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Generalized Luzin Sets

Lev bukovský

Košice

Many modifications of the classical notions of a Luzin and a Sierpiński sets are inves-
tigated in literature. The famous result by Rothberger says that the existence of both
classical Luzin and Sierpiński sets implies the continuum hypothesis. We present a gener-
alization of Rothberger’s result for modified notion of a Luzin set.

Main result of the paper is Theorem 6, that is a generalization of a classical result
by F. Rothberger [6] and a strengthening of a result by J. Cichoń [3]. Note that all
results needed for a proof of Theorem 6 are well known with the exception of the
simple observation contained in Lemma 5.

We work in ZFC set theory. We assume that all considered σ-ideals I of subsets
of a Polish space X are such that

⋃
I = X. The cardinal characteristics add(I ),

non(I ), cof(I ) and cov(I ) of a σ-ideal I are defined e.g. in [1] or [2]. Two
σ-ideals I and J of subsets of X are said to be orthogonal, if there are sets A ∈ I
and B ∈ J such that X = A ∪ B. If X is a Polish group, i.e. a topological group
with Polish topology, then an ideal I is shift invariant if a + A ∈ I for any a ∈ X
and any A ∈ I . We shall be interested in ideals with a Borel basis, i.e. in ideals I
with the following property: for any A ∈ I , there exists a Borel set B ∈ I such that
A ⊆ B.
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We shall mainly deal with the σ-ideal of meager subsets M (X) of a Polish space
X and with the σ-ideal of measure zero subsets N (X) of X for some Borel measure
on X. Both of them have a Borel basis. It is well known that those two ideals are
orthogonal.

The Baire space ωω is pre-ordered by the eventual domination relation

f ≤∗ g ≡ (∃n0)(∀n ≥ n0) f (n) ≤ g(n).

The bounding number b is the smallest cardinality of an unbounded subset of ωω
and the dominating number d is the smallest cardinality of a dominating (= cofinal)
subset of ωω, see [1]. Main relationships between cardinal characteristics of M (X),
N (X), b and d are expressed by so called Cichoń diagram, see [1] or [2].

The Baire space ωω is homeomorphic with the Polish group ωZ with coordinate
wise addition on the group of integers Z. Thus, we can consider ωω as a Polish group.
We denote by Kσ the σ-ideal of subsets of ωω generated by compact subsets of ωω.
By definition, Kσ has a Borel basis. The well-known result by F. Rothberger (see
e.g. [2] or [1]) says that

cov(Kσ) = cof(Kσ) = d. (1)
Another classical result by F. Rothberger [6] can be easily generalized. A proof is

a simple modification of Rothberger’s proof.

Theorem 1 If I and J are orthogonal shift invariantσ-ideals on a Polish group
X, then

cov(J ) ≤ non(I ). (2)

Proof is easy. Assume that A ∈ I and B ∈J are such that X = A ∪ B. If C ⊆ X
is such that C + B =

⋃
x∈C(x + B) � X, then C ∈ I . Actually, there exists a y ∈ X

such that y � C + B. Then (y −C) ∩ B = ∅ and hence (y −C) ⊆ A. Thus C ∈ I .
Let C ⊆ X be such that |C| = non(I ) and C � I . Then

⋃
x∈C(x + B) = X and

therefore cov(J ) ≤ non(I ). �
If I is a σ-ideal of subsets of a Polish space X and κ is an uncountable regular

cardinal ≤ c, then a set L ⊆ X is said to be a κ-I -Luzin set, if |L| ≥ κ and |A ∩ L| <
< κ for any A ∈ I . J. Cichoń [3] calls such a set (|L|, κ)-Luzin set for I . A κ-
M (X)-Luzin set is simply called a κ-Luzin set and a κ-N (X)-Luzin set is called
a κ-Sierpiński set. By the definition, if there exists a κ-I -Luzin set L, then

non(I ) ≤ κ ≤ |L|. (3)

Note also that a κ-J -Luzin set is a κ-I -Luzin set as well, provided that I ⊆J .
Since Kσ ⊆M (ωω) we obtain that every κ-Luzin subset of ωω is a κ-Kσ-Luzin set.

