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MEAN OSCILLATION AND BOUNDEDNESS
OF MULTILINEAR INTEGRAL OPERATORS
WITH GENERAL KERNELS

Liu LANZHE

ABSTRACT. In this paper, the boundedness properties for some multilinear
operators related to certain integral operators from Lebesgue spaces to Orlicz
spaces are proved. The integral operators include singular integral operator
with general kernel, Littlewood-Paley operator, Marcinkiewicz operator and
Bochner-Riesz operator.

1. INTRODUCTION AND RESULTS

As the development of singular integral operators, their commutators and
multilinear operators have been well studied (see [3]-[7], [I8]-[20]). Let T be
the Calderén-Zygmund singular integral operator and b € BMO(R"), a classical
result of Coifman, Rochberg and Weiss (see [0]) stated that the commutator
b, T)(f) =T(bf) —bT(f) is bounded on LP(R"™) for 1 < p < oo. The purpose of
this paper is to introduce some multilinear operator associated to certain integral
operators with general kernels (see [T}, [10, [15]) and prove the boundedness properties
of the multilinear operators from Lebesgue spaces to Orlicz spaces.

In this paper, we are going to consider some integral operators as following (see
m).

Let ! and m; be the positive integers (j =1,...,1), m1 +---+m; = m and b;
be the functions on R™ (j =1,...,1). Set, for 1 < j <,

1
Ry (byi e, y) = by(e) = 32 D) — )"

|| <my

Definition 1. Let T: S — S’ be a linear operator such that T is bounded on
L?(R™) and has a kernel K, that is there exists a locally integrable function K (x,)
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78 L. LANZHE
on R" x R"\ {(z,y) € R"* x R" : x = y} such that

T(f)(z) = - K(x,y)f(y)dy

for every bounded and compactly supported function f, where K satisfies:

K (z,y)| < Clz—y[™",
/ (1K (x,0) ~ K(2,2)| + [K(y.2) ~ K(z,2)]) do < C,
2ly—z[<|z—yl
and there is a sequence of positive constant numbers {C}} such that for any & > 1,
1/q
(/ (1K (@,y) ~ K(r,2)| + K (y,2) ~ K(z2)])" dy)
2k [z—y|<|z—y| <2k |z—y|

< Cp(28z —y)) 7,

where 1 < ¢’ < 2 and 1/¢ + 1/¢’ = 1. The multilinear operator related to the
operator T is defined by

l
Hj:l Rin;11(bj52,9)

T*(f)(z) = K (2, 9)f(y) dy.
Rn |z =yl
Definition 2. Let F(x,y,t) define on R™ x R™ x [0,400), we denote that
E(f) (@) = ; Bz, y,t)f(y) dy
and
I Ry 1(bj; 2, y)
R = | == m T iy

for every bounded and compactly supported function f. Let H be the Banach
space H = {h: ||h|| < oo}. For each fixed x € R", we view F;(f)(x) and F?(f)(x)
as a mapping from [0, +00) to H. Then, the multilinear operators related to F} is
defined by

S*(f)(@) = IIF (@)l

where F} satisfies:

1F(z,y, )] < Clz—y™",
/ (HF(x?y,t)—F(ﬁmz,t)||—|—||F(y7x,t)—F(z,a;t)H)dac < C,
2|ly—z|<|z—y|
and there is a sequence of positive constant numbers {C} } such that for any k > 1,
1/q
(/ (1P, g, O)-F (2, 2, )|+ | F(y, 2, 0)-F (2,2, D)) dy)
28 |z—y|<|z—y|<2FHL|z—y]

< G|z —y) ™7
where 1 < ¢’ <2 and 1/g+ 1/¢' = 1. We also define that S(f)(z) = | F:(f)(z)]].
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Note that the classical Calderén-Zygmund singular integral operator satisfies
Definition 1| (see [8] T9, 20, 22, 23]) and that 7° and S? are just the commutators
of T and S with b if m = 0 (see [6, O} 1T, 19}, 20]). While when m > 0, it is
non-trivial generalizations of the commutators. Let T be the Calderén-Zygmund
singular integral operator, a classical result of Coifman, Rochberg and Weiss (see
[6]) states that the commutator [b,T] = T'(bf) — bTf (where b € BMO(R")) is
bounded on LP(R"™) for 1 < p < oo, Chanillo (see [2]) proves a similar result when
T is replaced by the fractional integral operator. In [9], Janson proved boundedness
properties for the commutators related to the Calderén-Zygmund singular integral
operators from Lebesgue spaces to Orlicz spaces. It is well known that multilinear
operators are of great interest in harmonic analysis and have been widely studied
by many authors (see [3]—[5], [7]). The main purpose of this paper is to prove the
boundedness properties for the multilinear operators 7% and S? from Lebesgue
spaces to Orlicz spaces.

