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This paper is motivated by the analysis of gene expression sets, especially by finding
differentially expressed gene sets between two phenotypes. Gene log2 expression levels
are highly correlated and, very likely, have approximately normal distribution. Therefore,
it seems reasonable to use two-sample Hotelling’s test for such data. We discover some
unexpected properties of the test making it different from the majority of tests previously
used for such data. It appears that the Hotelling’s test does not always reach maximal
power when all marginal distributions are different. For highly correlated data its maximal
power is attained when about a half of marginal distributions are essentially different. For
the case when the correlation coefficient is greater than 0.5 this test is more powerful if only
one marginal distribution is shifted, comparing to the case when all marginal distributions
are equally shifted. Moreover, when the correlation coefficient increases the power of
Hotelling’s test increases as well.

1. I n t r o d u c t i o n

In many situations statisticians need to test multidimensional hypotheses. In a lot
of cases components of observed random vectors are highly dependent, which may
change the properties of the tests used. One of the examples of such data is provided
by gene expression levels. Gene expressions are highly correlated between genes (see
for example [5]). Moreover, often the genes are investigated not just separately, but
also as a set of dependent genes. The most popular tests for gene sets are Hotelling’s
test, N-test and tests derived from marginal t-statistics. In the papers [1], [4], an
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approach to comparing these test in various situations was made. Our goal is not to
make another comparison, but rather to describe some interesting properties of the
Hotelling’s test which seems to be unexpected.

2. H o t e l l i n g ’ s t e s t

One of the most well known tests is t-test. Hotelling’s test is an multidimensional
extension of t-test. Similar to t-test, we can consider both one-sample and two-sample
Hotelling’s test. One-sample case deals with the hypothesis that the expected value of
a sample from multidimensional normal distribution is equal to some given vector. In
the two-sample case it deals with the hypothesis of the equality of expected values of
two samples from multidimensional normal distributions (with the equal covariance
structure). In this paper we will focus on the two-sample Hotelling’s test.

Suppose we have two independent samples (of sizes nx and ny, respectively) from
two n-dimensional normal distributions with identical covariance matrices equal to Σ.
In other words, we consider X1, . . . , Xnx as i.i.d random vectors having Nn(µx,Σ) and
Y1, . . . ,Yny as i.i.d random vectors having Nn(µy,Σ) (Xi and Yj are independent for all
i = 1, . . . , nx; j = 1, . . . , ny). For simplicity we assume that n < nx + ny − 1. Our goal
is to test the hypothesis H : µx = µy against alternative A : µx � µy. For this we use
Hotelling’s test based on the statistic

T 2 =
nxny

nx + ny
(X̄ − Ȳ)T S −1(X̄ − Ȳ), (1)

where X̄ = 1
nx

∑nx
i=1 Xi; Ȳ = 1

ny

∑ny

i=1 Yi and

S =
∑nx

i=1(Xi − X̄)(Xi − X̄)T +
∑ny

i=1(Yi − Ȳ)(Yi − Ȳ)T

nx + ny − 2
.

T 2 is related to the F-distribution by

nx + ny − n − 1
n(nx + ny − 2)

T 2 ∼ F(n, nx + ny − n − 1). (2)

For more details about Hotelling’s test see, for example, [3]. We made the assumption
n < nx + ny − 1 for two reasons. For n ≥ nx + ny − 1 the estimate S of Σ results in
an irregular matrix, so that S −1 does not exist and moreover numerator of (2) is non-
positive as well as the degree of freedom of the F-distribution. In such situations it is
possible to use some pseudo-inversion of S and in order to estimate p-value of H, we
can use permutations of (X1, . . . , Xnx , Y1, . . . ,Yny ).

3. H o t e l l i n g ’ s t e s t f o r s t r o n g l y d e p e n d e n t d a t a

Consider that we have two multidimensional samples and need to test the hypoth-
esis suggesting the equality of expected values in these two samples. Assume for
simplicity that all elements on the main diagonal of the covariance matrix Σ for both
samples are equal to 1 and all other elements are equal to ρ > 0, i.e.

Σ =



1 ρ ρ ... ρ
ρ 1 ρ ... ρ
... ... ... ... ...
ρ ... ... ρ 1


.

Further on, we assume that µx = (0, . . . , 0)T , but µy has first m elements equal to 1
and the others equal to 0, i.e.

µy =
(

1, . . . , 1︸��︷︷��︸
m

, 0, . . . , 0︸��︷︷��︸
n−m

)T
.

