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In the paper, almost quasitrivial and critical semimodules are studied.

The foregoing parts [1], [2] and [3] are continued and the notation introduced in
these parts is used. More attention is paid to almost quasitrivial and critical semimo-
dules.

1. P r e l i m i n a r i e s ( A )

Let S be a non-trivial semiring and M be a (left S -)semimodule. We put R(M) =
= { x ∈ M | rtx = stx for all r, s, t ∈ S }.

1.1 Lemma. (i) Either R(M) = ∅ or R(M) is a subsemimodule of M.
(ii) P(M) ⊆ Q(M) ⊆ R(M).

Proof. Easy to check. �

1.2 Lemma. (i) S R(M) ⊆ Q(M).
(ii) SQ(M)=P(M).
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(iii) S S R(M) = P(M).
(iv) If R(M) � ∅ then P(M) � ∅.

Proof. (i) If x ∈ R(M) and r, s, t ∈ S then rtx = stx, and hence tx ∈ Q(M). Thus
S R(M) ⊆ Q(M).
(ii) If x ∈ Q(M) and r, s ∈ S then r(sx) = (rs)x = sx. Thus sx ∈ P(M) and
S Q(M) ⊆ P(M). Of course, S P(M) = P(M).
(iii) Combining (i) and (ii), we get S S R(M) ⊆ S Q(M) ⊆ P(M).
(iv) This follows immediately from (iii). �

1.3 Lemma. Assume that for all r, s ∈ S , r � s, there are elements ri, si, ti ∈ S ,
i = 1, 2, . . . , n, such that r =

∑
riti and s =

∑
siti. Then:

(i) ra = sa for every a ∈ R(M).
(ii) R(M) = Q(M).

Proof. It is easy. �

1.4 Lemma. If S t = S for at least one t ∈ S (e.g., if t is right multiplicatively neutral)
then R(M) = Q(M).

Proof. Use 1.3(ii). �

1.5 Proposition. Let the semimodule M be minimal. Then just one of the following
four cases takes place:

(1) R(M) = ∅ (then Q(M) = P(M) = ∅) or, equivalently, for every x ∈ M there
are elements r, s, t ∈ S such that rtx � stx;

(2) R(M) = Q(M) = P(M) = {w}, where S w = w and 2w = w (then S x = M for
every x ∈ M \ {w});

(3) R(M) = Q(M) = M and P(M) = {w} (then S M = {w});
(4) R(M) = Q(M) = P(M) = M (then rx = x for all r ∈ S , x ∈ M and M(+) is

idempotent).

Proof. If R(M) = ∅ then Q(M) = ∅ = P(M) by 1.2(ii) and (1) is true. If R(M) =
= {w} then Q(M) = P(M) = {w} follows from 1.1(ii) and 1.2(iv) and (2) is true. If
|R(M)| ≥ 2 then R(M) = M, since M is minimal and, using 1.2(iv), we get Q(M) �
� ∅ � P(M). If P(M) = M then Q(M) = M and (4) is true.

Assume, finally, that P(M) � M. Since M is minimal, we get P(M) = {w}. If
Q(M) = M then (3) is true (use 1.2(ii)). On the other hand, if Q(M) � M then
Q(M) = P(M) = {w} and, by 1.2(i), S M = S R(M) = {w}. But then Q(M) = M, a
contradiction. �

math_13_1.indd   4 19.3.2014   14:07:32



5

1.6 Corollary. Let the semimodule M be strictly minimal. Then 1.5(1) is true. �

1.7 Proposition. Let M be minimal of type 1.5(3). Then just one of the following
three cases takes place:

(1) M(+) is a two-element semilattice;
(2) M(+) is a two-element constant semigroup;
(3) M(+) is a finite cyclic group of prime order.

Proof. Let M be of type 1.5(3). Then S M = {w}, and hence every subsemigroup
N of M(+) such that w ∈ N is a subsemimodule of M. Since M is minimal, it follows
that {w} and M are the only subsemigroups of M(+) and the rest is clear. �

1.8 Proposition. Let M be minimal of type 1,5(4). Then M(+) is a two-element
semilattice.

Proof. M(+) is idempotent and rx = x for all r ∈ S and x ∈ M. Thus every
subsemigroup of M(+) is a subsemimodule of M and the rest is clear. �

The semimodule M will be called
– cs-quasitrivial if |S M| = 1;
– id-quasitrivial if P(M) = M (i.e., rx = x for all r ∈ S and x ∈ M);
– quasitrivial if Q(M) = M;
– almost quasitrivial if R(M) = M.

1.9 Proposition. (i) If M is cs-quasitrivial or id-quasitrivial then M is quasitrivial.
(ii) If M is quasitrivial then M is almost quasitrivial.

Proof. It is obvious. �

1.10 Lemma. Assume that M = S v for at least one v ∈ M. If � is a congruence of M
such that the factorsemimodule M/� is almost quasitrivial then � = M × M.

Proof. Since M = S v, we have v = tv for some t ∈ S . Since M/� is almost
quasitrivial, we see that (rv, sv) = (rtv, stv) ∈ � for all r, s ∈ S . Using the equality
M = S v one more, we get � = M × M. �

1.11 Corollary. Assume that M is non-trivial, M = S v for at least one v ∈ M and that
every proper factorsemimodule of M is almost quasitrivial. Then M is congruence-
simple. �

1.12 Lemma. Assume that the subsemimodule S x is quasitrivial for every x ∈ M.
Then M is almost quasitrivial.

Proof. It is easy. �
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1.13 Lemma. Assume that M is not almost quasitrivial and that every proper sub-
semimodule of M is quasitrivial. Then R(M) � M and S v = M for every v ∈
∈ M \ R(M) � ∅.

