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IDEAL-SIMPLE SEMIRINGS III

TOMAS KEPKA, PETR NEMEC
Praha

Received April 25, 2012

Ideal-simple endomorphism semirings of semilattices are investigated.

This note is an immediate continuation of [2] and [3].

1. Semilattices

In this section, let M (= M(+)) be a semilattice (i.e., an idempotent commutative
semigroup). Setting a < b ift b € § + a, we get a compatible ordering and a + b =
= sup(a, b) for all a,b € M. An element w is the smallest (greatest, resp.) element
iff w is neutral (absorbing, resp.). We denote this factby w = 0 = 0y, (w = 1 = 1y,
resp.).

A non-empty subset N of M is an ideal of M if M + N C N. Such an ideal is called
primeifa+b ¢ N foralla,b € M\ N (i.e., either N = M or M \ N is a subsemilattice
of M). We denote by P(M) the set of proper prime ideals of M.

Foreverya € M, theset{x e M|a < x}is anideal of M. Theset{ye M|a <y}
is either empty or an ideal.

A one-element set {w} is an ideal iff w = 1,,. This ideal is prime iff 1 is irreducible.
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For every a € M, the set Q, = {z € M|z £ a} is either empty or a prime ideal of
M. Anyway, Q, = 0 iff a = 1),. Moreover, a ¢ Q,, and hence Q, € P(M) for every
a# 1y. Noticethat M\ Q, ={ue M|u<a}.

1.1 Lemma. Let a € M and let I be an ideal of M such that a ¢ 1. Then I C Q,.
Proof. Tt is obvious. O
1.2 Lemma.. Let € P(M). Then P = NQ,, a€ M\ P.
Proof. Use 1.1. O

1.3 Lemma. (i) O, C O, iff b < a.
(i) Qs = Op iff a=D.

Proof. Tt is easy. O

1.4 Lemma. Let P € P(M), Then:
@) If P = Q, for some a € M, a # 1y, then u < a for everyu € M \ P.
(i) Ifa € M\ P is such that u < a for everyu € M \ P then P = Q,.

Proof. Use 1.2 and 1.3. O
1.5 Corollary. Let P € P(M) be such that the set M \ P is finite. Then P = Q,, where
a=Yx,xe M\P. O
1.6 Corollary. If M is finite then P(M) = { Q,|a € M, a # 1 }. O

2. Endomorphisms of semilattices (a)

Let M be a semilattice and E = End(M) the full endomorphism semiring of M.

2.1 Proposition. (i) The semiring E is additively idempotent and the identity auto-
morphism idy; is the multiplicatively neutral element of E.

(1) E has an additively neutral element if and only if Oyy € M. Then the constant
endomorphism x +— 0 is the additively neutral element and it is left multiplicatively
absorbing.

(iii) E has an additively absorbing element if and only if 1y € M. Then the constant
endomorphism x w— 1 is the additively absorbing element and it is left mulitplica-
tively absorbing.

@iv) If M| > 2 then E has no right multiplicatively absorbing element.

(v) E is non-trivial iff M is so.

Proof. 1t si easy. O
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Foreveryn > 1,1et R™ = { f € E||f(M)| < n}and R“> = UR™, n > 1. For every
1 < n < w, let E™ be the subsemiring of E generated by R™.
2.2 Proposition. (i) RV = EDV c E® c E® c ... c EW = R,
(ii) All the semirings EV, E@,. .. E“ are ideals of the semiring E.

Proof. 1t is easy. O

2.3 Proposition. The following conditions are equivalent:
(1) M is finite.
(ii) E is finite.
(iii) E“ = E.
@(iv) idy € E@.
(v) E"™ = E for some m > 1.

Proof. 1t is easy. O
2.4 Proposition. E® = {Y" film>1,f € R™ } forevery 1 <n < w.

