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The classical de Finetti theorem states that every symmetric measure on RN is an integral
convex combination of probability distributions of i.i.d sequences of random variables.
In this article we reprove the theorem as a corollary to what one may call the Condi-
tional de Finetti theorem: Given a symmetric sequence of random variables, there exists
a σ-algebra, on which are random variables conditionally independent and conditionally
identically distributed.

Once this result is established, we use general results on integral representation of
invariant measures to get related convexity statements. Especially, we prove that the ex-
tremal points of convex set of symmetric measures are exactly the distributions of the
sequences of i.i.d random variables.

1. I n t r o d u c t i o n

The integral representation form of the de Finetti theorem and related convexity
results were first established in general by Hewitt and Savage [3] in 1955. First they
characterize extremal points of symmetric measures as being the distributions of se-
quences of i.i.d random variables. After this the Krein - Milman theorem is applied
to prove the desired integral representation. Technically, the above procedure may be
characterized as a functional analytic one.

We suggest a more probabilistic proof of de Finetti theorem. We start with a con-
ditional form of the theorem (see Theorem 1.1) and apply it to get de Finetti repre-
sentation Theorem 2.1 directly. Finally, in Section 3, we are able to prove that the
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set of probability distributions of i.i.d sequences is exactly the set of extremal mea-
sures in the set of symmetric measures on RN. In addition the integral representation
in Theorem 2.1 is proved to be determined uniquely. The proof is supported by the
non-compact Choquet theory for convex sets of invariant measures.

Recall that symmetric measure is a probability measure on (RN,BN) invariant un-
der all finite permutations of coordinates. A symmetric sequence of random variables
is a sequence whose distribution is a symmetric measure.

Theorem 1.1 (Conditional de Finetti theorem) Let X1, X2, . . . be a symmetric se-
quence of random variables. Then there exists a σ-algebra F∞, on which are
X1, X2, . . . conditionally independent and conditionally identically disributed, i.e.

P[Xj ∈ Aj, 1 ≤ j ≤ n|F∞] =
n∏

j=1

P[Xj ∈ Aj|F∞] a.s.,

for A j ∈B(R), 1 ≤ j ≤ n, n ∈ N and

P[Xn ∈ A|F∞] = P[X1 ∈ A|F∞] a. s. , A ∈B(R), n ∈ N.

Proof. See [5]. �

Our goal is to use this theorem to produce a representation form of the de Finetti
theorem. We do so in Section 2, in which we also remind some used notations and
facts.

2. R e p r e s e n t a t i o n f o r m o f d e F i n e t t i t h e o r e m

Through the paper we shall denote (RN,BN) the space of all real sequences with
corresponding Borel σ-algebra and consider RN in the standart product topology. The
Borel σ-algebra on real line will be identified as B. If Xn converges in distribution

to X, we write Xn
D→ X. Given a metric space X, P(X) will mean the space of

all probability measures on X. On such space we work with the usual weak topology
and weak convergence of measures. The Borelσ-algebra generated by weak topology
will simply be denoted as B(P(X)).

For the sake of simplicity we denote I the set of all probability measures on BN

of the form PN, for some probability measure P on (R,B).

Theorem 2.1 (de Finetti theorem) Let µ be a symmetric measure on (RN,BN).
Then there exists a Borel probability measure R on B(P(RN)) that for every A ∈BN

holds

µ(A) =
∫

I

r(A) R(dr).

Our proof is in a need of some prerequisities.

Lemma 2.2 a) I =
{
Q ∈P(RN) : Q = FN, F ∈P(R)

}
is a weakly closed, hence

Borel set in P(RN).
b) Mapping g : P(R)→P(RN) defined by g(Q) = QN is continuous with respect

to weak convergence, hence Borel measurable as

g : (P(R),B(P(R)))→ (P(RN),B(P(RN))).