Proof. Since M is not almost quasitrivial, we have R(M) � M and M \ R(M) � ∅.
If v ∈ M is such that S v � M then the subsemimodule S v is quasitrivial. It means
that |S rv| = 1 for every r ∈ S , and therefore v ∈ R(M). �

1.14 Lemma. Every proper subsemimodule is (almost) quasitrivial in each of the
following three cases:

(1) M is minimal;
(2) M is (almost) quasitrivial;
(3) M is finite, not (almost) quasitrivial and the order |M| of M is minimal with

respect to these properties.

Proof. It is easy. �

1.15 Remark. Notice that there is at least one semimodule of type 1.14(3) if and only
if there is at least one finite semimodule that is not (almost) quasitrivial. For instance,
if S is finite and not left (almost) quasitrivial.

1.16 Lemma. Assume that S = {∑n
i=1 risi | n ≥ 1, ri, si ∈ S } (e.g., if S is ideal-simple

and |S | ≥ 2). Assume, moreover, that every proper subsemimodule of M is almost
quasitrivial. Then S v = M for every v ∈ M \ R(M).

Proof. If v ∈ M is such that S v � M then the subsemimodule S v is almost quasi-
trivial, and so rtpv = stpv for all r, s, t, p ∈ S . Now, given q ∈ S , we have q =

∑
ti pi,

and therefore rqv = sqv. Thus v ∈ R(M). �

1.17 Proposition. Assume that M is not almost quasitrivial, while every proper sub-
semimodule of M is quasitrivial and every proper factorsemimodule of M is almost
quasitrivial. Then:
(i) The semimodule M is congruence-simple.
(ii) M = S v for every v ∈ M \ R(M) (� ∅).

Proof. By 1.13, M \R(M) � ∅ and M = S v for every v ∈ M \R(M). Consequently,
M is congruence-simple by 1.11. �

1.18 Proposition. Assume that S = {∑n
i=1 risi | n ≥ 1, ri, si ∈ S }. Assume, moreover,

that M is not almost quasitrivial, while all proper subsemimodules and all proper
factorsemimodules of M are almost quasitrivial. Then:
(i) The semimodule M is congruence-simple.
(ii) S v = M for every v ∈ M \ R(M).
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Proof. By 1.16, S v = M for every v ∈ M \ R(M). Now, M is congruence-simple
by 1.11. �

1.19 Lemma. If M is a non-trivial semimodule then S v � M for every v ∈ R(M).

Proof. If M is quasitrivial then |S x| = 1, and hence S x � M for every x ∈ M.
Now, assume that M is not quasitrivial. Then |S u| ≥ 2 for at least one u ∈ M and we
have ru � su for some r, s ∈ S . If u = tv for some t ∈ S and v ∈ M then rtv � stv,
and so v � R(M). Consequently, if v ∈ R(M) then u � S v and S v � M (of course,
(M \ Q(M)) ∩ S R(M) ⊆ (M \ Q(M) ∩ Q(M) = ∅). �

In the sequel, a semimodule M will be called decent if M = S v for every v ∈
∈ M \ R(M) (see 1.19).

1.20 Proposition. A semimodule M is decent in each of the following three cases:
(1) M is almost quasitrivial;
(2) Every proper subsemimodule of M is quasitrivial and every proper factor-

semimodoule of M is almost quasitrivial;
(3) S = {∑n

i=1 risi | n ≥ 1, ri, si ∈ S } and all proper subsemimodules and all
proper factorsemimodules of M are almost quasitrivial.

Proof. See 1.17 and 1.18. �

1.21 Proposition. Let M be a decent semimodule such that M is not almost qua-
sitrivial, but every proper factorsemimodule of M is almost quasitrivial. Then M is
congruence-simple.

Proof. See 1.11. �

1.22 Lemma. Let w ∈ M and N = { a ∈ M |w � S a }. Then:
(i) S N ⊆ N.
(ii) If N = ∅ then w ∈ ⋂ S a, a ∈ M.
(iii) If N = M then w �

⋃
S a, a ∈ M.

(iv) If N = M and w = x + y then, for every z ∈ M, either x � S z or y � S z.
(v) If N = {v} then S v = {v}.
(vi) If w � M + (M \ {w}) then N + M ⊆ N.

Proof. It is easy. �

1.23 Lemma. Let w ∈ M be such that w � M + (M \ {w}). Put N = { a ∈ M |w � S a }.
Then:
(i) Either N = ∅ or N is an ideal of the semimodule M.
(ii) (N × N) ∪ idM is a congruence of the semimodule M.
(iii) If N = {v} then v = oM, S oM = {oM} and w ∈ S a for every a � oM.

math_13_1.indd   7 19.3.2014   14:07:33



8

Proof. Use 1.22. �

1.24 Proposition. Let M be an ideal-simple semimodule such that 0M ∈ M and
0M � K+K, where K = M \ {0M} (e.g., M idempotent). Then just one of the following
three cases takes place:

(1) 0M ∈ S a for every a ∈ M;
(2) oM ∈ M, S oM = {oM} and 0M ∈ S b for every b � oM;
(3) 0M � S c for every c ∈ M.

Proof. Use 1.23. �

1.25 Proposition. Let M be a non-quasitrivial minimal ideal-simple semimodule such
that 0M ∈ M and 0M � K + K, where K = M \ {0M} (e.g., M idempotent). Then just
one of the following three cases takes place:

(1) M is strictly minimal and idempotent;
(2) Q(M) = P(M) = {0M} and S a = M for every a ∈ K (either M is idempotent

or 0M is the only idempotent element);
(3) oM ∈ M, Q(M) = P(M) = {oM}, M is idempotent and S a = M for every

a ∈ K.

Proof. Since M is minimal, we have S a = M for every a ∈ M \ Q(M). Further-
more, either Q(M) = ∅ or Q(M) = {w} is a one-element set. We have 0M ∈ Id(M),
and hence either M is idempotent or Id(M) = {0M}. If M is strictly minimal then M
is idempotent.