Let us introduce some notations. Throughout this paper, @ will denote a cube
of R™ with sides parallel to the axes. For any locally integrable function f, the
sharp function of f is defined by

#
f7 () = sup |Q‘/ If(y) = foldy,

where, and in what follows, fo = |Q|™! fQ x)dx. It is well-known that (see
8] 221)

Ha )~Jsup1an|j/|f — | dy.

Q>ox c€C
Let M be the Hardy-Littlewood maximal operator defined by

M(f)(x) gium/Wf )l dy.

We write that M, f = (M(f?))*/? for 0 < p < oo. For 1 <r < ocoand 0 < 3 < n,
let

Mo () () = prmlwm/ﬁf|d@”7

We say that f belongs to BMO(R") if f# belongs to L>(R") and || f|lsmo =
| f#]| L. More generally, let p be a non-decreasing positive function on [0, +oc0)
and define BMO,(R") as the space of all functions f such that

d
GG o, 10 Faldy < Cptr).

For (3 > 0, the Lipschitz space Lipg(R") is the space of functions f such that
I £llLip, = sup () = f)|/Jz =yl < oo.
z#y

For f, my denotes the distribution function of f, that is m(t) = |{z € R" :
[ ()] > t}].
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Let p be a non-decreasing convex function on [0, +00) with p(0) = 0. p~! denotes
the inverse function of p. The Orlicz space L,(R") is defined by the set of functions
f such that [, p(A|f(x)|)dz < oo for some A > 0. The Luxemburg norm is given
by (see [21])

_ eyl
1, = A (1 [ ps(e)]) da).
We shall prove the following theorems in Section

Theorem 1. Let 0 < 3 <1, ¢ <p < n/lf and ¢, ¥ be two non-decreasing positive
functions on [0,4+00) with (Y1) ~1(t) = tY/Ppl(t=1/™). Suppose that 1 is convez,
¥(0) =0, ¥(2t) < CY(t). Let T be the same as in Definition[1] and the sequence
{k'Cy} € I*. Then T® is bounded from LP(R") to Ly (R") if D*b; € BMO(R")
for all a with |o| =mj and j =1,...,1.

Theorem 2. Let 0 < < 1, ¢ < p < n/mfB and ¢, ¥ be two non-decreasing
positive functions on [0, +00) with (Y')~1(t) = tY/P (t=Y/™). Suppose that 1 is
convez, ¥(0) = 0, ¢(2t) < Cy(t). Let S be the same as in Definition [3 and
the sequence {Cy} € I'. Then S® is bounded from LP(R™) to Ly (R") if D*b; €
BMO(R") for all a« with |a| =mj; and j =1,...,1.

Remark. (a) If I = 1 and ¢~ '(t) = tY/Pp(t~/"), then T® and S are all
bounded on from LP(R™) to Ly(R™) under the conditions of Theorems [1| and
(b) Ifl =1, p(t) = 1 and (t) = t? for 1 < p < oo, then T® and S” are all
bounded on LP(R™) if Db € BMO,(R") for all o with |a| =m
(c) If 1 = 1, ¥(t) = t° and @(t) = t"(/P=1/5) for 1 < p < s < oo, then, by
BMO,s(R"™) = Lipg(R") (see [9, Lemma 4]), T® and S are all bounded from
LP(R") to L*(R™) if Db € Lip,,1 /p—1/5)(R") for all v with |a| =

2. PROOF OF THEOREMS

We begin with the following preliminary lemmas.

Lemma 1 (see [1]). Let T and S be the the same as Definitions[1 and[3, the
sequence {Cr} € I*. Then T and S are bounded on LP(R™) for 1 < p < oco.

