1, N ∈ N. For uniform priors, as
N → ∞ the expected divergence 〈D(p‖q(N))〉p is bounded from above by 1 − γ + c,
c > 0 if and only if lim supN→∞D(u‖q(N)) ≤ c. It is easy to see that D(u‖q) ≤ c when
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qx ≥ 1
N e

−c for all x ∈ X . Therefore, the expected divergence is unbounded as N tends
to infinity only if the sequence q(N) accumulates at the boundary of the probability
simplex. In fact, limN→∞〈D(p‖q(N))〉p ≤ 1− γ + c whenever q(N) is in the subsimplex
∆c

N−1 = conv{(1− e−c)δx + e−cu}x∈X for all N . For any given N the Lebesgue volume
of this subsimplex satisfies vol ∆c

N−1/ vol∆N−1 = (1− e−c)N−1.
For arbitrary Dirichlet priors with concentration parameters α(N) depending on N ,

the expectation value 〈D(p‖q(N))〉p remains bounded in the limit N → ∞, provided
D(α(N)

α(N) ‖q(N)) does and α(N)
i remains bounded from below by a positive constant.

If p, q ∼ Dirα(N) , then 〈D(p‖q)〉p,q remains bounded in the limit N → ∞, provided
α(N)

N remains bounded from below by a positive constant.

Theorem 3. Consider a system of n random variablesX1, . . . , Xn with joint probability
distribution p. If p ∼ Dirα, then

• 〈H(Xk)〉 = h(α)−
∑Nk

j=1

αk
j

α h(α
k
j ),

• 〈MI(X1, . . . , Xn)〉 = (n− 1)h(α) +
N∑

i=1

αi

α h(αi)−
n∑

k=1

Nk∑
j=1

αk
j

α h(α
k
j ).

If α = (a, . . . , a),

• 〈H(Xk)〉 = h(Na)− h( N
Nk
a),

• 〈MI(X1, . . . , Xn)〉 = (n− 1)h(Na) + h(a)−
∑n

k=1 h(
N
Nk
a).

If, moreover, Na/Nk is large for all k (e.g., a remains bounded from below by some
ε > 0 and (i) all Nk become large, or (ii) all Nk remain bounded and n becomes large),
then

• 〈H(Xk)〉 = ln(Nk) +O(Nk/Na),

• 〈MI(X1, . . . , Xn)〉 = h(a)− ln(a)− γ +O(nmaxk Nk/Na).

P r o o f . This is a corollary to Theorem 1, the aggregation property of the Dirichlet
priors, and the formula (2) for the multi-information. �

If Na/Nk is large for all k, then the expected entropy of a subsystem is also close to
its maximum, and hence the expected multi-information is bounded. This follows also
from the fact that the independence model contains the uniform distribution, and hence
D(p‖M1) ≤ D(p‖u).

Theorem 4. Let % = {A1, . . . , AK} be a partition of X into sets of cardinalities |Ak| =
Lk, and let ν be a reference measure on X . If p ∼ Dirα, then

〈D(p‖M%,ν)〉 =
N∑

i=1

αi

α
((h(αi)− ln(νi))−

K∑
k=1

α%
k

α
(h(α%

k)− ln(ν(Ak))) ,
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where α%
k =

∑
i∈Ak

αi. If α = (a, . . . , a), and (wlog) ν(Ak) = Lk/N ,

〈D(p‖M%,ν)〉 = h(a)−
K∑

k=1

Lk

N
(h(Lka)− ln(Lk)) +D(u‖ν).

If, moreover, N � K, then

〈D(p‖M%,ν)〉 = h(a)− ln(a)− γ +D(u‖ν) +O(1/N).

P r o o f . This follows from eq. (3). �

If the reference measure ν is uniform, then M%,ν is a partition model and contains the
uniform distribution. In these cases the expected divergence is bounded. In contrast,
the maximal divergence is maxp∈∆N−1 D(p‖M%) = maxk ln(Nk).