Proof. Tt is easy. O
For all a, x € M, let o,(x) = a; we have o, € E(l).
2.5 Proposition. (i) EV =RV = {0, |ae M}.

() oy +0p =0gyp foralla,b e M.
(iii) oy f = 04 and fo, = op@ foralla € M and f € E.

Proof. 1t is easy. O

2.6 Corollary. (i) The semiring EV is ideal-simple if and only if |M| > 2. Then E®V
is left-ideal-free.
(i) The semiring EV is right-ideal-simple if and only if M| = 2. O

2.7 Lemma. The following conditions are equivalent.
1 M| =1.
(ii) idy € ED.
(iii) [ED| = 1.
(iv) EV = E.
(v) EV = E™ for some n > 2.

Proof. 1t is obvious. O
2.8 Proposition. The full endomorphism semiring E is never ideal-simple.

Proof. If E is non-trivial then |M| > 2 and EV is a proper non-trivial ideal of E
(combine 2.2 and 2.7). O
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2.9 Proposition. Let a,b € M, a < b, and let P € P(M). Define a transformation
© = Qup.p Of M by o(P) = {b} and o(M \ P) = {a}. Then o € 1_3(2) and:

(i) o(M) = {a,b} and ¢ € E®.

@) Ifa = b then o = oy,.

(ii1) If 0 € M then o(0) = 0 iff a = 0.

@v) If1 € M then o(1) = 1 iff b = 1.

W) If0,1 € M then o(0) =0ando(1) =1 iffa=0and b = 1.

Proof. It is easy. O

2.10 Proposition. Let f € R®. Then:

(1) There are a,b € M such that f(M) = {a,b} and a < b.

() P={xe M| f(x)=>b}isaprimeideal and P € P(M) iffa # b.

(iii) Ifa # b then f = 0, p.p.

(iv) Ifa = b and |M| > 2 then P(M) # 0 and f = 0y = 04,40 for any Q € P(M).

Proof. Tt is easy. O

2.11 Corollary. Let M| > 2. Then P(M) + 0 and B(z) ={ospprla,b e M,a < b,P e
€ P(M)). o

2.12 Propostion. The semiring E® is never ideal-simple.
Proof. We can proceed similarly as in the proof of 2.8. O

213 Lemma. Let a,b € M, a < b, and let P € P(M) and f € E. Then fo,pp =
= Of(ay.fo),p and we put g = 0appf, K ={x € M|f(x) ¢ P}and L ={x € M| f(x) €
€ P}. Now:

O)M=KULand KNL=40.

() IfK =M (or L=0) then g = 04 = 04.4.p-

(i) If K =0 (or L= M) then g = o) = Opp.p-

V) IfK #0# Lthen L€ P(M)and g = 04p.1-

Proof. It is easy. O

For every triple a, b, ¢ of elements from M, where a < b, denote by o, the
transformation of M defined by 0, .(x) = a if x < ¢ and g, (x) = b otherwise.

2.14 Lemma. Let a,b,c € M, a < b. If ¢ # 1y then 0upc = Oup,0,- If ¢ = 1y then
Qab,c = Oq-

Proof. It is obvious. O
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Denote by F the subsemiring of E generated by all the endomorphisms 0,4,
a,b,ce M,a <b.
2.15 Proposition. (i) EV ¢ F ¢ E®.
(i) F = EV iff IM] = 1.

Proof. 1t is easy. O
2.16 Proposition. The semiring F is never ideal-simple.
Proof. Use 2.15. |

2.17 Proposition. Let E be an ideal-simple subsemiring of E, EV = En EY and
E® = ENE®. Then:

Q) If EV # 0 then EWV is an ideal of E.

(i) If [EV| = 1 then EV = {o,) for some v € M and f(v) = v for every f € E.

(iii) If [EV| > 2 then E = EV ¢ EW,

(iv) If|[E®| > 2 then E = E® C E®.