Now, assume that 1.24(1) is true. Then P(M) ⊆ {0M}. If Q(M) = ∅ then M is
strictly minimal and (1) is true. If Q(M) = {w} then w = 0M and (2) is true.

Next, let 1.24(2) be true. Then P(M) = Q(M) = {oM}, {oM , 0M} ⊆ Id(M), hence M
is idempotent and (3) is true.

Finally, let 1.24(3) be satisfied. Then S c � M for every c ∈ M and, since M is
minimal, it follows that |S c| = 1 and M is quasitrivial, a contradiction. �

1.26 Remark. Let M be as in 1.24 and, moreover, assume that M is minimal and
quasitrivial (cf. 1.25). Using [1, 4.1], we see that |M| = 2 and M is isomorphic to one
of the semimodules Q1,S , Q2,S and Q3,S . Consequently, M is idempotent and either
id-quasitrivial or cs-quasitrivial.

1.27 Remark. Let M be a minimal semimodule.
(i) If 0S ∈ S and M is not quasitrivial then S a = M for at least one a ∈ M and we
have 0M = 0S a ∈ M.
(ii) If M is not quasitrivial then (by [1, 6.3]) there is at least one congruence � of M
such that the factorsemimodule N = M/� is minimal, congruence-simple (and hence
ideal-simple) and not quasitrivial. Of course, if 0M ∈ M then 0n = 0M/� ∈ N.
(iii) If 0M ∈ M and K = M \ {0M} then L = { a ∈ M | 0M ∈ M + a } is a subgroup of
M(+). If M is idempotent then L = {0M} and 0M � K + K. If S 0M = {0M} then L
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is a subsemimodule of M. Then either L = M and M(+) is a group or L = {0M} and
0M � K + K again.

1.28 Lemma. Let M be a finite strictly minimal semimodule. Then for every w ∈ M
there is at least one r ∈ S with rM = {w}.

Proof. We have S x = M for every x ∈ M. Consequently, rxx = oM ∈ M for some
rx ∈ S and, setting r =

∑
rx, x ∈ M, we get rM = {oM}. But S oM = M, w = soM and

rM = {w}. �

2. P r e l i m i n a r i e s ( B )

2.1 Proposition. Let M be a finite semimodule that is not quasitrivial and whose
order |M| is minimal possible. Then:
(i) All proper subsemimodules as well as all proper factorsemimodules of M are
quasitrivial.
(ii) M is decent.
(iii) M is a one-generated semimodule.
(iv) If M is not almost quasitrivial then M is congruence-simple.
(v) M is subdirectly irreducible.

Proof. (i) This is obvious.
(ii) Combine (i) and 1.20(2).
(iii) If u ∈ M \ Q(M) then 〈u〉 � Q(M), and hence 〈u〉 = M.
(iv) Combine (ii) and 1.11.
(v) This is obvious. �

2.2 Proposition. Let M be a finite semimodule that is not almost quasitrivial and
whose order |M| is minimal possible. Then:
(i) All proper subsemimodules as well as all proper factorsemimodules of M are al-
most quasitrivial.
(ii) If M = S v for at least one v ∈ M then M is congruence-simple.
(iii) M is subdirectly irreducible.
(iv) M is a one-generated semimodule.
(v) If M � S x for every x ∈ M then rtpx = stpx for all r, s, t, p ∈ S .

Proof. It is easy. �

2.3 Proposition. Define a relation ν on M by (x, y) ∈ ν if and only if rx = ry for all
r ∈ S . Then:
(i) ν is a congruence of the semimodule M.
(ii) If ν = M × M and R(M) � ∅ then M is cs-quasitrivial.
(ii) If u, v ∈ P(M) are such that (uv) ∈ ν then u = v (i.e., ν|P(M) = id).
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(iv) If u, v ∈ Q(M) are such that r0u = s0v for some r0, s0 ∈ S then (u, v) ∈ ν and
ru = sv for all r, s ∈ S .
(v) If u, v ∈ R(M) are such that r0 p0u = s0q0v for some r0, s0, p0, q0 ∈ S then
(p0u, q0v) ∈ ν and rp0u = sq0v for all r, s ∈ S .

Proof. (i) Easy to see.
(ii) Since R(M) � ∅, we have P(M) � ∅ by 1.2(iv). Now, if w ∈ P(M) then (x, v) ∈ ν
for every x ∈ M, and hence rx = rw = w for every r ∈ S . Thus S M = {w}.
(iii) We have u = rurv = v.
(iv) We have ru = r0u = s0v = sv.
(v) We have rp0u = r0 p0u = s0q0v = sq0v. �

2.4 Lemma. If ν = idM then S R(M) = P(M).

Proof. If u ∈ R(M) and r, s, t ∈ S then rstu = rtu. It means that (stu, tu) ∈ ν = idM ,
stu = tu and tu ∈ P(M). �

2.5 Lemma. If ν = idM then Q(M) = P(M).

Proof. If u ∈ Q(M) and r, s ∈ S then rsu = ru. It means that (su, u) ∈ ν = idM ,
su = u and u ∈ P(M). �

2.6 Proposition. Assume that M is congruence-simple. Then S R(M) = Q(M) =
= P(M).

Proof. If M is cs-quasitrivial then S R(M) = Q(M) = P(M) = M. If R(M) = ∅
then S R(M) = Q(M) = P(M) = ∅. Assume, therefore, that R(M) � ∅ and M is not cs-
quasitrivial. According to 2.3(ii), we have ν � M×M. Since M is congruence-simple,
we have ν = idM and we can use 2.4 and 2.5. �

2.7 Proposition. Assume that M = S v for at least one v ∈ M and that every proper
subsemimodule of M is almost quasitrivial. Then S R(M) = Q(M) = P(M).