Lemma 2 (see [9]). Let p be a non-decreasing positive function on [0,+00) and

n be an infinitely differentiable function on R™ with compact support such that

fR" x)dx = 1. Denote that b'(x) = [, b(x — ty)n(y) dy. Then ||b — b'|pmo <
Cp(t )HbllBMop-

Lemma 3 (see [I]). Let 0 < 8 <1 or B =1 and p be a non-decreasing positive
function on [0, +00). Then |[b||rip, < Ct=Pp(t)||bllBmO, -

Lemma 4 (see [I]). Suppose 1 < ps < p < p1 < 00, p is a non-increasing func-
tion on R*, B is a linear or sublinear operator such that mp(s)(t/P1p(t)) < Ct~1 if
[fllze <1 andmp(p(t/P2p(t)) < Ct=1if || fllr2 < 1. Then [~ mp(p)(t/Pp(t)) dt <
Cif|fller < (p/p1)"".

Lemma 5 (see [2]). Suppose that0 < f<n,1<r<p<n/Bandl/s=1/p—03/n.
Then || Mg, (f)l[zs < C|[fllze-
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Lemma 6 (see [5]). Let b be a function on R™ and D*A € Li(R™) for all o with
|a| = m and some ¢ > n. Then

1 1/q
b)) < Ol =™ Y (g [ 10mwtaae)
) x,y

|a]=m

where Q is the cube centered at = and having side length 5/n|x — y|.
To prove the theorems of the paper, we need the following

Key Lemma. Let T and S be the same as in Definitions[1] and[3. Suppose that
Q = Q(x0,d) is a cube with supp f C (2Q)¢ and z,% € Q.

(1) If the sequence {k'Cy} € I' and D*b; € BMO(R™) for all a with || = m;
and j =1,...,1, then

l
T (@) =T @) < CTL (X 1D bslm30 ) Mo(1)(@) for any > d';

J=legl=m;

(IT) If the sequence {Cr} €', 0 < 8 < 1 and D*b; € Lipg(R™) for all o with
la| =mj and j =1,...,1, then

l
T ()@= < CTL( X0 1D bl ) Miss (£)(@) for any 7> ¢

J=1 layl=m,

(IIX) If the sequence {k'Cy} € I* and D*b; € BMO(R") for all a with || = m;
and j =1,...,1, then

1) @)= F (D)l <CTL( Y 1Dbllovo ) M()(@) for any v > g’

l
j=

1 Jagl=m,
(IV) If the sequence {k'Cy} € 1*, 0 < 8 < 1 and D®b; € Lipg(R"™) for all a

with |a| =m; and j =1,...,1, then

1F7 (f) (@)= F7 (f)(wo)l| < C ( > IID“jbj||Lipﬁ>Mw,r(f)(i”) for any r>¢.

laj|=m;

=

Proof. Without loss of generality, we may assume [ = 2. Let Q = 5/nQ and
bj(z) =bj(z)— > é(Dabj)on‘, then R, (bj;x,y) = R (bj;2,y) and D*b; =

lo|=m
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D*b; — (Dabj)Q for |a| = m;. We write, for supp f C (2Q)° and z,Z € Q,

K(J,',y) an

o =yl Jzo —yl™

(1)) =T (Pao) = [ D) T o )7 )

j=1

J
[ (B rs9) — B o) "D ey

|zg — y|™
T 7 le Z; 520,
[ R 0) = R Bz ) I e, ) )

-y a /n ms (b3 2, y) (z—y) ™ K(ey) Rin, (b2; 20, y) (w0-y) ™! K(xo’y)]

lz—y|™ lzo—y|™
la1|=

X Dalbl( )f(y)dy

_ Z OQ /n my blax y)(ib y) K(l’,y) N Rm1(b1;x0ay)(xwy)a2 K(xo,y)]

jaz|= |z—y|™ Jwoy|™
(e %) ma2
x Dby (y) f (y) dy
1 (.23 _ y)a1+a2 (xO _ y)al-‘rOéQ
. | Koy~ SO0
Z aqlas! / |z — y|™ (9) lzo — y|™ (z0.)

|ar|[=ma, |az|=m2

x Dby (y) D*2ba(y) f (y) dy
=L+L+L+L+15+ 1.