Proof. 1t is easy. O

2.18 Lemma. Let a,b,c € M, a < b, and let f € E. Then:

() fOub.ec = Ofa)f)c-

(1) Oapef = g where g = o, if f(M) < ¢, g = o} if f(x) £ ¢ for every x € M and
g=0abr O+ L={xeM|f(x)%c}+ M (then L € P(M)).

Proof. Tt is easy. O

2.19 Lemma. Let a;,ay,b1,by,c1,¢2 € M, a) < by, ay < by. Put h = 04, p, ;002,05
Then:

(1) If by < ¢ then h = oy,.

(1) If by £ ¢y and ay < ¢y then h = 04, p, c,-

(iii) If ay £ ¢ then h = o,.

Proof. Tt is easy. O

2.20 Lemma. Let aj,az,b1,by,c1,c0 € M, ay < by, ap < by. Let f € E and
k = Qal,bl,clfgdz,bz,cz' Then"

(1) If f(b2) < ¢y then k = o,.

(1) If f(b2) £ c1 and f(ax) < ¢ then k = 04, p, ¢, -

(iii) If f(a2) £ c1 then k = o7,

Proof. Tt follows from 2.19, since k = 04, p,.c,0 f(a).f(b2). f(c2)- O

35



2.21 Lemma. (cf. 2.14) Let a,b € M, a < b, and let P € P(M). The following
conditions are equivalent:
(1) Qab.p = Qab.c for some c € M.
(1) Qup.p = Oap. for some c € M, ¢ # 1.
(iii) Thereis c € M suchthat M\ P ={xe M|x <c}.
(iv) The set M \ P has the greatest element (if M \ P is finite then ), M \ P is the
greatest element).

Proof. 1tis easy. O

2.22 Lemma. Let ay,a>,by,by,c € M be such that a; < by, a, < by, and let P €
€ P(M). Put g = 04, b,,POaypr.c- 1hen:

(1) If ay € P then g = o7,

(i) If by ¢ P then g = 0,.

(iii) If ay ¢ P and by € P then g = 04, p -

Proof. Use 2.13. m|

2.23 Proposition. (i) F is a left ideal of E.

(i) F ={ XL Qb In 2 1, aj, b, c; € M,a; < b; }.
(iii) E® is generated by F as an ideal of itself.

(iv) If M is finite then F = E®.

Proof. (i) Use 2.18(1).
(i1) Use 2.19.
(iii) We have 04p.40a,p.p = Qap.p bY 2.13.
(iv) Use 2.21. O

2.24 Remark. (i) Let aqp € M and Ry = {x € M |ay < x}. Then ay € Ry and Ry is an
ideal of M. Clearly, R is a proper ideal iff ag # 0p7. Similarly, Ry is a prime ideal iff
u+v+ag# u+vwhenever u,v € M are such that u + ag # u and v + ag # v (then ag
is irreducible). Now, if Ry € P(M) and a,b € M are such that a < b then g, g, = a if
a £ xand 0,5 r,(x) = bif ap < x.

(ii) Leta; € Mand Ry = {x € M|a; < x}. Clearly, a; ¢ Ry and if R; # () then R is a
proper ideal. If R, is a prime ideal and a, b € M are such thata < b then g, g, (x) = a
ifa; £ xand g, pr,(x) =bifa; < x.

2.25 Remark. The following results are proved in [1] ([1, 3.2, 3.3, 3.4, 4.2]).

(1) The full endomorphism semiring E (that is not ideal-simple by 2.3) is congruence-
simple if and only if 0y, 1)y € M and Oy, # 1.

(1) If M is finite then E is congruence-simple if and only if [M| > 2 and 0y, € M.
(ii1) The semiring F (that is not ideal-simple by 2.16) is congruence-simple if and
only if |M| > 2.

(iv) The following conditions are equivalent:
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(@) F=E.

(b) The semiring F has a left (right, resp.) multiplicatively neutral element.