Proof. We can assume that M is non-trivial. Then M is congruence-simple by 1.11
and we can use 2.6. �

2.8 Proposition. Assume that M is not almost quasitrivial, every proper subsemi-
module of M is quasitrivial and every proper factorsemimodule of M is almost qua-
sitrivial. Then S R(M) = Q(M) = P(M).

Proof. Just combine 2.7 and 1.17. �
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2.9 Proposition. Assume that S = {∑n
i=1 risi}. Let M be not almost quasitrivial. If all

proper subsemimodules and all proper factorsemimodules of M are almost quasitriv-
ial then S R(M) = Q(M) = P(M).

Proof. Just combine 2.7 and 1.18. �

3. P r e l i m i n a r i e s ( C )

A semimodule M is called faithful if for all r, s ∈ S , r � s, there is at least one
x ∈ M with rx � sx.

3.1 Lemma. Let M be a faithful semimodule such that oM ∈ M. If r ∈ S is such that
rM = {oM} then r = oS is additively absorbing in S .

Proof. We have (r + s)x = rx + sx = oM + sx = oM = rx for all s ∈ S and x ∈ M.
Since M is faithful, we get r + s = r, and hence r = oS . �

3.2 Lemma. Let M be a faithful semimodule such that 0M ∈ M. If r ∈ S is such that
rM = {0M} then r = 0S is additively neutral in S .

Proof. We have (r + s)x = rx + sx = 0M + sx = sx for all s ∈ S and x ∈ M. Since
M is faithful, we get r + s = s, and hence r = 0S . �

3.3 Lemma. Let M be a faithful semimodule such that 0M ∈ M and oM ∈ M. Then:
(i) If S oM = {oM} and if r ∈ S is such that r(M \ {oM}) ⊆ {0M} then r = 0S .
(ii) If S 0M = {0M} and if r ∈ S is such that r(M \ {0M}) ⊆ {oM} then r = oS .

Proof. It is easy. �

3.4 Lemma. Assume that there is a faithful semimodule M such that M is almost
quasitrivial. Then rt = st for all r, s, t ∈ S (i.e., the (left S -)semimodule S S is qua-
sitrivial.

Proof. We have rtx = stx for every x ∈ M. �

3.5 Lemma. Define a relation µS on S by (r, s) ∈ µS if and only if rt = st for every
t ∈ S . Then:
(i) µS is a congruence of the semiring S .
(ii) µS = idS if and only if the (left S -)semimodule S S is faithful.
(iii) µS = S × S if and only if rt = st for all r, s, t ∈ S .

Proof. It is easy. �
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3.6 Proposition. Let S be a congruence-simple semiring. Then just one of the fol-
lowing five cases takes place:

(1) The left S -semimodule S S is faithful;
(2) S is a zero multiplication ring of finite prime order;
(3) S (+) is a two-element semilattice and ab = b for all a, b ∈ S ;
(4) S (+) is a two-element semilattice and S S = {w} (there are two non-isomor-

phic cases);
(5) S (+) is a two element constant semigroup and S + S = {} = S S .

Proof. In view of 3.5(ii), assume that µS � idS . Then µS = S × S and rt = st for
all r, s, t ∈ S . That is, there is a transformation α of S such that ab = α(b) for all
a, b ∈ S . One checks readily that α is an endomorphism of the additive semigroup
S (+) and α2 = α = 2α. Consequently, α is an endomorphism of the semiring S and
ker(α) is a congruence of S .

Assume first that ker(α) = idS . Then α is injective and α2 = α implies α = idS

and ab = b for all a, b ∈ S . We get a = (a + a)a = aa + aa = a + a, so that S (+) is
a semilattice. Besides, every congruence of S (+) is a congruence of the semiring S .
Thus S (+) is a congruence-simple semilattice and |S | = 2 immediately follows. This
means that (3) is true.

Next, assume that ker(α) � idS . Then ker(α) = S × S , α is constant and S S = {w}.
Clearly, 2w = w and every congruence of S (+) is a congruence of the semiring S .
Thus S (+) is a congruence-simple (commutative) semigroup and the rest is clear. �

3.7 Corollary. Let S be a congruence-simple semiring such that |S S | ≥ 2 and either
|S | ≥ 3 or ab � b (ab � a, resp.) for some a, b ∈ S . Then the left (right, resp.)
semimodule S S (S S , resp.) is faithful. �

3.8 Proposition. Let S be a congruence-simple semiring. Then every semimodule is
either faithful or quasitrivial.

Proof. The map r �→ (x �→ rx) is a semiring homomorphism of the semiring S
into the full endomorphism semiring End(M(+)) of the additive semigroup M(+).
This homomorphism is injective if and only if M is faithful and it is constant if and
only if M is quasitrivial. �

4. C r i t i c a l s e m i m o d u l e s ( A )

A semimodule M will be called 1-critical if it is faithful but none of proper sub-
semimodules and proper factorsemimodules of M is faithful.

4.1 Proposition. Let M be a finite faithful semimodule whose order |M| is minimal.
Then M is 1-critical.
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Proof. It is obvious. �

4.2 Corollary. If there is at least one finite faithful semimodule then there is at least
one finite 1-critical semimodule. �

4.3 Proposition. Let the semiring S be congruence-simple, finite and not left qua-
sitrivial. Then there is at least one finite 1-critical semimodule.

Proof. It follows from 3.2 that S S is faithful and we can use 4.2. �

A semimodule M will be called 2-critical if M is not quasitrivial, but all proper
subsemimodules and all proper factorsemimodules of M are quasitrivial.

4.4 Proposition. Let M be a finite non-quasitrivial semimodule whose order |M| is
minimal. Then M is 2-critical.

Proof. It is obvious. �

4.5 Corollary. If there is at least one finite non-quasitrivial semimodule then there is
at least one finite 2-critical semimodule. �

4.6 Proposition. Let S be a finite semiring. Then:
(i) If for all r, s ∈ S , r � s, there is at least one t ∈ S with rt � st then there is at least
one finite 1-critical semimodule.
(ii) If rt � st for some r, s, t ∈ S then there is at least one finite 2-critical semimodule.