For mixtures of products with disjoint supports the result is similar:

Theorem 5. Consider a composite system of n random variables with state space X =
X1 × · · · × Xn, |X | = N , |Xk| = Nk. Let % = {A1, . . . , AK} be a partition of X into K
support sets Ak = X1,k × · · · × Xn,k, k = 1, . . . ,K of the independence model, and let
M%

1 be the model containing all mixtures of K product distributions p(1), . . . , p(K) with
supp(p(k)) ⊆ Ak.

• If p ∼ Dirα, then

〈D(p‖M%
1)〉 =

N∑
i=1

αi

α
(h(αi)− h(α)) +

K∑
k=1

(|Gk| − 1)
α%

k

α
(h(α%

k)− h(α))

−
K∑

k=1

∑
j∈Gk

∑
xj∈Xj,k

αk,xj

α
(h(αk,xj )− h(α)),

where α%
k =

∑
x∈Ak

αx, αk,xj =
∑

y∈Ak : yj=xj
αy, and Gk ⊆ {1, . . . , n} is the set

of variables that take more than one value in the block Ak.

• If the system is homogeneous, |Xi| = N1 for all i, Ak is a cylinder set of cardinality
|Ak| = Nmk

1 , mk = |Gk| for all k, and (α1, . . . , αN ) = (a, . . . , a), then

〈D(p‖M%
1)〉 = h(a) +

K∑
k=1

Nmk−n
1 ((mk − 1)h(Nmk

1 a)−mkh(Nmk−1
1 a)).

• If N
mk−1
1 a
mk

is large for all k, then

〈D(p‖M%
1)〉 = h(a)− ln(a)− γ +O

(
max

k

mk

Nmk−1
1 a

)
.
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P r o o f . The unique solution q ∈ arginfq′∈M%
1
D(p‖q′) satisfies p(Ak) = q(Ak) and

q(·|Ak) ∈ arginfq′∈M1
D(p(·|Ak)‖q′) (see [6]). This implies

D(p‖M%
1) =

K∑
i=1

∑
x∈Ai

p(x) ln
p(x)p(Ai)n−1∏n

j=1(
∑

y∈Ai:yj=xj
p(y))

.
�

The k-mixture of binary product distributions with disjoint supports is a submodel of
the restricted Boltzmann machine model with k−1 hidden units, as shown in [6]. Hence
Theorem 5 gives bounds for the expected divergence of restricted Boltzmann machines.

Theorem 6. Consider a decomposable model MS with junction tree (V,E).

• If p ∼ Dirα, then

〈D(p‖MS)〉 = −
∑
S∈V

∑
j∈XS

αS
j

α
h(αS

j ) +
∑
S∈E

∑
j∈XS

αS
j

α
h(αS

j ) +
N∑

i=1

αi

α
h(αi),

where αS
j =

∑
x : xS=j αx for j ∈ XS .

• If p is drawn uniformly at random, then

〈D(p‖MS)〉 = 1−
∑
S∈V

h(N/NS) +
∑
S∈E

h(N/NS).

• If N/NS is large for all S ∈ V ∪ E, then

〈D(p‖MS)〉 = 1− γ +O
(
max

S
N/NS

)
.

P r o o f . This follows from eq. (4) and |V | − |E| − 1 = 0. �

4. DISCUSSION

We have shown that the values of 〈D(p‖M)〉 are very similar for different models M in
the limit of large N , provided the Dirichlet concentration parameters αi remain bounded
and the model dimension remains relatively small. In particular, if αi = 1 for all i, then
〈D(p‖M)〉 ≈ 1− γ for large N holds for M = {u}, independence models, decomposable
models, partition models, and mixtures of product distributions on disjoint supports
(for reasonable values of the hyperparameters Nk and Lk). Some of these models are
contained in each other, but the expected divergences do not differ much. The general
phenomenon seems to be the following:

• If N is large and if M ⊂ ∆N−1 is low-dimensional, then the expected divergence
is 〈D(p‖M)〉 ≈ 1− γ, when p is uniformly distributed on ∆N−1.
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Of course, this is not a mathematical statement, because it is easy to construct counter-
examples: Space-filling curves can be used to construct one-dimensional models with
an arbitrarily low value of 〈D(p‖M)〉 (for arbitrary N). However, we expect that the
statement is true for most models that appear in practice. In particular, we conjecture
that the statement is true for restricted Boltzmann machines.