(c) idy € F (idy € E?).

(d) M is finite, 0y € M and M is distributive as a lattice.
(v) Let [M| > 2. Proceeding similarly as in the proof of [1,3.4], one can show
that the semiring E® is congruence-simple. If 0y, € M then all the semirings
E® E®, .. E“ are congruence-simple. If |[M| = 3 and 0y, ¢ M then E® = E is
not congruence-simple. The semiring E(! is ideal-simple and it is congruence-simple
if and only if |M| =

3. Endomorphisms of semilattices (b)

Let M be a semilattice such that 0 = Oy € M. Put E, = {f € E|f(0) = 0}.
Clearly, E,, is a subsemiring of the full endomorphisms semiring £ and idy € E,,. If
|M| > 2 then E(D ¢ E,, and hence E, # E.

3.1 Proposition. (i) The semiring E,, is additively idempotent and the identity auto-
morphism idy; is the multlpllcatzvely neutral element of E,,.

(i) The constant endomorphism oo € E, is both additively neutral and multiplica-
tively absorbing.

(iii) {oo} = EY N E, is an ideal of E,,.

Proof. Tt is easy. O

Forevery n > 1,1et R\ = { f € E,|1f(M)| < n} and we put R\ = UR”, n > 1.
Forevery 1 <n < w, let EE)") be the subsemiring of E, generated by Bg").
3.2 Proposition. (i) R\ = R N E, for everya < n < w.
(i) E E(”) E,NE™ foreveryl <n < w.

(111) {O—O} R(l) 0(1) - E(z) C E(3) . C E(w) — R(O))
(iv) All the semirings E E( ), Eéz), . E(‘”) are ideals of the semiring E,,.

Proof. 1tis easy (use 2.2 and the fact that if f, g € E are such that f + g € E, then
f.g€ E). O

3.3 Proposition. The following conditions are equivalent.
(1) M is finite.
(i) E, is finite.
L (@)
(iii) E;” = E,.
(iv) idy € EY”.
v) Ef)m) = E, for some m > 1.

Proof. It is easy. O
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3.4 Proposition. E(()”) ={Xr film=>1,fie B(()”) } forevery 1 <n < w.
Proof. 1tis easy. O
3.5 Lemma. R = {00} U {0ourla € M,P e P(M)).

Proof. Combine 2.9 and 2.10. O
In the sequel, we put o,p = ©o.p. We have gop = 0 and if |M| > 2 then
RY ={ourlac M,PeP(M)).
3.6 Corollary. Let |M| > 2. Then ES) = {7 04p, Im > 1,a; € M,Pi € P(M)). O
3.7 Lemma. Leta € M, P € P(M) and | € E,. Then fo,p = Of@).p and we put
g§=0aprf, K={xeM|f(x)¢ Pland L ={xe M| f(x) € P}. Then:
A)0eK, M=KULand KN L = 0.

) If K =M (or L =0) then g = oy.
(i) If K # M (or L # Q) then L € P(M) and g = 0,1

Proof. Use 2.13. O

Put 0, = 00ap for all a,b € M. That is, g,,(x) = 0if x < b and g,;(x) = a
otherwise. We have oo, = 0.

3.8 Lemma. Let a,b € M. If b # 1y then 04 = 004,0, = Qa0, If b = 1y then
Qabp = 00-
Proof. Use 2.14. O

Denote by F, the subsemiring of E, generated by all the endomorphisms o,
a,be M.

3.9 Proposition. (i) E} € F, ¢ EJ.
(i) Fy = Ey iff IM| = 1.

Proof. Tt is easy. O

3.10 Lemma. Leta,b € M and | € E,,. Then:
(1) fOap = Ofab-
(i) @upf = g where g = oo if f(M) <band g = ap if 0 # L = {x € M| f(x) £ b}
(then L € P(M)).
Proof. Use 2.18 (or 3.7). ]

3.11 Lemma. Let ay,az,b,by € M and h = 04, p,0a, »,- Then h = o if ay < by and
h = 04, 5, Otherwise.

Proof. Use 2.19 (or 3.10). m]
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3.12 Lemma. Let ay,a2,b1,b, € M, f € E;and k = 04, p, fOa,p,- Then k = o if
flaz) < by and k = 04, 1, otherwise.