Proof. (i) The left semimodule S S is faithful and we use 4.2.
(ii) The left semimodule S S is not quasitrivial and we use 4.5. �

4.7 Lemma. Let M be a semimodule and let N = {∑n
i=1 rixi | n ≥ 1, ri ∈ S , xi ∈ M }.

Then:
(i) N is a subsemimodule of M.
(ii) If M is minimal then either N = M or |N| = 1.
(iii) If N is faithful then the left semimodule S S is faithful.
(iv) If N is not quasitrivial then the left semimodule S S is not quasitrivial.
(v) N is quasitrivial if and only if M is almost quasitrivial.

Proof. It is easy. �

4.8 Construction. Let S be a semiring and α � S . Put T = S ∪{α} and α = 0T , where
α is additively neutral and multiplicatively absorbing in T . Then T becomes a semir-
ing. T is additively idempotent if and only if S is so. Similarly, T is commutative if
and only if S is commutative, T is finite if and only if S is finite, etc.

4.9 Construction. Let S be a semiring. Put R = S × {0, 1} and define an addition and
multiplication on R by the following rules: (a, 0) + (b, i) = (b, i) + (a, 0) = (a + b, i),
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(a, 1)+ (b, i) = (b, i)+ (a, 1) = (a+b, 1), (a, 0)(b, 0) = (ab, 0), (a, 0)(b, 1) = (ab+a, 0),
(a, 1)(b, 0) = (ab + b, 0) and (a, 1)(b, 1) = (ab + a + b, 1).

Clearly, the addition is both associative and commutative. As concerns the multipli-
cation, we have (a, 0)((b, 0)(c, 0)) = (abc, 0) = ((a, 0)(b, 0))(c, 0), (a, 0)((b, 0)(c, 1)) =
= (a, 0)(bc + b, 0) = (abc + ab, 0) = (ab, 0)(c, 1) = ((a, 0)(b, 0))(c, 1), (a, 0)
((b, 1)(c, 0)) = (a, 0)(bc + c, 0) = (abc + ac, 0) = (ab + a, 0)(c, 0) = ((a, 0)(b, 1))(c, 0),
(a, 1)((b, 0)(c, 0)) = (a, 1)(bc, 0) = (abc+bc, 0) = (ab+b, 0)(c, 0) = ((a, 1)(b, 0))(c, 0),
(a, 0)((b, 1)(c, 1)) = (a, 0)(bc + b + c, 1) = (abc + ab + ac + a, 0) = (ab + a, 0)(c, 1) =
= ((a, 0)(b, 1))(c, 1), (a, 1)((b, 0)(c, 1)) = (a, 1)(bc + b, 0) = (abc + ab + bc + b, 0) =
= (ab + b, 0)(c, 1) = ((a, 1)(b, 0))(c, 1), (a, 1)((b, 1)(c, 0)) = (a, 1)(bc + c, 0) = (abc +
+ ac + bc + c, 0) = (ab + a + b, 1)(c, 0) = ((a, 1)(b, 1))(c, 0) and (a, 1)((b, 1)(c, 1)) =
= (a, 1)(bc + b + c, 1) = (abc + ab + ac + bc + a + b + c, 1) = (ab + a + b, 1)(c, 1) =
= ((a, 1)(b, 1))(c, 1). We have checked that the multiplication is associative. Fur-
thermore, (a, 0)((b, 0) + (c, 0)) = (a, 0)(b + c, 0) = (ab + ac, 0) = (ab, 0) + (ac, 0) =
= (a, 0)(b, 0) + (a, 0)(c, 0), (a, 0)((b, 0) + (c, 1)) = (a, 0)(b + c, 1) = (ab + ac + a, 0) =
= (ab, 0) + (ac + a, 0) = (a, 0)(b, 0) + (a, 0)(c, 1), (a, 1)((b, 0) + (c, 0)) = (a, 1)(b +
+ c, 0) = (ab + ac + b + c, 0) = (ab + b, 0) + (ac + c, 0) + (a, 1)(b, 0) + (a, 1)(c, 0)
and (a, 1)((b, 1) + (c, 0)) = (a, 0)(b + c, 1) = (ab + ac + a + b + c, 1) = (ab + a +
+ b, 1)+(ac+c, 0) = (a, 1)(b, 1)+(a, 1)(c, 0). On the other hand, (a, 0)((b, 1)+(c, 1)) =
= (a, 0)(b+c, 1)+(ab+ac+a, 0) and (a, 0)(b, 1)+(a, 0)(c, 1) = (ab+a, 0)+(ac+a, 0) =
= (ab+ac+2a, 0), (a, 1)((b, 1)+ (c, 1)) = (a, 1)(b+ c, 1) = (ab+ac+a+b+ c, 1) and
(a, 1)(b, 1)+(a, 1)(c, 1) = (ab+a+b, 1)+(ac+a+c, 1) = (ab+ac+2a+b+c, 1). Con-
sequently, the algebraic structure R = R(+, ·) is a semiring if and only if ab+ac+2a =
= ab + ac + a and ab + ac + a + b + c = ab + ac + 2a + b + c for all a, b, c ∈ S . Of
course, these equations are satisfied if the semiring S is additively idempotent.

If 0S ∈ S then (0S , 0) = 0R is additively neutral in R. If oS ∈ S then (oS , 1) = oR

is additively absorbing in R. If 0S ∈ S and 0S is multiplicatively absorbing in S then
(0S , 1) = 1R is multiplicatively neutral in R. If w ∈ S is multiplicatively absorbing in
S then (w, 0) is multiplicatively absorbing in R. If S is additively idempotent then R
is so.