(I). By Lemmal[6] and the following inequality (see [I0]), for b € BMO(R"),
bQ, — bq,| < Clog(|Q2|/|Q1])[bllBmo for @1 C Q2,
we know that, for z € Q and y € 28F1Q \ 2FQ with k > 1,

R (b2, 9)| < Cle = yI™ Y (ID"bllsmo + (D) gz — (DD)g))

lee|=m

< Cklz —y™ Y ID*|lsnmo -

|a]=m

Note that |z — y| ~ |z — y| for € Q and y € R™\ @, by the conditions on K and
recalling r > ¢', we obtain

EY . 1)) TT 1R, i) £ )] dy
R™M\2Q |$*y|m |$0*y\m H !

+/ \Q\K(%y)—K(wo,y)\Iwo—yI_’”HIij(Ej;fmy)llf(y)ldy
R™\2

Jj=1
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oo

2
< — \K (2, y)| [ [ |Rm, (b3, 9)||f ()| dy
1 /2k+1Q\2k'Q ‘ |z — y[™ |zo — y|™ ‘ H !
o0 2
+ / K (2.y) — K (20, 9)| [0 — o™ [ 1Rom, By 2,9 [/ (9 dy
kz::l 2k+1Q\2kQ ]=H1 J

_of[( > ||D%j||BMo)gk2 / 0l )y

_ +1
. k41 kO |Zo n
J=1 oy =m, 2k+1Q\2FQ \ y|

oo

(X Ipbileo) Yo ( [

k+1 k
J=1  Jag|=m; P 26+1Q\2kQ

1/q
X (/ |K(,y) —K(wo,y)lqdy)
2k+1Q\2kQ

o > _ 1 N
(> Ip ijnBMo)l;k?(Q 0 (i fng @)

lajl=m;

(3 ID™bsllvo ) Mo (£)(@)

lecj|=m;

/ 1/q
Fw)I” dy)

Q
I

<C

<.
oo | (]
-

=

For I, by the formula (see [5]):
~ . 1 B
Ro(b;2,y) = Rn(bi70,9) = Y — R 19(D7b,20) (x — y)”
yl<m
and Lemma [, we have

|Rin(b32,y) = R (bswo,9) < C D7 > | — o™ M|z —y|"| D*l|pao,

Ivl<m laj=m

thus
2
1’0|
L <C D%ib; / =z O d
= jl:[l(lomz::mJ H ”BMO Z 2k+1Q\2FQ |$0_ |n+1|f(y)| Y
2 ; 00 § . 1 . 1/r
< D%b.,; 2= r
<cll (| |Z H J||BMo)kZl (107 Junng, O )
=1 Joy|=m; =
2
< ( > Do‘jba‘HBMO>Mr(f)(i°)-
J=1Jajl=m;
Similarly,

|I3] < CH ( Z |\D°‘"bj||BMo>Mr(f)(55)~

=1 Jagl=m;
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For I, similar to the proof of I; and I, taking 1 < p < oo such that 1/p+1/¢+1/r =
1, we get

) (w0 —y)™
I <C / K(x,y
Il Z "\ 20 |I—y|m |zg — y|™ K (@)

la1|=

X Ing(bz;x,y)l [Db1(y)] £ ()| dy

+C / Rm2 B LY 7Rm2 l; 520, Y
> R\2QI (b2; 7, y) (b2; 20,9

|ar|[=ma

o w0 —y)* K(z,y)

| et
o =g P wIf W)l dy

z,y) — K(x M
oY /M\QQ|K< W)= Koy

ot [=ma

% | Riny (b2; 20, 9)| D by ()] |f ()] dy

- / /
<c Y HDazszBMoZk? C Y (g L P )

[az|=m2 [a1|=m1

< (5erg If(y)ITdy)l/ T

28H1Q| Joriig

+C > Dbl Y. >

|aa|=ma |y |=mq k=1

1/q
<x( [ K (e, y) — K (x0,)|dy)
2641Q\2+Q
~ 1/p
([ D hiwlar) ([ 1)l dy)
2641Q\2+Q 2641Q\2+Q

2 oo
<c]] ( > ||Da"bj||BMO) DK+ O

=1 ayl=m; k=1

1 - 1/r
X (W P10 |f ()l dy)

<CTT( X 10°sllono ) Mo ()(@)

=1 Jagl=m;

’

1/r

Similarly,

|I5] < CH ( Z |\D°‘"bj||BMo>Mr(f)(55)~

=1 Jag=m;
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For Ig, taking 1 < rq,ry < oo such that 1/¢+1/p+ 1/r1 + 1/ry = 1, then

I < C Z / YK (a,y) (w0 —y)* T K (20,y)
o = "\2Q |x_y|m 7o = o™
oz |= —ma

X [ Dby ()| D*2b2(y)]1 £ (3 )\dy

1/r
<c @+ 0 (e [ 1) dy)
PO E A
loa|=ms
1 - 1/r 1 - 1/r2
. a1 T - D*2p T2 )
X <|2k+1Q| b1 |D bl(y)‘ y) l(|2k+1Q| 2k+1Q| Q(y)| Y

<CII( X 1D%bilnwo) Yo K@ + COM.(f)(@)
k=1

J=1 layl=m,

<cII( X 1D%blsm0) Mo (£)(@).