Proof. Use 2.20 (or 3.11 and the fact that k = 04, 5,0 f(a,).5,)- O

3.13 Lemma. (cf. 3.8) Let a € M and P € P(M). The following conditions are
equivalent:
(1) Oa.p = Qap for some b € M.
(i1) Qu.p = Qap for some b e M, b # 1.
(iii) Thereis b € M suchthat M\ P ={xe M|x<b}.
(iv) The set M \ P has the greatest element (if M \ P is finite then ), M \ P is the
greatest element).

Proof. Use 2.21. O

3.14 Proposition. (i) F, is a left ideal of E,,.
() Fy={ XL Qap In>1, a;, b€ M}.

(iii) EBZ) is generated by F, as an ideal of itself.
(iv) If M is finite then F, = EE)Z).

Proof. (i) Use 3.10().
(i1) Use 3.11.

(iii) By 3.7, 0u00up = Oa.r-
(iv) See 3.13. .

3.15 Lemma. Let E be a subsemiring of E such that F\; C E. If I is a non-trivial
ideal of E then F, C I.

Proof. Since I is non-trivial, there is f € I, f # 0. Then f(u) = v # 0 for some
u,v € M. Of course, u # 0 as well. Now, g,» = 04.00vs = 0a0f0upr € I for all
a.be M.But g, = 04p by 3.11. O

3.16 Corollary. Let |M| > 2 and E be a subsemiring of E, such that F,, C E and E is
generated by F, as an ideal of itself. Then E is ideal-simple and E C Egz)' O

3.17 Proposition. Let |M| > 2. Then the semirings F, and Eéz) are ideal-simple.
Proof. Use 3.16 and 3.14(iii). ]

3.18 Lemma. Let E be a subsemiring of E, such that Eéz) C E. If I is a non-trivial
ideal of E then Eéz) cl

Proof. We have 0,0f0upr = 04.00v.p—0a.p, f() =v # 0 (see the proof of 3.15). O
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3.19 Corollary. Let [M| > 2 and E be a subsemiring of E, such that Eéz) Cc E.

Then E(Oz) is the smallest non-trivial ideal of E and E is ideal-simple if and only if

E=EY o
=0 -

3.20 Lemma. The semiring E, ( Ef)z), E,, resp.) has an additively absorbing element
iff 1yy € M (e.g., M finite).

Proof. Tt is easy. O

3.21 Remark. The following results are proved in [4]:
(i) The semiring E,, is congruence-simple if and only if 13, € M and Oy # 1.
(ii) The semiring F|, (EE)Z), resp.) is congruence-simple if and only if |M| > 2.
(iii) The following conditions are equivalent:
@ F, = E, (Ey) = Ey, resp.).
(b) The semiring F| (E(z), resp.) has a left (right, resp.) multiplicatively neutral
element.
(c) idy € F, (idy € E?, resp.).
(d) M is finite and distributive as a lattice.
3.22 Proposition. The semiring E,, is ideal-simple if and only if M is non-trivial finite
and distributive as a lattice.

Proof. First, assume that E is ideal-simple. Then |[M| > 2 and E|, (2) by
3.2(iv). Now, M is finite by 3.3 and F, = E{’ = E, by 3.14(iv) and 3.19. Conse-
quently, M is a distributive lattice by 3.21 (iii).

Conversely, assume that M is a finite distributive lattice. Then E, = F, and 3.17
applies. O

3.23 Remark. Assume that M is finite and not distributive as a lattice. Then |M| =
=m>5and E, = Eg”). By 3.22, Ef)m) is not ideal-simple.