4.10 Proposition. Let S be an additively idempotent semiring. Then S is a subsemir-
ing of a semiring R such that:

(1) R is additively idempotent;
(2) 0R ∈ R, 0R is multiplicatively absorbing;
(3) 1R ∈ R;
(4) If oS ∈ S then oR ∈ R;
(5) If S is finite then |R| ≤ 2|S | + 2.

Proof. Combine 4.8 and 4.9. �

4.11 Proposition. Let a semiring S be a subsemiring of a semiring R such that 1R ∈ R.
Put Q = S ∪ (S + 1R) ∪ {1R}. Then Q is a subsemirign of R, 1R = 1Q ∈ Q and S is an
ideal of the semiring Q.
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Proof. It is easy. �

4.12 Proposition. Let S be a finite additively idempotent semiring. Then there is a
finite 1-critical semimodule M such that |M| ≤ 2|S | + 1.

Proof. By 4.10 and 4.11, S is a subsemiring of a finite additively idempotent
semiring Q such that |Q| ≤ 2|S | + 1 and 1Q ∈ Q. Of course, S Q is a faithful left
S -semimodule. �

4.13 Lemma. |S | = 1 if and only if there is a faithful quasitrivial semimodule.

Proof. It is obvious. �

4.14 Lemma. Asuume that |S | ≥ 2. Then every faithful 2-critical semimodule is
1-critical.

Proof. Use 4.13. �

5. C r i t i c a l s e m i m o d u l e s ( B )

Throughout this section, let S be a congruence-simple semiring.

5.1 Lemma. Let M be a semimodule. Then just one of the following two cases holds:
(1) M is faithful;
(2) M is quasitrivial.

Proof. Due to 3.8, at least one of the two cases is true. On the other hand, if M
were both faithful and quasitrivial then |S | = 1, a contradiction. �

5.2 Lemma. Assume that S is not left quasitrivial. Let M be a semimodule. Then just
one of the following two cases holds:

(1) M is faithful and not almost quasitrivial;
(2) M is quasitrivial.

Proof. Combine 5.1 nad 3.4. �

5.3 Proposition. A semimodule is 1-critical if and only if it is 2-critical.

Proof. This follows immediately from 5.1. �

A semimodule satisfying the equivalent conditions of 5.3 will be called critical.

5.4 Proposition. Assume that S is not left quasitrivial. The following conditions are
equivalent for a seminmodule M:

(i) M is critical.
(ii) M is not almost quasitrivial, but all proper subsemimodules and all proper

factorsemimodules of M are quasitrivial.
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(iii) M is not almost quasitrivial, but all proper subsemimodules and all proper
factorsemimodules of M are almost quasitrivial.

Proof. Combine 5.2 and 5.3. �

5.5 Proposition. Assume that S is not left quasitrivial. Let M be a critical semimod-
ule. Then:
(i) M is faithful and not almost quasitrivial.
(ii) M is congruence-simple.
(iii) R(M) = Q(M) = P(M) � M and M = S v for every v ∈ M \ P(M).
(iv) Every proper subsemimodule of M is id-quasitrivial and contained in P(M).
(v) Either P(M) = ∅ and M is strictly minimal or P(M) is the greatest proper sub-
semimodule of M.
(vi) M is minimal if and only if |P(M)| = 1.

Proof. M is faithful and not almost quasitrivial by 5.2. By 1.20, M is decent, i.e.
M = S v for every v ∈ M\R(M), and M is congruence-simple by 1.21. By 2.6, we have
Q(M) = P(M). Now, if N is a proper subsemimodule of M then N is quasitrivial, and
hence N ⊆ Q(M) = P(M) and N is id-quasitrivial. Since M is not almost quasitrivial,
we have R(M) � M and R(M) ⊆ P(M). Thus R(M) = Q(M) = P(M) and the rest is
clear. �

5.6 Lemma. Let M be a minimal semimodule that is congruence-simple and not
quasitrivial (see [1, 4.1]). Then M is critical.

Proof. It is easy. �

5.7 Lemma. Let M be a minimal semimodule that is not quasitrivial (see [1, 4.1]).
Then there is at least one congruence � on M such that the factorsemimodule M/� is
minimal, congruence-simple and critical.

Proof. Combine [1, 6.3] and 5.6. �

5.8 Lemma. Let M be an almost minimal semimodule that is congruence-simple and
|M| ≥ 3. Then M is critical.

Proof. Use [3, 1.1]. �

5.9 Lemma. Let M be an almost minimal semimodule such that |M| ≥ 3. Then
there is at least one congruence η of M such that the factorsemimodule M/η is almost
minimal, congruence-simple and critical.

Proof. Combine [3, 1.4] and 5.8. �
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6. A f e w o b s e r v a t i o n s

Let S be a semiring and M be a (left S -)semimodule. For all u, v ∈ M define
a relation αu,v on M by (a, b) ∈ αu,v if and only if {u, v} � {ra, rb} for every r ∈ S .

6.1 Lemma. (i) αu,v is symmetric.
(ii) If u � v then αu,v is reflexive.
(iii) If u = v then αu,u is reflexive if and only if u �

⋃
S a, a ∈ M.

Proof. (i) This follows immediately from the definition of the relation αu,v.
(ii) We have |{ra}| = 1 and |{u, v}| = 2.
(ii) This is obvious. �

6.2 Lemma. If (a, b) ∈ αu,v then (ra, rb) ∈ αu,v for every r ∈ S .

Proof. It is easy. �

6.3 Lemma. Assume that u � v and that the following two conditions are satisfied:
(a) u � M + N, where N = M \ {u};
(b) v � K + u, where K = M \ {v}.

Then (a + c, b + c) ∈ αu,v for all (a, b) ∈ αu,v and c ∈ M.