=1 Jag=m;

Thus

™

T () @) = T (Do) < CTL (D2 1D%bslmvo) Me(£) ().

=1 agl=m;

IT). By Lemma |6l and the following inequality, for b € Lipz(R"),
y B

1
lb(z) — bl < ] /Q IbllLip, | — yIPdy < CllbllLip, (|2 — zo| +d)

we get
BB 2,9)| < C Y [1DBllwip, (|2 = y| +d)™+F
|al=m
and
|Rm(g; €, y) - RM(Ba Zo, y)| S c Z ||D0£b||Lipﬁ(|5tj - y| + d)m+ﬁ )
la]=m
then

2
I| < / - K(zx, m, (bg52,9)| [ £ ()] dy
i Z o o ] I DT o 501110

1

[ V)

+ / K(z,y) — K (2o,9)| [0 — 5~ T 1B, (s 2, £ ()] dy
Z LY ol H ’

2 oo
CII( X 10bhn,) Y [ )l ay

o —
j=1 |Oljl—m7 k=1 2k+1Q\2kQ‘ 0
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e = / 1/4'
cCIT( X IDbln,) o2 aP( Tl dy)
=1 Jagl=m; Pt 2641Q\2Q

1/q
/ K(z,y) - K(xo,y)lqdy)
"“Q\2’“Q

1/
H( ZHD 7b; ||L1pﬁ>z “A-Cy) (W/Q |f(y)["dy

2

X k+1
=1 Jayl=m, k=1 @
2

CTL( X 100l ) Mo (@),

J=1|ajl=m;

I /\

2 o] 1/
ety < CTT( 32 ID% by, )32 O (g [, LF @)y

. k+1
=1 lay|=m; k=1 @

<C ﬁ( S 1D bylluip, ) Masr (1)),

=1 Jajl=m,

) (w0 —y)™
<o 3 / |a:—y\m 20—

|t |=ma "\2Q

<$ y)| |Rm2(b2,(E y)'

x [ Dby (y)| 1 (y)| dy

: : (zo —y)" K(z,y)|
+C / R, (bo;x,y) — Ry, (b2; 20,y
Z_: i \2Q| 2 (0232, y) — R, (b2; 20, )| PR
lar|=m1
x |D* by ()] | f(y)| dy
+C / K(x,y — K(zo,y ’ ‘ R, bg,xo,
S [ | e (i, )

la1[=ma
X [D*by (y)] | ()| dy

2

<c]] ( > ”Dajbj”Lipﬁ) grk(m/%ﬂ(g |f(y)] dy)

J=1 oy |=m;

CTL( S 10y, ) 3 2@ / Fw)ay)
k=1

. k+1 k
J=1 " |ay|=my Q\2~FQ

1/q
X (/ \K(fc7y)—K(xo7y)\qdy)
2K H1Q\2kQ
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(1o, Llpﬁ)Z@km)(W L )"

lajl=m;

C

<C

= mw

(> 1D, ) Masor ()@

L Jel=m;

(> ||D“"bj||Lip5)M25,r(f)(i)7

Lo el=m;

J

|Is| < C

—

J

<o Y / (z —y) e K(wy) (o - y)“1+a2K(xo,y)’
\all_ml 'L\ZQ |(E - y‘m |x0 - y|m
vz |=

X [ Dby (y)| [D**b2(y)| 1 f ()| dy

. 1 1r
< CH( Z 1D b; HLlp@)Z(Q +Ck)<|2164r1¢2|1—2¢?rhz/2k+1Q|f(y)|rdy>

J=1 ejl=m;

ch( > Db lluip, ) Moo (£)(@).