Proof. a) Because RN is a separable metric space, the weak topology is metrizable
(see [1] for example). So let a sequence of i.i.d random variables Xn = (X1

n , Xn,
2 , . . .)

converge to a sequence X = (X1, X2, . . .) in distribution. Because

Xn
D→ X on RN ⇐⇒ (X1

n , . . . , X
k
n)

D→ (X1, . . . , Xk) on Rk ∀k ∈ N (2.1)

(see Theorem 4.29 in [4], for example) we have to prove only that Xk = (X1, . . . , Xk) is
a vector of i.i.d random variables for arbitrary k ∈ N. As Xk

n converges in distribution
to Xk as n → ∞ for all k ∈ N, we verify that random variables Xk are identically
distributed. To prove that they are independent, simply compute the characteristic
function of a vector (X1

n , . . . , X
k
n) and let n→ ∞ to see that X1, . . . , Xk are independent

random variables.
b) Consider measures Qn and Q in P(R) such that Qn → Q weakly. It follows

by (2.1) applying the characteristic functions calculus again that QNn → QN weakly in
P(RN), which proves the statement (b). �

Lemma 2.3 Let X be a separable metric space. The mapping h : P(X) → R,
h(µ) = µ(B) is Borel measurable for every B ∈B(X).

Proof. We define a collection of sets

D =
{
B ∈B(X) : h(µ) = µ(B) is a measurable mapping

}
.

If µn ∈ B(X) converges weakly to µ ∈ B(X), Portmanteau theorem gets
lim sup µn(F) ≤ µ(F) for every closed set F. h is therefore an upper semi-continuous
function for closed sets and thus Borel measurable. Routine arguments reveal that
D is a Dynkin system and because closed sets generate B(P(X)), the lemma is
proved. �

Lemma 2.4 Let (Ω,A , P) be a probability space and ω→ νω a map Ω→P(R)
such that ω → νω(B) is a (A ,B(R)) – measurable map for all B ∈ B(R). Then
ω→ νω is a map measurable w.r.t the A and Borel σ-algebra of P(R).

The lemma states a known fact, we add a brief proof for the sake of completeness.

Proof. By assumption it follows that a mapping ω→
∫

f dνω is measurable for in-
dicator functions. Uniform approximation by simple functions ensures measurability
for all continuous bounded functions. P(R) is a separable space (see [1]). Hence, we
have to check the measurability only on a base of weak topology on P(R). The base
is formed by all finite intersections of the sets

{
ν : a <

∫
f dν < b

}
with b > a > 0

and f is a bounded continous function, which closes the proof together with the above
observation. �
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Proof of Theorem 2.1. Let µ be a symmetric measure and X = (X1, X2, . . .) a se-
quence whose distribution is µ. Further let D be a measurable rectangle in BN, i.e.
D =
∏n

k=1 Ai × RN, where Ai ∈B. Theorem 1.1 implies that

µ(D) = P [X1 ∈ A1, . . . , Xn ∈ An] =
∫
Ω

n∏
k=1

P [X1 ∈ Ak|F∞] dP.

According to Theorem 6.3 in [4] there is a regular version of the conditional prob-
ability distibution ν(.) = P[X1 ∈ .|F∞] that is a probability measure on (R,B) for
each ω ∈ Ω, the map ω→ νω(A) being a measurable map for all A ∈B. Hence,

∫
Ω

n∏
k=1

P [X1 ∈ Ak|F∞](ω) dP(ω) =
∫
Ω

n∏
k=1

νω(Ak) P(dω),

holds almost surely. Now, it follows by Lemma 2.3 and Lemma 2.4, denoting by p
the image of P w.r.t the measurable mapping ω→ νω, that

∫
Ω

n∏
k=1

νω(Ak) P(dω) =
∫

P(R)

n∏
k=1

ν(Ak) p(dν) =
∫

P(R)
νN(D) p(dν). (2.2)

As follows from Lemma 2.2 the map ν → νN is measurable, let R be an image of p
w.r.t this mapping, i. e. a Borel probability measure on I . By using Lemma 2.3,
Lemma 2.2 and (2.2) we conclude

µ(D) =
∫

P(R)
νN(D) p(dν) =

∫
I

r(D) R(dr).