4. Endomorphisms of semilattices (c)

Let M be a semilattice such that 1 = 1), € M. Put E, = {f € E|f(1) = 1}.
Clearly, E, is a subsemiring of the full endomorphism semmng Eandidy € E,. If
M| >2 then EV ¢ E,,andhence E, # E.

4.1 Proposition. (i) The semiring E, is additively idempotent and the identuty auto-
morphism idy is the multiplicatively neutral element of E .

(ii) The constant endomorphism oy € E, is bi-absorbing.

(iii) {0y} = E(l) NE, isanideal of E,.

Proof. 1tis easy. O
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Forevery n > 1,1et R = { f € E,||f(M)| < n} and we put R = UR™, n > 1.
Forevery | <n < w,letE (1") be the subsemlrmg of E, generated by B(l”).

4.2 Proposition. (i) B(l") =R"NE, foreveryl <n<w.

(i) E(”) EiNE™ foreveryl <n < w.

(i) o1} = R = EV cE2) c EY ¢ ... c E/ = RV,

(iv) All the subsemzrings E(ll), E(lz), ey E(l‘“) are ideals of the semiring E,.

Proof. Everything is easy (use 2.2), nevertheless (ii) deserves a short proof (per-
haps).

Clearly, E\” € E, N E™. On the other hand, if f € E, N E® then f = Y, f;,
f; € R™. Now, define f; by fi(x) = f(x) for x # 1 and f;(1) = 1. One sees easily that
fieR™ and f = 3, f.. Thus f € E. o

4.3 Proposition. The following conditions are equivalent:
(1) M is finite.
(i) E (1 z)'s finite.
R
(iii) E¥ = E,.
(iv) idy € E.
(v) E™ = E, for some m > 1.

Proof. It is easy. O
4.4 Propostion. E(") (X, film>1, fi e R( )}forevery l1<n<w.

Proof. Tt is easy. O
4.5 Lemma. R” = {0} U {041 p|la € M,P € P(M)}.

Proof. Combine 2.9 and 2.10. |

In the sequel, we put 7,p = ©4,1p. We have 71p = o and if |[M| > 2 then
RY ={t,plac M, PeP(M)).

4.6 Corollary. Let |M| > 2. Then E® = {3 7, p,lm > 1,a; € M,P; € P(M)}. O
4.7 Lemma. Leta € M, P € P(M) and f € E,. Then ft,p = Tfa),p and we put
g=Tapf  K={xeM|f(x)¢ Pland L={xe M| f(x) € P}. Then:
i)leLM=KULand KNL=0.

@) IfL=M (or K =0) then g = 0.

(i) If L+ M (or K #0)the L€ P(M)and g = 7,.

Proof. Use 2.13. o
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Put 7,5 = 0415 forall a,b € M, b # 1. Thatis, 7,5(x) = aif x < band 7,), = 1
otherwise.

4.8 Lemma. Leta,b € M, b # 1. Then t,), = 04,0, = Ta,0,-

Proof. Use 2.14. m|

Denote by F, the subsemiring of E, generated by all the endomorphisms 7,
a,be M,b#1(F, ={o}if M| =1).
4.9 Proposition. (i) E(ll) CF, C E(lz).
(i) F, = E{V iff |M| = 1.

Proof. Tt is obvious. O

4.10 Lemma. Leta,b e M, b # 1, and f € E,. Then:

@) fTap = Tra.b-
(1) Tapf = g where g = o if f(x) £ b forevery x € M and g = 7,1 if L = {x €
eEM|f(x)£b}+ M.

Proof. Use 2.18 (or 4.7) O

4.11 Lemma. Let a;,a,,b,b, € M, by # 1 # by, and h = Tay.by, Tas,by- Then h = Ta,.by
ifa, < by and h = 0| otherwise.

Proof. Use 2.19 (or 4.10). O

4.12 Lemma. Let a1,a2,b1,b2 € M’ bl #1+ bz? f € El and k = Ta],b]fTaz,bz. Then
k =745, if f(a2) < by and k = oy otherwise.