7=l |aj|=m;

Thus

T (f)@) = TN < CTT (3 1D, ) Mas,r((E)

=1 agl=m;

O

A same argument as in the proof of (I) and (IT) will give the proof of (IIT) and
(VI), we omit the details.
Now we are in position to prove our theorems.

Proof of Theorem 1. Without loss of generality, we may assume [ = 2. We prove
the theorem in several steps. First, we prove, if D*b; € BMO(R") for all o with
ol =mj and j =1,...,1,

(1) @(* <cTI( D ID™billeuo) My (f)

=1 Jayl=m,

for any r with ¢’ < r < co. Fix a cube @ = Q(z¢,d) and ¥ € Q. LetNQ = 5,/nQ
and bj(z) = bj(z) — > é(Dabj)Qaca, then R, (bj;z,y) = Ry (bj;z,y) and
|a]=m

Db = D; — (D%;)g for o] = m;. We write, for f1 = fxs and fo = fxgm o,



88 L. LANZHE
[I32, R, (bj;2,9)
= DT K (xy) fi(y) dy

R» |33 - y\

Z 1 / Rm2 bg, ( )alDalbl(y)K(l‘,y)fl(y) dy

va —ym

T(f)(x) =

loa|=my

- = L[ B Gz )@= D0a0) o, 1)y

- Rr |z —y|™
‘Otzl =m2

y)a1+a2 Doal;l (y)Daz 52 (y)
K d
* Z Oél'ag/ |x_y|m (xvy)fl(y) Y

|ai|=my
|az|[=m2

/ HJ 1 Binj1(bj52,9)

|z —y|™

K(z,y) f2(y) dy

R

Y =) Db,

_T< Z all!Rmz(EQ;xim_.m f1>
—T( 3 Lle(El;xw)(I*')”D”Bzh)

as! | — ™

1 ((E — )alJrQQDalElDa?EQ
+T< Z atlas! |$— |m fl) +Tb(f2)(m)’
[ar |[=my e
[z [=m2

then

T (/) @) = T*(f2) (o) < \T(H;jf””_(?j”’ 1))

]. m (bg, Z, )({E — ')alDalgl
+ T( oy 2 P— f1)‘
[ar|=my
1 R,, b1 )(ac — ')azDOQi)Q
T - 1 y Ly ‘
+ ( Z s |x — ™ fl)
— oitaz poa] Doe),
(5 e
al'ag |l — ™
la1|=
|a2\:m2

+[T(f2)(x) = T*(f2)(w0)]
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1 bOAY@) — T () (o) de < —— [ Li@ de + -~ [ Lo(e)de
|Q|/QIT(f)() T(fy)(z0)|d §|Q/QL()d+|Q|/QL()d

1 1 1

=Li+Lo+Lg+Ls+Ls.

Now, for Ly, if € Q and y € 2Q, by using Lemma [6], we get

Ry (b;z,y) < Clz —y[™ Y [[Dbl|smo,

loe|=m

thus, by the L" boundedness of T (see Lemma and Holder’s inequality, we obtain

necll( ¥ 1Dt lwo) gy [ 1T de

=1 Jagl=m,

gcj];[l(laj'z_:m] 1D, lleavo) |Q|/ )" daz)
1
<Cj1:[1(|aj|§_:mj D% bj|[BMO (@/R | f1(z)] dx)
2
SCE(MZ_W 1D, o |Q|/|f o
o] (D 1D%bylmsi0 ) M. ()(@)

For La, denoting r = uv for 1 < u,v < oo and 1/v+ 1/v' = 1, we have

Ly <C Z [ D*b2 |l BMO Z Z |Q|/|T Dalblfl (z)|dz

|z |=m2 [ar|=m1 |a|=
~ 1/u
<C Z || D2bs || Bro Z <@ |T(Da1b1f1)(x)|udm>
|aa|=mo |y |=my R"
1 ~ 1/
<C Z [ID“?bs ||BMO Z <@/R |D“1b1(:c)||f1(x)|“dx)
|az|=mo las|=m "
1 1/uv
<C 3 1D bhlwvo (5 [ 15@)" ds
agmz (\QI o} )

Z (|;2|/|Dalb1(> (Dall~91)Q|uvld$)1/uv’

|y [=m
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<CII( S 1D byl ) Mo (£)(@).