For large nx and ny the matrix Σ and its estimate S are approximately the same as well
as the differences between the expected values (µx−µy) and between the mean values
(X̄ − Ȳ). When dealing with real data, nx and ny might not be large enough, but for
easier insight to the problem we use the approximations S ≈ Σ and X̄ − Ȳ ≈ µx − µy.
In this case S −1 ≈ Σ−1, that is

S −1 ≈ Σ−1 =



α −β −β ... −β
−β α −β ... −β
... ... ... ... ...
−β ... ... −β α


,

where α = (1+(n−2)ρ)
(1−ρ)(1+(n−1)ρ) and β = ρ

(1−ρ)(1+(n−1)ρ) . For fixed nx and ny we can consider
the fraction nxny

nx+ny
= k of Hotelling’s statistic (1) as a normalizing constant. Let us

denote by T ∗2 Hotelling’s statistic with Σ−1 instead of S −1 and µx − µy instead of
X̄ − Ȳ divided by the constant k. Then T ∗2 is squared Mahalanobis distance of µx and
µy and it is given by

T 2/k ≈ T ∗2 = (µx − µy)TΣ−1(µx − µy)

=
(

1, ..., 1︸�︷︷�︸
m

, 0, ..., 0︸�︷︷�︸
n−m

)


α −β −β ... −β
−β α −β ... −β
... ... ... ... ...
−β ... ... −β α





1
...
1
0
...
0



= mα − (m2 − m)β =
m(1 + (n − 2)ρ) − m(m − 1)ρ

(1 − ρ)(1 + (n − 1)ρ)
=

m(1 + (n − m − 1)ρ)
(1 − ρ)(1 + (n − 1)ρ)

. (3)

Let us note that it does not matter if µy consists of ones and zeros or equals to a con-
stant a and zeros. In the latter case, squared distance T ∗2 would be multiplied by a2.
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Now we will work with T ∗2 and investigate its behavior.
If we changed m to m+1 (meaning that we add one more different marginal distri-

bution) we would expect that T ∗2 increases and that so does the power of Hotelling’s
test. We need to check if it is indeed the case. For better understanding let the number
of ones in µy be the index of T ∗2 (we will write it only when it is needed). Now we
change m to m + 1 = h and we have

T ∗2m+1 = T ∗2m + α − 2mβ.

If we expected that T ∗2 is an increasing function of m then α− 2mβ should be greater
then zero. But we have

α − 2mβ =
1 + (n − 2)ρ

(1 − ρ)(1 + (n − 1)ρ)
− 2mρ

(1 − ρ)(1 + (n − 1)ρ)
=

1 + (n − 2m − 2)ρ
(1 − ρ)(1 + (n − 1)ρ)

.

Since the denominator is greater than zero, then α − 2mβ > 0 only if 1
2m+2−n =

= 1
2h−n > ρ. It means that for not very small values of ρ’s and m > n

2 − 1 the square
Mahalanobis distance T ∗2 is a decreasing function of m. This means that maximal
power of Hotelling’s test (as a function of m) is not always attained for m = n but for
ρ’s which are not very small we have maximal power for m near n

2 . Some examples
of the behavior of T ∗2 as a function of m are illustrated in figure 1.

However, this issue is not the only one that is surprising about Hotelling’s test.
Now we look if T ∗21 is always lower than T ∗2n . It is the case when one different
marginal distribution influences more than all n different distributions. So we need to
compare α with nα − n(n − 1)β. We have

T ∗21 − T ∗2n = α − nα + n(n − 1)β = (n − 1)
(1 − 2ρ)

(1 − ρ)(1 + (n − 1)ρ)
.

So T ∗21 − T ∗2n < 0 only if ρ < 0.5. Therefore we can say that for ρ > 0.5 Hotelling’s
test has better power for alternative with only one marginal shift than for alternative
that all marginal distributions are equally shifted. It can be seen from figure 1 as well.
Moreover, T ∗2 is an increasing function of ρ, that may seem surprising as well.

4. H o t e l l i n g ’ s t e s t f o r t w o - d i m e n s i o n a l d a t a

Let generalize expected value µy to have components (a1, . . . , an). We are inter-
ested in for which µy ∈ Rn the squared Mahalanobis distance has the same value. For
some d > 0 we define the set

Ed = {µy = (a1, . . . , an); µT
y Σ
−1µy = d2}.