Proof. Use 2.20 (or 4.11 and the fact that k = 74, 5, T f(4,).5,)- O

4.13 Lemma. (cf. 4.8) Let a € M and P € P(M). The following conditions are
equivalent:
(1) Tap = Tap for someb e M, b # 1.
(i1) Thereisb € M suchthat M\ P={xe M|x<b}.
(iii) The set M \ P has the greatest elemeng (if M \ P is finite then ), M \ P is the
greatest element).

Proof. Use 2.21. O

4.14 Proposition. (i) I, is a left ideal of E .
(i) F, ={ XL Tap|n=1,a,b€ M,b; #1}.
(ii1) Elz) is generated by F | as an ideal of itself.
(iii) If M is finite then F, = EV.
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Proof. (i) Use 4.10(i).
(i) Use 4.11.
(iii) By 4.7, TupTap = Tap foralla,b € M, b # 1, P € P(M).
(iv) See 4.13. o

4.15 Lemma. Let E be a subsemiring of E, such that F| C E. If I is a non-trivial
ideal of E then F| C I.

Proof. Since I is non-trivial, there is f € I, f # o;. Then f(u) = v # 1 for some
u,v € M. Of course, u # 1 as well. Now, g, = TavTvp = TayfTuy € I for all
a,be M,b#1.Butg,, =1, by4.11. ]

4.16 Corollary. Let |[M| > 2 and E be a subsemiring of E such that F| C E and E is
generated by F | as an ideal of itself. Then E is ideal-simple and E C E(lz). O

4.17 Proposition. Let [M| > 2. Then the semirings F | and E(12) are ideal-simple.
Proof. Use 4.16 and 4.14(iii). O

4.18 Lemma. Let E be a subsemiring of E, such that E(lz) C E. If I is a non-trivial
ideal of E then E(lz) crL

Proof. We have 7., ft,p = Ta,Tvp = Tap, f(u) = v # 1 (see the proof of 4.15).
O

4.19 Corollary. Let [M| > 2 and E be a subsemiring of E, such that E(lz) C E.
Then E(lz) is the smallest non-trivial ideal of E and E is ideal-simple if and only if
E=E?. O

4.20 Lemma. (i) The semiring E, ( E(IQ), resp.) has an additively neutral element iff
Oy € M and the element 1 = 1y is irreducible (if |[M| > 2 then 7o 1y is the additively
neutral element.

(ii) The semiring F, has an additively neutral element iff either M| = 1 or M| > 2
and the set M \ {1} has the greatest element (if w is that element then 7y,, is the
additively neutral element of I, ).

Proof. Assume that |[M| > 2. Now, let f € F, be such that f + 7, = 7, for all
a,be M,b # 1. Then 0y € M and f(x) = 0 for every x € M, x # 1.

Next, assume that 0y, € M and define a transformationa of M by a(1) = 1 and
a(x) = 0 for every x # 1. Then a € E, iff 1 is irreducible. Then @ = 7). The rest is
clear. O
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4.21 Example. Put M = w+1 = {0,1,...,w}. Then 0 = 0y, w = 1, and the
semiring £ (]2) has an additively neutral element by 4.10. On the other hand, F', has no
additively neutral element.