All we have to do now is to define collection of sets

K =

{
B ∈BN : µ(B) =

∫
I

r(B) R(dr)
}
.

The above proof ensures that K includes measurable rectangles. They generate BN

and are closed under the finite intersection. It is easy to verify that K is a Dynkin
system, so the theorem is established. �

3. E x t r e m a l p o i n t s o f s y m m e t r i c m e a s u r e s

Consider a vector space of all signed finite measures on (RN,BN) and denote by
M the set of all symmetric measures. Obviously M is a convex set in this space. We
plan to apply Theorem 2.1 to prove

Theorem 3.1 The extremal points of the set of symmetric measures are exactly the
distributions of sequences of iid. random variables. In symbols, ext M = I .

Given a measurable space (T,T ) and a collection of measurable mappings R =
=
{
r : r : (T,T )→ (T,T )

}
we can define the concept of ergodic measure. In fact

there are two possible definitions of ergodicity and they are not equivalent in general

(see [6], page 84). An invariant measure µ on T is called strongly ergodic if the
following implication holds:

A ∈ T , µ(r−1A ∆ A) = 0 ∀r ∈ R ⇒ µ(A) = 1 or µ(A) = 1.

Measure µ is ergodic with respect to R, if it is R-invariant and trivial on all invariant
events A ∈ T . However, additional requirements imposed on R may force the
definitions to coincide.

Lemma 3.2 Let (T,T ) be a measurable space and R a collection of measurable
mappings on this space. If R forms a countable group with respect to the composition
of mappings then a measure µ on T is ergodic, if and only if it is strongly ergodic.

Proof. Obviously strong ergodicity implies ergodicity. To prove the converse, let
A ∈ T be such an event that µ(A ∆ r−1A) = 0 for all r ∈ R. We want to show
µ(A) = 0 or µ(A) = 1. By assumption, it suffices to find an invariant event B ∈ T
such as µ(A ∆ B) = 0. We put B = ∪∞k=1r−1

k A. A simple calculation reveals that
µ(A ∆ B) = 0. R is a countable group, therefore we also get that

r−1
n B = r−1

n ∪∞k=1 r−1
k A = ∪∞k=1(rk ◦ rn)−1A = B

holds for arbitrary n ∈ N. This means that B is invariant and the proof is completed.
�

To prove theorem 3.1 we apply two general results concerned with extremal points
of invariant measures and integral representation of invariant measures. Note that
every collection of invariant probability measures forms a convex set in the space of
finite signed measures.

Theorem 3.3 Let X be a collection of R-invariant probability measures on (T,T ).
Then

µ ∈ ext X ⇐⇒ µ is strongly ergodic w. r. t. R.

Proof. See [6], theorem 10.4. �

The first general theorems dealing with integral representation of invariant mea-
sures are probably due to Farell in [2]. Here we use for our purposes the version of
Choquet theorem for invariant measures proved in 1984 by Štěpán in [7].

Theorem 3.4 Let X be a complete and separable metric space, R a set of conti-
nous mappings r : X → X. Then for all µ R-invariant measures there is a unique
probability measure V on B(P(X)) such that

µ(A) =
∫

E

ν(A) V(dν), A ∈B(X),

where E denotes the set of all strongly ergodic measures with respect to R.

Proof. Apply Theorem 10 in [7] and recall that every finite measure on Polish
space is a Radon measure. �

math_11_2.indd   64 7.3.2012   22:23:31



65

(see [6], page 84). An invariant measure µ on T is called strongly ergodic if the
following implication holds:

A ∈ T , µ(r−1A ∆ A) = 0 ∀r ∈ R ⇒ µ(A) = 1 or µ(A) = 1.