This set is created by iso-distance curves, i.e ellipsoids with center in (0, . . . , 0). Let
denote the eigenvalues of matrix Σ−1 by λ1, . . . , λn and the eigenvectors corresponding
to these eigenvalues by γ1, . . . , γn. Then the principal axes of Ed are in the direction

Figure 1. Plots of T ∗2 for n = 15, 25, 40; ρ = 0.1, 0.5, 0.9; and
m = 1, . . . , n. Notice: each plot is differently scaled!

of γi; i = 1, . . . , n and the half-lengths of the axes are given by
√

d2

λi
; i = 1, . . . , n.

In our case with Σ−1, the eigenvalues λ1 = . . . , λn−1 =
1

1−ρ and λn =
1

1+(n−1)ρ . The
eigenvector corresponding to the smallest eigenvalue λn is equal to γn = (1, . . . , 1).
Therefore squared Mahalanobis distance has the slowest increase in this direction.

Let us look at Hotelling’s test in the two-dimensional case. Some plots of
2-dimensional ellipsoids for different values of the correlation coefficient ρ are given
on figure 2. The squared Mahalanobis distance has the weakest increase in the di-
rection of a1 = a2, while the fastest increases is observed towards the direction of
a1 = −a2. For example, for ρ = 0.9 and d = α the principal axes are equal to 3.162

and 0.725. It means that for a1 = a2 =

√
3.1622

2 = 2.236 squared Mahalanobis dis-

tance is the same as for a1 = 1, a2 = 0 (or for a1 = −a2 =

√
0.7252

2 = 0.513 as
well). Hence, if there is only one marginal distribution shifted by one unit, then the
power of Hotelling’s test is expected to be the same as if both marginal distribution
were equally shifted (in the same direction) by 2.236 units (for the shift in opposite
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Figure 1. Plots of T ∗2 for n = 15, 25, 40; ρ = 0.1, 0.5, 0.9; and
m = 1, . . . , n. Notice: each plot is differently scaled!
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Figure 2. Plots of solutions of equation (??) for two-dimensional case
for ρ = 0.25;0.5;0.9. Notice: each plot is differently scaled!

direction it should be only 0.513 unit). These results are in contradiction with other
multidimensional tests. For example, consider the test based on marginal t-statistics.
The power of this test is higher if both distributions are shifted by the same amount
(both t-statistics are “large”, not depending on direction of shift) than if there was
only one marginal distribution shifted (one t-statistic is “near” zero).

5. T h e o r y a n d r e a l i t y

The analytical results obtained above should be verified by checking if actual
Hotelling’s test outcomes correspond to the analytical results regarding real data.
In this section we will compare the behavior of squared Mahalanobis distance T ∗2

with Hotelling’s statistic T 2. For large nx and ny we assumed that T ∗2 ≈ T 2/k,
where k = nxny

nx+ny
. Constant k changes as nx and ny change. It is reasonable to di-

vide Hotelling’s statistic T 2 by k instead of multiplying T ∗2 by k in order to be able
to compare how do T 2 and T ∗2 differ for various nx and ny.

In order to compare the actual results with the analytical ones, we did the follow-
ing simulations. All data were simulated from n-dimensional normal distributions.
We set the dimension n to be 10, 15 and n = 25. All simulations were performed for
three different values of the correlation coefficient ρ : ρ = 0.1, ρ = 0.5 and ρ = 0.9.
In order to compare the behavior of Hotelling’s test for various sizes of samples we
took three choices of nx and ny: nx = ny = n, nx = ny = 1.4n and nx = ny = 2.4n.
The value m which is the number of false marginal distributions varies from one to
n. The shift value for each of the different marginal distributions is set to one. The
squared Mahalanobis distance is calculated according to (3). Hotelling’s statistic is
estimated from 1000 simulations for each case (as the mean of T 2/k obtained from
the simulations).
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Figure 3. Comparisons of squared Mahalanobis distance T ∗2 and real
Hotelling’s statistic T 2/k for the dimension n = 10 15, 25 (from the top
to the bottom); for correlation coefficient ρ = 0.1, 0.5, 0.9 (from the left
to the right) and number of observations in each sample nx = ny = n
(denoted by ‘+’), nx = ny = 1.4n (denoted by ‘x’) and nx = ny = 2.4n
(denoted by ‘•’). Squared Mahalanobis distance T ∗2 is denoted by ‘◦’.
Number of different marginal distribution m is set from one to n. Notice:
each plot is differently scaled!

