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In the paper, commutative semigroups simple over their endomorphism semirings are in-
vestigated. In particular, commutative semigroups having just two fully invariant congru-
ences are classified into five basic types and each of these types is characterized.

Congruence-simple (universal) algebras (i.e., those possessing just two congruence
relations) appear as keystone in many algebraic structure theories, but not always.
Sometimes, the simple algebras are too many and difficult to handle and sometimes
they are quite few. The latter applies to commutative semigroups (abelian groups
included). Congruence-simple commutative semigroups are just two-element semi-
lattices, two-element constant semigroups and p-element cyclic groups, p being a
prime. All of these semigroups are finite and tame in many situations. Now, the
scenery becomes much wilder if we consider commutative semigroups that are sim-
ple over their automorphism groups (i.e., non-trivial commutative semigroups with-
out non-trivial invariant congruences). A few pieces of information concerning these
semigroups (let us call them amc-simple) can be found in [6] (but see also [7], [9],
[10], [11], [12], [14], [15], and [16]).
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In the finite case, we do not get much more. Namely, if A is a finite amc-simple
commutative semigroup then either A is simple (and then it is one of the semigroups
mentioned in the preceding paragraph) or A is a semilattice with at least three ele-
ments such thata+b =c+dforalla,b,c,d € A, a # b, ¢ # d. In the infinite case,
we get many others. Just one example: Put A = Z X Z (the set of ordered pairs of
integers) and (k, m) @ (I, n) = (min(k, [), min(m, n)) then A(®) becomes an amc-simple
semilattice (notice that A(&) is not a chain).

The aim of the present note is to investigate commutative semigroups that are
simple over their endomorphisms semirings (i.e., non-trivial commutative semigroups
without non-trivial fully invariant congruences). Some related results are available in
[4] and [5].

1. Basic notions

Throughout the paper, let A = A(+) be a commutative semigroup and £ =
= End(A(+)) be the full endomorphism semiring of A (clearly, E is a unitary semiring
and A is a left E-semimodule). Further, N denotes the set of positive integers, Ny is the
set of non-negative integers, Z is the set of integers, Q is the set of rational numbers,
R is the set of real numbers and R is the set of positive real numbers. As usual, 04
(04, resp.) will denote the neutral (absorbing, resp.) element of A and 04 ¢ A means
that A has no neutral element. If z ¢ A then Ag = A U {z} is a semigroup such that A
is a subsemigroup of Ag and x + z = x for all x € A (thus z = 04,). Further, for every
XCAandae A,weput Xo=XU{zlanda+ Xo ={a+ulue Xy} =(a+X)Ul{a}.
Fora € A, we denote E(a) = { f(a)| f € E}.

A subset I of A is an ideal if I # Qand A+ 1 C I (thenB; = (I xI)Uidy is a
congruence of A and the corresponding factor will be denoted by A/I). A congruence
r of A is said to be fully invariant if f(r) = {(f(a), f(b))|(a,b) € r} C r for every
f € E. Similarly, a subsemigroup B (an ideal I, resp.) of A is fully invariant if
f(B) € B(f(I) C 1, resp.) for every f € E. Now, we shall say that A is

— emc-simple if A has just two fully invariant congruences (then |A| > 2 and
ida, A X A are the congruences);

— ems-simple if |A| > 2 and |B| = 1 whenever B is a fully invariant subsemi-
group with B # A;

— emi-simple if |A| > 2 and |I| = 1 whenever [ is a fully invariant ideal of A
with I # A (if such an ideal I exists then I = {04}, i.e., A has just two fully
invariant ideals);

— a semilattice if it satisfies the identity 2x = x (i.e., A is idempotent);

— constantif [A+ Al =1 (G.e,x+y=x+2);

— zeropotent (or nil of class 2) if it satisfies the identity 2x = 3y (then 2a = o4
for every a € A;

38



— a nil-semigroup of class m € N, m > 2, if mx = (m + 1)y (then ma = o4 for
every a € A;

— anil-semigroup if 04 € A and for every a € A there is m € N with ma = oy;

— cancellative if a + b = a + ¢ implies b = c;

— archimedean if A/(A + a) is a nil-semigroup for every a € A (then A/I is
a nil-semigroup for every ideal I);

— strongly archimedean if it is archimedean, cancellative and not a group.