4.22 Lemma. Ifidy € E(lz) then|M| < 2.

Proof. Assume |[M| > 2. Thenidy = 3 7,4.p, and M \ {1} = M \ UP;, UP; = {1}
and P; = {1}. Furthermore, a; € M \ {1} and M \ {1} = {3 @;}. Thus |[M| = 2. m]

4.23 Corollary. F, = E, (E” = E,, resp.) if and only if M| < 2. o

4.24 Corollary. The semiring E, is ideal-simple if and only if |M| = 2 (then |E,|
=2). m

5. Endomorphisms of semilattices (d)

Let M be a semilattice such that 0 = 0yy € M, 1 = 1)y € M and O # 1. Put
E, ={f € E|f(0) =0andf(1) = 1}. Clearly, Ey; is a subsemiring of the full
endomorphism semiring £ and idy € E,,. If [M| = 2 then E;; = {idy/}. Furthermore,

5.1 Proposition. The semiring E,,, is additively idempotent and the identity automor-
phism idyy is the multiplicatively neutral element of E),.

Proof. 1tis easy. O

For every n > 1, let Ry’ =){f € Ey, |1f(M)] < n} and we put R = URY, n > 1.

For every 2 < n < w, let Egl be the subsemiring of E,, generated by Eg;) (we have
R\ = 0)
Zo1 .
5.2 Proposition. (i) R = R™ N E, for every | <n < w.
(ii) Eg? = Ey NE™ forevery2 <n < w.
_ p 2 (3) () _ pw)
(i) 0 =Ry CEgy CE; S CEy =Ry

(iv) All the subsemirings Egzl), Esl), ... ,Eg‘l)) are ideals of the semiring E,.

Proof. Use 4.2. O
5.3 Proposition. The following conditions are equivalent:

(1) M is finite.
(i) E,, is finite.

(iii) E\ = 5(0%.
L >
(iv) idy € E’,

(v) Eg:') = E,, for some m > 2.
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Proof. It is easy. O
5.4 Proposition. Ef)"l) ={X", film=>1,fie Eg’l) } for every2 < n < w.

Proof. Tt is easy. O
5.5 Lemma. R = {001 p|P € P(M)}.

Proof. Use 4.5. O
In the sequel we put Ap = g1 p for every P € P(M); Ap(P) = {1} and Ap(M \ P) =
= {0}. We have Ap = 01 p = Top.
5.6 Proposition. (i) Ej) = {1p|P € P(M)}.
(11) API + /lp2 = /1P|UP2 and /lpl/lpz = /lpszT all P\, P; € E(M)

Proof. 1t is easy. O

5.7 Corollary. The following conditions are equivalent:
O P
() Ej, is ideal-simple.
(i1) Eéz) is right ideal-free.
(i) |Ey/| = 2.
@iv) |M| = 3. O

5.8 Lemma. Let P € P(M) and f € E,,. Then fAp = Ap and we put g = Apf and
L={seM|f(s)eP}).ThenleL 0¢L LeP(M)andg = ;.

Proof. Itis easy. O

Put 4, = 00,1, forevery a € M, a # 1. That is, 4,(x) = 0if x < a and A,(x) = 1
otherwise. We have A, = 01, = To.

59 Lemma. Leta € M, a # 1. Then A, = 00,1,9, = Ao,

Proof. Tt is easy. O

Let F,, be the subsemiring of E,,, generated by all the endomorphisms 4,, a € M,
a#+l.

510 Lemma. (i) F), ={ X7 A In>1,a; € M,a; # 1}.
(1) Agdp = Ap forall a,b € M, a # 1 + b.

(iii) A, + A = Ag,ug, foralla,b € M, a # 1 + b.

iv) Y0y g, = Aug,, forall a; € M, a; # 1.

Proof. Itis easy. O

5.11 Corollary. The following conditions are equivalent:
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(i) F,, is ideal-simple.
(i) F, is right-ideal-free.
(i) |Fy,l = 2.
@iv) M| = 3. O

5.12 Proposition. The semiring E,, is never ideal-simple.

Proof. If E,, is ideal-simple then M is finite and |[M| > 3. Since Ef)zl) is a non-
trivial ideal of E,, we have E,, = ES and idy € E. But then lidy(M)| = 2 by
5.6(1), and hence |M| = 2, a contradiction. O
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