=1 Jajl=m;

For L3, similar to the proof of Ly, we get

2
<cII( X 105, laio) M-

=1 Jajl=m;

Similarly, for L4, denoting r = uw for 1 < u, vy, ve,w < oo and 1/v14+1/ve+1/w =
1, we obtain, by Holder’inequality,

<o Y IQ/lT D5 Db f1) ()] di

s [=ma
| |=ma

~ - 1/u
<C Z (|Q| (Dalleo‘szfl)(xM“dx)

lai|=
|o¢2\=m2

<c Y IQ\‘V“(/Rn \Da151(m)D“"'52($)f1(m)|“dx)l/u

|1 |=my
|az|=m2

~ 1/uvy - 1/uvs
<C (LN/ | DY by ()] dw) (é/ | D2 by () |2 da?)
@l g QI Jo

lay|=m
|az|=m2

(i L waras)”

gCH( Z HDO‘jbj||BMo)Mr(f)(3~3)~

=1 agl=m;

For Ls, by using Key Lemma, we have

2
Ly <OTL (X2 10 bsllmwo ) Mo (1) @)

=1 ajl=m;
We now put these estimates together and take the supremum over all ) such
that T € @, we obtain

":1w

(T"(f) (3 1D llbno ) Me(£)(@)

=1 Jaj|=my

Thus, taking r such that ¢’ < r < p, we obtain
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I (P)llee < CNT* O F e <CTT (D 1D%b1 o )M () 20

(2)

=1 |ajl=m;

2
SCH( > ||Dajbj||BM0)||fHLv-

J=1 Jajl=m;

Secondly, we prove that, if Db; € Lipg(R") for all a with [a| = mj and j = 1,...

(3)

T ()* <CTL( X 1D%bslh, ) Mag ()

=1 Jajl=m;

91

for any r with ¢’ < r < n/20. In fact, by Lemma@ we have, for x € Q and y € 2Q)

R (b3, )| < Ol —y|™ Y sup [Db(z) — (Db)q)

|a‘:m262

< Cle = y|™QIP/™ Y IDblLip,

|a]=m

similar to the proof of and by Key Lemma, we obtain

1 b(F)(x
Q|/QT (@)

= T*(f)(z0)| dz

H Rm7 ,')
\Q|/’ . 1|$_ |m fl)‘dz

1 Ry, (bosz,-)(z — )™ Dby
+C—/ T —ma dx
QI Jo (|a12_:m1 ! z — fl)‘

1 1 R, (b3, -)(z — -)*> Dby
C—/ T =t ’dz
Ql Jg (Ia;m as! z — ™ f1>

1 (.’E—')alJraQDalElDazBQ
vot [r ’dw
1Ql Jo (|alz_:m1a1'a2' z— |m f1>

|az|=m2
1

b b

< CH( Z IID%bjIILipB)W(/@mx)ydm)w

J=1 Jay=m,

b b
+ 1 / T (f2)() — T*(f2) (o) da

gOH( > 1D, ) Moo (1)(3).

=1 Jagl=m;
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Thus, holds. We take ¢’ < r <p <n/208, 1/w = 1/p — 26/n and obtain, by
Lemma [5

2
I (Pl < CUTENFlle <CTT (D0 1D%bslluin, ) 1Mo () o

J=1 0 Jay|=m;

(4)

Q
=

( Z HDajbj”Lipg)”fHLp .

=1 Jagl=m,

Now we verify that T? satisfies the conditions of Lemma 3. In fact, for any
1< pi <n/2B,1/w; =1/p;—28/n(i = 1,2) and || f||r: < 1, note that T°(f)(z) =
T (f)(z) + T (f) (= ) and D(b%) = (D*b)* with D*(b; — b3) € BMO(R") and
Db € Lips(R™), by (2) and Lemmal we obtain

HTb*“(f)ngCH( >2 1D (5 = B)limsio) I o

J= 0 eyl=m;

—

<CII( X 1Dt = (Db [lsio0)
J=1 oyl=m;
2

<CII( 3 1p¥blsvo, )#*(s),
J=L|ejl=m;

and by and Lemma [3] we obtain

2
7" (Dl < CTT( 32 10 lhan, 1

i=1 \aj|—mj
Cs™ 2002 H ( Z ||Da_jbj“BMow> )
J=1 g =m,
Thus, for s =t~ %" and i = 1,2,
mes() (W) 7H1)) < mgup) (E7P (V™)
< Mgops o) (tl/Z’iSDQ(tfl/n)/Q) + mpe ) (tl/pi¢2(t71/n)/2)
<c|( £*(s) )"+ (5*2%2(5))%] —
wr(w)) T \wm()
Taking 1 < ps < p < p1 < n/283 and by Lemma 4] we obtain, for || f||r» <
(p/p1)"7,

/n ¢2(|Tb dﬂ? = / me(f) (t)) dt < C,

then, ||Tb( N, <C.

v2 =

This completes the proof of Theorem [} ([
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By using the same arguments as in the proof of Theorem [T] will give the proof
of Theorem [2| we omit the details.