For every n € N, the transform ¢, = ¢, 4 defined by ¢,(a) = na for every a € A, is
an endomorphism of A. Hence @, : N — E, @(n) = ¢, is a unitary homomorphism
of semirings.

Now, let r be a fully invariant congruence of A, 7 : A — A/r be the natural
projection and denote m(a) by a/r. For every f € E and a € A put Y(f)(a/r) =
= f(a)/r. Then ¥(f) € End(A/r) and ¥ : E — End(A/r) is a unitary homomorphism
of semirings. Cleatly, ¥(¢,4) = @na,r for every n € N. If s is a fully invariant
congruence of A/r then 77!(s) = { (a,b) € A X A|(n(a), 7(b)) € s} is a fully invariant
congruence of A and r C 7~ !(s). Clearly, 77(s) = riff s = ida/,, and 771(s) = A X A
iff s = A/r x A/r. Thus A/r is emc-simple, provided that r is a maximal proper fully
invariant congruence of A.

1.1 Observation. Consider the following relations on A:

o4 ={(a,b)|mb e A+ aandna e A+bforsomem,neN},

s ={(a,b)la+c=>b+cforsomeceA},

Ta={(a,b)lacb+Apand b ca+ Ay},

a, = ker(p,) (for n € N),

Br = (I xI)Uidy (for a fully invariant ideal I),

vg ={(a,b)|(a+ B)n(b+ B) # 0} (for a fully invariant subsemigroup B),
0, ={(a,b)|a+ nu=>b+nvforsomeu,ve A} (forn € N),

Srn ={(a,b)|(na,nb) € r} (for a fully invariant congruence r and n € N),
guy ={(@b)la+ f(w)+g(v) =b+ g+ f(v) for some f,g € E} (u,v € A),
Ay ={(a,b)|forall fe E,x€A, f(a)+ x=wiff f(b)+x=w} (forw € A).

The following observations are straightforward, fairly basic and folklore to much
extent. Henceforth, we shall not attribute them to any particular source.
(1) All the relations defined above are fully invariant congruences of A.
(ii) o4 is the smallest conguence such that the corresponding factor is a semilattice.
Clearly, o4 = idy iff A is a semilattice and o4 = A X A iff A is archimedean.
(i) T4 Coa and T4 = A X A iff A is a group.
(iv) o4 is the smallest congruence such that the corresponding factor is cancellative.
(v) Assume that @, = A X A, i.e.,, na = nb = o for all a,b € A. Then 20 = o
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ando+a = (n+ 1)a = g,+1(a) forevery a € A. If @41 = AX Athen o = 04 is
absorbing and A is a nil-semigroup. If @, = ids then 0 + a = a for every a € A,
hence 0 = 04 and A is a group.

(vi) If B is a fully invariant subsemigroup of A then B X B C yg. If y5 = ida then
B ={0},20 =0 and (a + 0,a) € yp for every a € A. Thus 0 = 04 and f(04) = 04 for
every f € E.

(vii)) The sets Iy = {2a+ula€ A,u € Ag}, b ={2a+bla,be Aland 3 = A+ A
are fully invariant ideals of A, B;, C B, € B1,, By, is the smallest congruence such that
the corresponding fcctor is zeropotent and Sy, is the smallest congruence such that the
corresponding factor is constant.

(viii) Clearly, 6; = A X A and 9, is cancellative (i.e., (a + ¢,b + ¢) € ¢, implies
(a,b) € 6,) and (na, nb) € 6,, (a,a+nb) € 6, for all a, b € A (in particular, if 6,, = ida
then na = nb = 04 for all a,b € A). Further, ¢, is the smallest congruence such that
the corresponding factor is a torsion group of exponent n. If A is cancellative then,
clearly, 6, = A x A for every n € N iff §, = A X A for every prime p iff the difference
group G = A — A is divisible.

(ix) Let » be a cancellative fully invariant congruence of A and denote B = A/r. Then
srq 1s cancellative for every n € N. If s,, = A X A for some n € N then B is a torsion
group of exponent n. If s,,, = r for all n € N then the difference group B — B is a
torsionfree group.