Plots of our simulated cases are shown on figure 3. We can see that for all sim-
ulated situations, the shapes squared Mahalanobis distance and Hotelling’s statistics
are similar. The only difference is in the heights of these curves. For small nx and
ny statistic T 2 has higher values than for large nx and ny. The reason for that stems
from the inaccurate estimates of the expected values and of the covariance matrix.
However, we observe that with the increase of nx and ny, statistic T 2/k goes to T ∗2

relatively fast. Therefore, the behavior of Hotelling’s test for real data is expected to
be very similar to the behavior of squared Mahalanobis distance T ∗2.
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relatively fast. Therefore, the behavior of Hotelling’s test for real data is expected to
be very similar to the behavior of squared Mahalanobis distance T ∗2.
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In previous section we saw that for the two-dimensional case the plotted shifts
with equal values of the power of theoretical Hotelling’s test form elliptic curves.
Hotelling’s statistics T 2 are random variables. Therefore, we can only estimate if
their expected values form elliptic curves when plotted. To check this we did fol-
lowing simulations. Instead of calculating the shifts for which Hotelling’s test has
equal powers, we took some points with coordinates (a1, a2) from the elliptic curves
observed for squared Mahalanobis distance. For each such point we did 1000 simula-
tions and calculated Hotelling’s statistic. We estimated the expected value ET 2/k as
the mean for these 1000 repetitions. We divided Hotelling’s statistics by k for better
understanding how fast these statistics go to T ∗2. We did this simulation for the values
of the correlation coefficient ρ = 0.3 and ρ = 0.9 and as the number of observations
in each sample we took nx = ny = 5, nx = ny = 10 and nx = ny = 20. Results of our
simulation are given in Table 1. We observe that estimated mean values of T 2/k are
not very different, that they go to T ∗2 and that their variance decreases with increas-
ing number of observations. Clearly, these points form elliptic curves. Hence, we can
claim that the real Hotelling’s test behaves very similar to the theoretical one and the
theory derived for the theoretical test holds for the real Hotelling’s test as well.

Table 1. Results of simulations of two-dimensional adjusted
Hotelling’s statistics T 2/k with ns = nx = ny observations for
each sample and correlation coefficient ρ. T ∗2 stands for squared
Mahalanobis distance and (a1, a2) is difference between expected
values µx − µy of these samples. On bottom line is the estimate of
variance of each column.

T ∗2 = 1.0989 ρ = 0.3 T ∗2 = 5.2632 ρ = 0.9

a1 a2 ns = 5 ns = 10 ns = 20 a1 a2 ns = 5 ns = 10 ns = 20

−0.84 0.35 3.12 1.74 1.35 −1.83 −1.05 9.58 6.72 5.96

−0.63 0.61 3.03 1.81 1.42 −1.38 −0.44 9.55 6.51 5.96

−0.42 0.79 3.04 1.82 1.39 −0.92 0.09 9.55 6.65 5.99

−0.21 0.92 3.00 1.75 1.42 −0.46 0.57 9.62 6.93 5.98

0.00 1.00 3.03 1.72 1.42 0.00 1.00 9.10 6.99 5.83

0.21 1.04 3.04 1.74 1.36 0.46 1.39 9.74 6.78 5.99

0.42 1.04 3.01 1.87 1.39 0.92 1.74 10.11 6.75 5.86

0.63 0.99 3.00 1.79 1.40 1.38 2.04 9.36 6.87 5.85

0.84 0.85 3.32 1.81 1.41 1.83 2.25 10.21 6.87 5.96

1.05 0.35 3.35 1.85 1.36 2.29 2.09 9.94 6.85 5.97

var: 0.0176 0.0025 0.0007 var: 0.1133 0.0202 0.0039

6. D i s c u s s i o n

In this paper we have discovered that two-sample Hotelling’s test (for testing the
equality of the expected values of two samples from multidimensional normal dis-
tribution with equal covariance structure) has some unexpected properties. At first
sight, one could expect that with a larger number of false marginal distributions the
power of this test increases. But we have discovered that this is not true in general.
For highly correlated and high dimensional data (such as data sets of gene expres-
sions) maximal power of Hotelling’s test is reached when only about one half of the
marginal distributions are shifted. We have found out that when the correlation inside
the sample is greater than 0.5, then the Hotelling’s test can have a better power if
only one marginal distribution is different, as opposed to the case when all marginal
hypotheses are false. Moreover, the power of Hotelling’s test increases for higher
correlations. That observation may seem somewhat unexpected as well. We have
investigated Hotelling’s test in detail in two-dimensional case. We have found that
properties of this test are much different from ones of the tests based on marginal
t-statistic. All reasonable tests based on marginal t-statistic do not depend on the di-
rection of the shift. But the power of Hotelling’s test increases very slowly if both of
the marginal distributions are equally shifted and increases much faster if marginal
distributions are shifted in opposite directions. Moreover, alternatives with equal val-
ues of the power form ellipsoids.
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