P. Mahlo [5] assuming the continuum hypothesis has constructed a ℵ1-Luzin set.
Independently N. N. Luzin [4] obtained the same result. Then W. Sierpiński [7]
constructed a ℵ1-Sierpiński set again assuming 2ℵ0 = ℵ1. The next construction is
essentially that of N. N. Luzin [4] and we consider it as a folklore result.1

1 Note that J. Cichoń [3] in Proposition 4.6 asks an additional property of the ideal I .
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Theorem 2 Let I be a σ-ideal of subsets of a Polish space X, κ being an un-
countable regular cardinal. If κ = cov(I ) = cof(I ), then there exists a κ-I -Luzin
set.

Proof. Let {Bξ : ξ < κ} be a base of the ideal I . Since κ = cov(I ), for any ξ < κ
we have |X \⋃η<ξ Bη| ≥ κ. Thus, there exists an xξ ∈ X \⋃η<ξ Bη such that xξ � xη
for every η < ξ. Set L = {xξ : ξ < κ}. Then |L| = κ.

If A ∈ I , then A ⊆ Bξ for some ξ < κ and therefore L ∩ A ⊆ {xη : η ≤ ξ}. Thus
|L ∩ A| < κ. �

Hence, by (1) we obtain

Corollary 3 There exists a d-Kσ-Luzin set.

On the other hand by a transfinite induction, one can easily construct an increasing
unbounded sequence { fξ}ξ<b of elements of ωω.

Theorem 4 The set L = { fξ : ξ < b} is a b-Kσ-Luzin set.

Proof. It is well known that a compact subset of ωω is strictly bounded by a func-
tion f ∈ ωω. Therefore, a σ-compact subset of ωω is eventually bounded. Hence, if
K ⊆ ωω is σ-compact, then |K ∩ L| < b. �

Thus, it is consistent with ZFC (in any model in which b < d), that there are κ-I -
Luzin sets for different κ’s. Hence, from the existence of a κ-I -Luzin set one cannot
conclude in ZFC that κ = cov(I ) = cof(I ).

Lemma 5 Let I be a σ-ideal of subsets of a Polish space X, κ being an uncount-
able regular cardinal. If there exists a κ-I -Luzin set L, then

|L| ≤ cov(I ). (4)

Proof. Let L be a κ-I -Luzin set. By definition |L| ≥ κ. Assume that the family
{Aξ : ξ < cov(I )} ⊆ I witnesses cov(I ), i.e. X =

⋃
ξ<cov(I ) Aξ. Then

L =
⋃

ξ<cov(I )

(L ∩ Aξ),

where |L ∩ Aξ | < κ for every ξ < cov(I ). Therefore |L| ≤ cov(I ). �

Theorem 6 Assume that I and J are orthogonal shift invariant σ-ideals on
a Polish group X and κ, λ are uncountable regular cardinals not greater than c. If L
is a κ-I -Luzin set and S is a λ-J -Luzin set, then

κ = λ = non(I ) = non(J ) = cov(I ) = cov(J ) = |L| = |S |.

Proof. By (3), by Lemma 5 and by Rothberger’s Theorem 1 we have

non(I ) ≤ κ ≤ |L| ≤ cov(I ) ≤ non(J ), non(J ) ≤ λ ≤ |S | ≤ cov(J ) ≤ non(I ).

J. Cichoń [3] proves Theorem 6 assuming that κ = |L| and λ = |S |. Moreover, by
Corollary 2.13 of [3], under assumptions of Theorem 6 one obtains κ = λ. However
in [3] there is no conclusion without the assumption that the size of L and S is κ and
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λ, respectively. Let us recall that L(I , µ, κ) introduced in [3] means that there exists
a κ-I -Luzin set of cardinality µ. Thus, in terminology of [3], Theorem 6 says: if
L(I , µ, κ) and L(J , ν, λ), then

κ = λ = non(I ) = non(J ) = cov(I ) = cov(J ) = µ = ν.

Corollary 7 Assume that κ, λ are uncountable regular cardinals not greater than
c. If L is a κ-Luzin set and S is a λ-Sierpiński set, then

κ = λ = non(M ) = non(N ) = cov(M ) = cov(N ) = |L| = |S |.

Together with Corrolary 3 and Theorem 4 we obtain

Corollary 8 If b < d and I is a shift invariant σ-ideal on ωω orthogonal to Kσ,
then there exists no κ-I -Luzin set for any uncountable regular cardinal κ.
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