(x) Forallu,v € A, (u,v) € g,,, since u+u+2v =v+2u+v. Inparticular, g,, # ida
for u # v. Obviously, if A is cancellative then g,, is cancellative. Let r be a fully
invariant congruence with («, v) € r. Then (f(1)+g(v), g(u)+f(v)) e rforall f,g € E,
and consequently ¢,, C rif r is cancellative. Hence, if A is cancellative then g, is
the fully invariant cancellative congruence of A generated by the pair (u, v).

(xi) Let G be a groupoid and @ be the set of all homomorphisms ¢ : A — G. Then
r = Nkery, ¢ € @, is a fully invariant congruence of A. In particular, if A is emc-
simple and |p(A)| > 2 for at least one ¢ € @ then r = id, and hence A imbeds into a
cartesian power of G.

(xii) Let A be archimedean. Then A has at most one idempotent element. Obviously,
if 04 € A then A is a group. If A has no idempotents then (a,2a) ¢ o, for every
a €A, i.e., A/oy is strongly archimedean (indeed, if (a,2a) € o5 thena+b =2a+b
for some b € A, however b + ¢ = ma for some m € N and ¢ € A, and hence
e=m+1a=a+b+c=2a+b+c = (m+2)aisidempotent). Consequently,
if 04 = A X A then A has exactly one idempotent element.

2.Emc-simple semigroups - basic classification

2.1 Lemma. Assume that o4 = A X A and ay, = idp for some k > 2. Ifa,b,c € A
are such that a + ¢ = b + c then 2a = 2b.
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Proof. Since (a,c) € A X A = o4, there are i > 2 and d € A with kia = ¢ + d.
Now,a+ka=a+c+d=b+c+d=>b+kla, and hence k(a + k'a) = ka + k'a =
= (k—Da+a+kia = (k—Da+b+kia = (k-2)a+b+a+kia = (k-2)a+2b+kia=--- =
= kb+kia = k(b+k'~'a). Thus (a+k"'a, b+ki'a) € a; = idy and a+k'"'a = b+k'a.

Proceeding by induction, we obtain 2b = b + a, and hence 2a = 2b by symmetry. O

2.2 Corollary. If oo = A X A and a; = ida for at least one even k then A is
cancellative (i.e., oy = idp). ]

2.3 Lemma. Assume that ay = AXA. If a,b,c € A are such that a+c = b+ c then

3a = 3b.
Proof. Since (a,c) € a, and (b,c) € @y, we have 2a = 2¢ = 2b. Now, 3a =
=a+2a=a+2c=a+c+c=b+c+c=b+2c=>b+2b=273b. O
2.4 Corollary. If ay = A X A and ay = idp for some k divisible by 3 then A is
cancellative. ]

2.5 Lemma. Assume that a = A X A = a3. Then 2a = 3b for all a,b € A (i.e., A
is zeropotent).

Proof. Since (2a,b) € a3, we have 6a = 3b. Further, (3a,a) € «@;, and hence
6a = 2a. O

2.6 Theorem. Let A be an emc-simple commutative semigroup. Then just one of
the following five cases takes place:
e A is idempotent (i.e., a semilattice);
A is an abelian group;
A is cancellative and a + b # a for all a,b € A (and then A is infinite);
A is constant;
A is zeropotent and A + A = A (and then A is not finitely generated).

Proof. 1f o4 = id, then A is idempotent. In the opposite case, 04 = A X A. Now,
if @y = ida then A is cancellative by 2.2. On the other hand, if @, # ids and A
is not cancellative then @ = A X A = a3 by 2.4, and hence A is zeropotent by
2.5 (we will show in 5.7 that A is infinite if A + A = A, and then A is not finitely
generated - see 2.12). If A+ A # A then 8;, = id4 and A is constant. Finally,
assume that A is cancellative. If 04 ¢ Athena + b # a for all a,b € A and A is
infinite. In the opposite case, either 74 = A X A and A is a group or 74 = id, and it
follows that B = A \ {04} is a subsemigroup of A. Now, define a relation » on A by
r = {(a,b)|forevery f € E, f(a) = 04 iff f(b) = 04 }. One checks readily that r is a
fully invariant congruence of A. Clearly, (04,a) ¢ A for every a # 04. Thus r = id,,
however (a, 2a) € r, a contradiction. m|

2.7 Remark. If A is emc-simple and not a semilattice then o4 = A X A, and hence
A is archimedean. Further, if A is emc-simple and [/ is a proper fully invariant ideal of
A then B; = ida. Thus I = {0}, 0 = 04 is absorbing (i.e., A has just two fully invariant
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ideals, namely A and {o4}) and f(0) = o for every f € E. Finally, an abelian group is
emc-simple iff it is ems-simple.