In Theorem 4, if α = (a, . . . , a), then the expected divergence from a convex exponen-
tial family M%,ν is minimal if and only if ν ∝ u. In this case M%,ν is a partition model.
We conjecture that partition models are optimal among all (closures of) exponential
families in the following sense:

• For any exponential family E there is a partition model M of the same dimension
such that 〈D(p‖E)〉 ≥ 〈D(p‖M)〉, when p ∼ Dir(a,...,a).

The statement is of course true for any zero-dimensional exponential family, which
consists of a single distribution. The conjecture is related to the following conjecture
from [9]:

• For any exponential family E there is a partition model M of the same dimension
such that maxp∈∆N−1 D(p‖E) ≥ maxp∈∆N−1 D(p‖M).

Computations

Our findings may be biased by the fact that all models treated in Section 3 are expo-
nential families. As a slight generalization we did computer experiments with a family
of models which are not exponential families, but unions of exponential families.

Let Υ be a family of partitions of {1, . . . , N} and let MΥ =
⋃

%∈ΥM% be the union
of the corresponding partition models. We are interested in these models, because they
can be used to study more difficult models, like restricted Boltzmann machines and
deep belief networks. Figure 2 compares a single partition model with the union of all
partition models on three states.

D(p‖M%) D(p‖M%)
Q

pa−1
i

D(p‖
S

% M%) D(p‖
S

% M%)
Q

pa−1
i

Fig. 2. From left to right: Divergence from the distributions on

X = {0, 1, 2} to a partition model with two blocks. Same, scaled by

the symmetric Dirichlet density with a = 5. Divergence from the

distributions on X = {0, 1, 2} to the union of three partition models.

Same, scaled by the symmetric Dirichlet density with a = 5. The

shading is scaled on each image individually. Integrals over this kind

of densities are plotted in Figure 3.
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Fig. 3. Numerical approximation of the expected divergence of MΥk

from p ∼ Dir(a,...,a), for different system sizes N and values of a. Left:

The case k = 1. The y-ticks are located at h(a)− ln(a)− γ, which are

the limits of the expected divergence from single bipartition models,

see Theorem 4. Middle: The case k = 2. The peak at N = 4 emerges,

because there are only 3 different partitions, instead of
`
4
2

´
. The

dashed plot indicates corresponding results from the left figure. Right:

The expected divergence of the union of all
`

N
N/2

´
/2 bipartition

models with two blocks of cardinalities N/2, for even N .

For a given N and 0 ≤ k ≤ N/2 let Υk be the set of all partitions of {1, . . . , N} into
two blocks of cardinalities k and N−k. For different values of a and N we sampled 10 000
distributions from Dir(a,...,a) for which we then computed the sample-average values of
D(p‖MΥ1), D(p‖MΥ2), and D(p‖MΥN/2) as approximations of the expectation values.
The results are shown in Figure 3.

In the first two cases the expected divergence seems to tend to the asymptotic value
of 〈D(p‖u)〉. Observe that 〈D(p‖MΥ1)〉 ≥ 〈D(p‖MΥ2)〉, unless N = 4. Intuitively this
makes sense for two reasons: First, for %1 ∈ Υ1 and %2 ∈ Υ2, using Theorem 4 one can
show that 〈D(p‖M%1)〉 ≥ 〈D(p‖M%2)〉; and second, the cardinality of Υ2 is much larger
than the cardinality of Υ1 if N ≥ 4. For small values of N this intuition may not always
be correct. For example, for N = 8, the expected divergence from MΥN/2 is larger than
the one from MΥ2 , although in this case |ΥN/2| = 35 and |Υ2| = 28, see Figure 3 right.

We expect that, for large N , it is possible to make 〈D(p‖MΥk
)〉 much smaller than

〈D(p‖u)〉 by choosing k ≈ N/2. In these cases the models MΥk
have (Hausdorff) dimen-

sion only one, but they are unions of exponentially many one-dimensional exponential
families.
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