Proof. Let, on the contrary, u = r(a + c) and v = r(b + c) for some r ∈ S . Then
ra + rc = u and, using (a), we get ra = u = rc. Further, rb + u = rb + rc = v, and
hence rb = v by (b). Thus ra = u and rb = v, (u, v) ∈ αu,v, a contradiction. �

Let βu,v denote the transitive closure of αu,v. Clearly, βu,v is symmetric.

6.4 Lemma. If u � v then βu,v is an equivalence.

Proof. Use 6.1(i),(ii). �

6.5 Lemma. If (a, b) ∈ βu,v then (ra, rb) ∈ βu,v for every r ∈ S .

Proof. Use 6.2. �

6.6 Lemma. Assume that u � v and the the conditions 6.3(a),(b) are satisfied. Then
βu,v is a congruence of the semimodule M. In particular, if M is congruence-simple
then either αu,v = βu,v = idM or βu,v = M × M.

Proof. Use 6.4, 6.3 and 6.5. �

6.7 Lemma. Assume u � v. The following conditions are equivalent:
(i) αu,v = idM.

(ii) βu,v = idM.
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(iii) For all a, b ∈ M, a � b, there is at least one r ∈ S such that either ra = u,
rb = v or ra = v, rb = u.

Proof. It is easy. �

6.8 Lemma. Asuume that M is idempotent and that u � u + v = v. If a, b ∈ M are
such that a + b = b and (a, b) � αu,v then ra = u and rb = v for at least one r ∈ S .

Proof. We have {u, v} = {ra, rb} for some r ∈ S . If ra = v then rb = u and
ra = v = u + v = rb + ra = r(b + a) = rb = u. Thus u = v, a contradiction. �

6.9 Lemma. Assume that u = 0M and 0M � N + N, where N = M \ {0M}. Then the
conditions 6.3(a),(b) are satisfied.

Proof. First, if u = 0M = a + b for some a, b ∈ M then either a = 0M or b = 0M .
But then b = 0M or a = 0M . In both cases, we get a = 0M = b and 6.3(a) is true. The
condition 6.3(b) is clear. �

6.10 Lemma. Assume that M is idempotent and u = 0M. Then the conditions
6.3(a),(b) are satisfied for every v ∈ M.

Proof. It is easy to see that 0M � N + N, where N = M \ {0M} and 6.9 applies. �

6.11 Remark. Assume that M is idempotent and put x ≤ y iff y = x + y; then ≤
is a compatible relation of order on M. Now, it is clear that the condition 6.3(a) is
satisfied if and only if the element u is minimal in the ordered set M(≤).

If u � v then 6.3(b) is true. If u < v and v is irreducible then 6.3(b) is true as well.
Thus 6.3(b) is satisfied if and only if either u � v or u ≤ v and v � y + u for every
z ∈ M such that z < v.

6.12 Lemma. Assume that M is idempotent and u is minimal in M(≤). If either u � v,
or u < v and v is irreducible, then the conditions 6.3(a),(b) are satisfied.

Proof. See 6.11. �

6.13 Lemma. Assume that S u = {u}. If (u, b) ∈ αu,v then v � S b.

Proof. If v = rb for some r ∈ S then {u, v} = {ru, rb} and (u, b) � αu,v, a contra-
diction. �

6.14 Lemma. Assume that S v = {v}. If (a, v) ∈ αu,v then u � S a.

Proof. Similar to that of 6.13. �
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6.15 Lemma. Assume that S u = {u} and v ∈ S z for every z ∈ M \ {u}. If (u, a) ∈ βu,v

then a = u.

Proof. Assume a � u. Since (u, a) ∈ βu,v, there is b ∈ M with u � b and (u, b ∈
∈ αu,v. By 6.13, we have v � S b, a contradiction. �

6.16 Lemma. Assume that S v = {v} and u ∈ S z for every z ∈ M \ {v}. If (a, v) ∈ βu,v

then a = v.

Proof. Similar to that of 6.15. �

6.17 Proposition. Assume that M is idempotent and congruence-simple. Assume
further that u � v, u is minimal in M(≤), either u � v or u < v and v � x+ u for every
x < v and that at least one of the following two conditions is satisfied:

(1) S u = {u} and v ∈ S z for every z ∈ M \ {u};
(2) S v = {v} and u ∈ S z for every z ∈ M \ {v}.

Then:
(i) For all a, b ∈ M such that a � b there is at least one r ∈ S such that either ra = u,
rb = v or ra = v, rb = u.
(ii) If u < v then for all a, b ∈ M such that a < b there is at least one r ∈ S such that
ra = u and rb = v.

Proof. By 6.11 (see also 6.12), the conditions 6.3(a),(b) are satisfied. Now, by 6.6,
the relation βu,v is a congruence of the semimodule M. Using 6.15 or 6.16, we see that
(u, v) � βu,v, and so βu,v � M × M. Since M is congruence-simple, we get βu,v = idM .
Thus αu,v = idM as well and (i) follows from 6.7. As for (ii), if ru = b and rv = a
then ru = b = a + b = rv + ru = r(v + u) = rv = a, so that a = b, a contradiction. �

6.18 Proposition. Assume that M is idempotent, congruence-simple and that 0M ∈
∈ M. Assume further that v � 0M and at least one of the following two conditions is
satisfied:

(1) S 0M = {0M} and v ∈ S z for every z � 0M;
(2) S v = {v} and 0M ∈ S z for every z � v.

Then:
(i) For all a, b ∈ M, a � b, there is at least one r ∈ S such that either ra = 0M, rb = v
or ra = v, rb = 0M.
(ii) If a < b then there is at least one r ∈ S such that ra = 0M and rb = v.

Proof. Use 6.17, where u = 0M . �

6.19 Proposition. Assume that M is idempotent, congruence-simple and that oM ∈
∈ M. Assume further that u is minimal in M(≤), oM � x + u for every x � oM and
that at least one of the following two conditions is satisfied:

(1) S u = {u} and oM ∈ S z for every z � u;
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(2) S 0M = {oM} and u ∈ S z for every z � oM.
Then:
(i) For all a, b ∈ M such that a � b, there is at least one r ∈ S such that either ra = u,
rb = oM or ra = oM, rb = u.
(ii) If a < b then there is at least one r ∈ S such that ra = u and rb = oM.