Just for the sake of completeness, we include the following well-known result:

2.8 Theorem. A non-trivial abelian group A is emc-simple (and ems-simple) if
and only if it is either p-elementary for some prime p (i.e., A is a direct sum of copies
of the p-element cyclic group Z,(+)) or torsionfree divisible (i.e., A is a direct sum of
copies of the additive group Q(+) of rational numbers). O

The following lemma is quite familiar:

2.9 Lemma. Let A be a semilattice and a,b € A be such thata +b # a # b.
If x,y € A are arbitrary then there is an endomorphism f of A such that f(a) = x,
fla+b)=x+yand f(A) = {x,x + y}. O

2.10 Theorem. Every non-trivial semilattice is emc-simple and ems-simple.

Proof. Let A be a semilattice and r # ida be a fully invariant congruence of A
and take (a,b) € r,a # b. Then (a,a + b) € r and we can assume that a + b # a. Let
x,y € A and f be an endomorphism from 2.9. Then (x, x + y) € r and, symetrically,
(v,x +y) € r, hence (x,y) € rand r = A X A. Finally, every constant transformation
is an endomorphism, and hence A has no proper fully invariant subsemigroups. O

The following result is very easy:

2.11 Theorem. Every non-trivial constant semigroup A is emc-simple and ems-
simple. O

2.12 Remark. Let A be a finitely generated emc-simple commutative semigroup.
Then there is a congruence r of A such that the factor A/r is a (congruence-)simple
commutative semigroup. Now, just one of the following three cases takes place:

(1) A/ris a two-element semilattice and A is a finite semilattice;

(2) A/r is a two-element constant semigroup and A is a finite constant semigroup;
(3) A/r is a cyclic p-group for some prime p and then A is a finite p-elementary
group.

Notice that A is finite anyway.

3. Emc-simple cancellative commutative semigroups

3.1 Proposition. Let A be a cancellative commutative semigroup. The following
conditions are equivalent:
(1) ida and A X A are the only fully invariant cancellative congruences of A.
(i) Forall a,b,c,d € A such that a # b there are f, g € E such that f(a) + g(b) +
+c=gla)+ f(b) +d.

Proof. If a # b then g, # ida (see 1.1(x)). O
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3.2 Remark. Notice that the equivalent conditions of 3.1 imply the following three
conditions:
(1) Forall a,b,c € A, a # b, there are f, g € E such that f(a)+ g(b) + c = g(a) + f(b).
(2)Forall a,c,d € A, a # 04 there are f, g € E such that f(a) + ¢ = g(a) + d.
(3)Foralla,b € A, a # 04, there are f, g € E with f(a) + b = g(a).

Further, if A satisfies the conditions of 3.1 and 04 ¢ A then 6, = A X A for all
n € N, and hence the difference group G = A — A is torsionfree and divisible, i.e., for
every a,b € A and n € N there are ¢,d € A such thata + nd = b + nc.

3.3 Lemma. Ler A be an archimedean commutative semigroup such that A has
no proper fully invariant ideal. Then:
(1) If r is a fully invariant congruence of A such that (w,2w) € r for some w € A then
A/ris a group.
(1) If w € A is such that w # 2w and r, s are fully invariant congruences of A such
that r G s and r is maximal with respect to (w,2w) & r then A/s is a group.
(i) If w € A is such that 2w # 4w, r is a fully invariant congruence maximal with
respect to 2w,4w) ¢ r, and A/s is not a group whenever s is a fully invariant con-
gruence of A such thatr & s # A X A then B = A/r is emc-simple of type 2.6(2) or
2.6(3).