3. APPLICATIONS

In this section we shall apply the Theorems 1 and 2 to some particular operators
such as the Calderén-Zygmund singular integral operator and Littlewood-Paley
operator, Marcinkiewicz operator.

Application 1. Calderén-Zygmund singular integral operator.
Let T be the Calder6n-Zygmund operator (see [7, [8, 22, 23]), the multilinear
operator related to T is defined by

l o
o)) = [ Moz litn) v ay.

R7 |z —y|™

Then it is easily to verify that Key Lemma holds for T°, thus 7" satisfies the
conditions in Theorem [1] and Theorem [1] holds for T7.

Application 2. Littlewood-Paley operator.
Let € > 0 and ¢ be a fixed function which satisfies the following properties:
(1) ()] < C(1+ [a])=0 D),
(2) [(x+y) — (@) < Clyl*(1 + [x]) ="+ when 2[y| < |2|.
The multilinear Littlewood-Paley operator is defined by

sn@ = ([ rnerE)”

0
where
L R, 11(bj;x,
R = [ sl 00w, i) ay
Rn |z -y

and ¥y (x) =t~ (x/t) for t > 0. We write that F;(f) = ¢, * f. We also define that

a0 = ([ IRO@PE)"

which is the Littlewood-Paley operator (see [23]).

Let H be the space H = {h: ||h| = ( [;* |h(t)\2dt/t)1/2 < 0o}, then, for each
fixed z € R", F?(f)(x) may be viewed as a mapping from [0, +00) to H, and it is
clear that

gu(@) = IF(H@)] and g (F)(z) = [F(f)(@)ll.
It is easily to see that gfb satisfies the conditions of Theorem (see [TI]-[16]), thus
Theorem |2 holds for ng

Application 3. Marcinkiewicz operator.
Let 2 be homogeneous of degree zero on R™ and [, _, Q(z) do(2’) = 0. Assume
that Q € Lip, (S"~') for 0 < v < 1, that is there exists a constant M > 0 such that
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for any z,y € S" !, |Q(z) — Q(y)| < M|z — y|7. The multilinear Marcinkiewicz
operator is defined by

N = ( [T1rnweg)”.

where

1 o
FY(f)() = /| O o) o St Oi2) g,

z—y|<t |IL‘ - y|n71 |£L' - y|m
we write that ( )
Qz—vy
F@= [ ) dy.
' |lz—y|<t |£L' - y|n71
We also define that

which is the Marcinkiewicz operator (see [24]).
Let H be the space H = {h: ||h| = ( [;° |h(t)[*dt/t3)
clear that

12 < oo}. Then, it is

pa(f)(@) = [IE(H @) and g (f)(z) = [F(f) @)l
It is easily to see that uf, satisfies the conditions of Theorem [2| (see [12]-[16} 24]),
thus Theorem [2| holds for 2.
Application 4. Bochner—fiiesz operator.
Let 6 > (n—1)/2, FP(f)(€) = (1 — £2[§]*)%.f(€) and By () = ¢~ B°(z/t) for
t > 0. The maximal Bochner-Riesz operator is defined by (see [17])

Bs.(f)() = sup [P (f)()].

Set H be the space H = {h: ||h|| = sup |h(t)| < oo}. The multilinear operator
>0

related to the maximal Bochner-Riesz operator is defined by
B (f)(@) = sup |F},(f) (@),

where l
[Ti=1 Bmj+1(bj32,9)

@) = | R B =) ) dy.

We know

Bj (f)(x) = B3, ()]l
It is easily to see that B, satisfies the conditions of Theorem (see [12]-]13} 23]),
thus Theorem [2| holds for Bg’*.

Acknowledgement. The author would like to express his gratitude to the referee
for his comments and suggestions.
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