Proof. Use 6.17, where v = oM . �

7. O b s e r v a t i o n s c o n t i n u e d

Let S be a semiring and M be an idempotent and congruence-simple (left S -)semi-
module.

7.1 Let u ∈ M be minimal in M(≤) and let v ∈ M be such that u < v and v � w+ u for
every w ∈ M, w < v. (Notice that these conditions are satisfied for u = 0M .)

7.1.1 Proposition. Assume that S u = {u} (i.e., u ∈ P(M)) and v ∈ S z for every
z ∈ M \ {u}). Then, for all a, b ∈ M such that b � a, there is at least one r ∈ S such
that ra = u and rb = v.

Proof. Since b � a, we have a < b and, by 6.17(ii), there is r ∈ S with ra = u and
r(a + b) = v. Now, v = r(a + b) = ra + rb = u + rb and rb ≤ v. According to our
assumptions, we get rb = v. �

7.1.2 Proposition. Assume that S u = {u} and v ∈ S z for every z � u. Let a ∈ M be
such that a � oM and the set Pa = { b | b � a } is finite. Then there is at least one r ∈ S
such that rb ≥ v for every b ∈ Pa and rc = u for every c ∈ M \ Pa.

Proof. Since a � 0M , the set Pa is non-empty. Of course, a ∈ M \ Pa and this set
is non-empty as well. By 7.1.1, for every b ∈ Pa there is rb ∈ S with rba = u and
rbb = v. Put r =

∑
rb, b ∈ Pa. Then ra =

∑
rba =

∑
u and, since u is minimal in

M(≤), it follows that rc = u. Finally, rb = rbb +
∑ · · · ≥ rbb = v. �

7.1.3 Corollary. Assume that S u = {u}, oM ∈ M and om ∈ S z for every z � u. Let
a ∈ M be such that a � oM and the set Pa is finite. Then there is at least one r ∈ S
such that rb = oM for every b ∈ Pa and rc = u for every c ∈ M \ Pa. �

7.1.4 Proposition. Assume that S u = {u}, oM ∈ M, oM ∈ S z for every z � u. Let
a ∈ M be such that a � oM and ther set Pa is finite. Then for every s ∈ S there is at
least one r ∈ S such that rb = soM for every b ∈ Pa and rc = u for every c ∈ M \ Pa.

Proof. This follows easily from 7.1.3. �
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7.2 Corollary. Assume that 0M ∈ M, oM ∈ M, S 0M = {0M} and oM ∈ S x for every
x � oM. Let a ∈ M be such that a � oM and the set Pa = { b | a + b � a } is finite.
Then there is r ∈ S such that rb = oM for every b ∈ Pa and rc = 0M for every
c ∈ M \ Pa. �

7.3 Corollary. Assume that 0M ∈ M, oM ∈ M, S 0M = {0M}, S oM = S and oM ∈ S x
for every x � 0M. Let a ∈ M be such that a � oM and the set Pa = { b | a + b � a }
is finite. Then for every w ∈ M there is r ∈ S such that rb = w for every b ∈ Pa and
rc = 0M for every c ∈ M \ Pa. �

7.4 Let u ∈ M be minimal in M(≤) and let v ∈ M be such that u < v and v � w+ u for
every w ∈ M, w < v. (Notice that these conditions are satisfied for u = 0M .)

7.4.1 Proposition. Assume that S v = {v} (i.e., v ∈ P(M) and u ∈ S z for every
z ∈ M \ {v}). Then, for all a, b, ∈ Msuch that b � a, there is at least one r ∈ S such
that ra = u and rb = v.

Proof. It is the same as that of 7.1.1. �

7.4.2 Proposition. Assume that S v = {v} and u ∈ S z for every z � v. Let a ∈ M be
such that a � oM and the set Pa is finite. Then there is at least one r ∈ S such that
rb ≥ v for every b ∈ Pa and rc = u for every c ∈ M \ Pa.

Proof. Using 7.4.1, we can proceed in the same way as in the proof of 7.1.2. �

7.4.3 Corollary. Assume that oM ∈ M, S oM = {oM} and u ∈ S z for every z � oM. Let
a ∈ M be such that a � oM and the set Pa is finite. Then there is at least one r ∈ S
such that rb = oM for every b ∈ Pa and rc = u for every c ∈ M \ Pa. �

7.4.4 Proposition. Assume that oM ∈ M, S oM = {oM} and u ∈ S z for every z � oM.
Let a ∈ M be such that a � oM and the set Pa is finite. Then for every s ∈ S there is at
least one r ∈ S such that rb = oM for every b ∈ Pa and rc = su for every c ∈ M \ Pa.

Proof. This follows easily from 7.4.3. �

7.5 Corollary. Assume that 0M ∈ M, oM ∈ M, S oM = {oM} and 0M ∈ S x for every
x � oM. Let a ∈ M be such that a � oM and the set Pa = { b | a + b � a } is finite.
Then there is r ∈ S such that rb = oM for every b ∈ Pa and rc = 0M for every
c ∈ M \ Pa. �

7.6 Corollary. Assume that 0M ∈ M, oM ∈ M, S oM = {oM}, S 0M = M and 0M ∈ S x
for every x � oM. Let a ∈ M be such that a � oM and the set Pa = { b | a + b � a }
is finite. Then for every w ∈ M there is r ∈ S such that rb = w for every b ∈ Pa and
rc = 0M for every c ∈ M \ Pa. �
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[2] K. Al-Zoubi, T. Kepka and P. Němec: Quasitrivial semimodules II, Acta Univ. Carolinae Math. Phys.
49/1 (2008), 17–24.
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