Measure µ is ergodic with respect to R, if it is R-invariant and trivial on all invariant
events A ∈ T . However, additional requirements imposed on R may force the
definitions to coincide.

Lemma 3.2 Let (T,T ) be a measurable space and R a collection of measurable
mappings on this space. If R forms a countable group with respect to the composition
of mappings then a measure µ on T is ergodic, if and only if it is strongly ergodic.

Proof. Obviously strong ergodicity implies ergodicity. To prove the converse, let
A ∈ T be such an event that µ(A ∆ r−1A) = 0 for all r ∈ R. We want to show
µ(A) = 0 or µ(A) = 1. By assumption, it suffices to find an invariant event B ∈ T
such as µ(A ∆ B) = 0. We put B = ∪∞k=1r−1

k A. A simple calculation reveals that
µ(A ∆ B) = 0. R is a countable group, therefore we also get that

r−1
n B = r−1

n ∪∞k=1 r−1
k A = ∪∞k=1(rk ◦ rn)−1A = B

holds for arbitrary n ∈ N. This means that B is invariant and the proof is completed.
�

To prove theorem 3.1 we apply two general results concerned with extremal points
of invariant measures and integral representation of invariant measures. Note that
every collection of invariant probability measures forms a convex set in the space of
finite signed measures.

Theorem 3.3 Let X be a collection of R-invariant probability measures on (T,T ).
Then

µ ∈ ext X ⇐⇒ µ is strongly ergodic w. r. t. R.

Proof. See [6], theorem 10.4. �

The first general theorems dealing with integral representation of invariant mea-
sures are probably due to Farell in [2]. Here we use for our purposes the version of
Choquet theorem for invariant measures proved in 1984 by Štěpán in [7].
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Proof of Theorem 3.1. As finite premutations on RN obviously form a countable
group, it follows by Theorem 3.3 and Lemma 3.2 that extremal points of the set of
symmetric measures are ergodic measures w. r. t. finite permutations. Classical
Hewitt-Savage 0-1 law states that the distribution of the sequence of i.i.d random
variables is an ergodic measure, i. e. µ ∈ I ⇒ µ is ergodic. Every ergodic
measure ν has trivial integral representation by Dirac measure concetrated on ν. De
Finetti theorem 2.1 implies though that every ergodic measure may be expressed as an
integral average of the distributions from I . It is easy to see that a finite permutation
is a continous mapping, hence from the uniqueness contained in theorem 3.4 we get
the desired equality ext M = I . �
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[7] Štěpán, J.: A noncompact Choquet theorem, Commentationes Mathematicae Universitatis Caroli-

nae, 25 (1984), 73–89.

This paper is motivated by the analysis of gene expression sets, especially by finding
differentially expressed gene sets between two phenotypes. Gene log2 expression levels
are highly correlated and, very likely, have approximately normal distribution. Therefore,
it seems reasonable to use two-sample Hotelling’s test for such data. We discover some
unexpected properties of the test making it different from the majority of tests previously
used for such data. It appears that the Hotelling’s test does not always reach maximal
power when all marginal distributions are different. For highly correlated data its maximal
power is attained when about a half of marginal distributions are essentially different. For
the case when the correlation coefficient is greater than 0.5 this test is more powerful if only
one marginal distribution is shifted, comparing to the case when all marginal distributions
are equally shifted. Moreover, when the correlation coefficient increases the power of
Hotelling’s test increases as well.

1. I n t r o d u c t i o n

In many situations statisticians need to test multidimensional hypotheses. In a lot
of cases components of observed random vectors are highly dependent, which may
change the properties of the tests used. One of the examples of such data is provided
by gene expression levels. Gene expressions are highly correlated between genes (see
for example [5]). Moreover, often the genes are investigated not just separately, but
also as a set of dependent genes. The most popular tests for gene sets are Hotelling’s
test, N-test and tests derived from marginal t-statistics. In the papers [1], [4], an
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