Proof. (1) If v € A is such that (v,2v) € r then (w,v) € r. Indeed, since A is
archimedean, we have w + x = mv and v + y = nw for suitable x,y € A and m,n € N.
However (w,nw) € r, (v,mv) € r, and hence (w + x,v) € rand (v + y,w) € r. Con-
sequently, Q2w + x,v+w) € rand Qv +y,w+v) € r. As(wW+ x,2w +x) € r
and (v + y,2v + y) € r, we obtain (w + x,v+w) € rand (v + y,w + v) € r, hence
w+x,v+y) € rand (v,w) € r, as desired. If f € E then (f(w),2f(w)) € r, and
so (w, f(w)) € r. Since E(w) + A is a fully invariant ideal, for every a € A there are
beAand g € E with glw) + b = a. Then (w + b,a) = (w + b,g(w) + b) € r, and
hence 2w + b,a + w) € r. Since 2w + b,w + b) € r, we have 2w + b,a) € r and
(a,a+w) € r. Finally, there are ¢ € A and m € N with a+c¢ = mw, hence (a+c,w) € r
and we conclude that A/r is a group.

(i) We have (w, 2w) € s and (i) applies.

(iii) Let # : A — B be the natural projection and ¢ # idp be a fully invariant con-
gruence of B. Then s = 77 (¢) ((a,b) € s iff (n(a),n(b)) € t) is a fully invariant
congruence of A and r & 5. By (ii), A/s is a group. Thus s = A X Aand ¢t = B X B.
The rest is clear from 2.6. m]

3.4 Theorem. A non-trivial cancellative commutative semigroup A is emc-simple
if and only if it satisfies the following three conditions:
e Forall a,b € A there are c € A and m € N such that a + ¢ = mb (i.e., A is
archimedean).
e foralla,b € Atherearec € Aand f € E such that f(a) + ¢ = b (i.e., A has
no proper fully invariant ideal).
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e Foralla,b,c,d € A such that a # b there are f,g € E with f(a) + g(b) + c =
=g(a) + f(b) +d.

Proof. First, suppose that the conditions (1),(2) and (3) are satisfied and let r be
a fully invariant congruence of A. If (w, 2w) € r for some w € A then A/r is a group by
3.3(i), hence r is cancellative and r = A X A by 3.1. On the other hand, if (w,2w) ¢ r
for every w € A then (2w, 4w) ¢ r as well. Fixing w € A, let r; be a fully invariant
congruence of A maximal with respect to (2w,4w) ¢ r and r C r;. Combining 3.1
and 3.3(iii), we get r; = ida, and hence r = id4. The converse implication is clear
(cf. 2.7 and 3.1). O

3.5 Remark. Now, let A be a cancellative commutative semigroup without neutral
element. Denote by G = A — A the difference group of A and define a relation <4
on G by <4={(u,v)|v—u € A}Uidp. Clearly, <4 is an order relation on the group
G and A = {u € G|0g <4 u} is the cone of positive elements. Obviously, if A is
archimedean then, for all @ € A and u € G, there is m € N with u <4 ma. For every
f € E, define an endomorphism f of G by f(a—b) = f(a)— f(b) forall a,b € A. The
mapping f — £ is an injective unitary homomorphism of the semiring £ = End(A)
into the ring End(G). The image E is a subsemiring of End(G). Obviously, if ¢ €
End(G) then ¢ € E iff (A) C A. PutR = E — E (i.e., R C End(G) and R is the
difference ring of the semiring E). It is easy to see that the semigroup A satisfies the
equivalent conditions of 3.1 iff G is a simple R-module.

3.6 Remark. Let P be an additively cancellative parasemifield (i.e., a semiring,
where the multiplicative semigroup is a group). Clearly, P(+) satisfies the condition
3.4(1) iff for every a € P there are b € P and m € N such that 1p + b = ma
(equivalently, for every @ € P there are b € P and m € N with a + b = mlp).
Further, we have 2b™'a - a + 2,'b = b for all a, b € P, and hence the condition 3.4(2)
is always true for P(+).

3.7 Example. Let r € R* be a transcendental number and F = Q(r). Put A =
= {Za?la,- e F\{0},1<i<neN}and B=F* (= FUR"). Clearly, A C B, both A
abd B are subparasemifields of R* and A is just the set of the numbers

@)+ 4 f2(r)
g4 (r)
Now, we see that r € B\ A, A # Band A — A = F = B — B. Both the additive
semigroups A(+) and B(+) satisfy the conditions 3.4(2),(3) and B(+) satisfies 3.4(1)
(thus B(+) is emc-simple). On the other hand, A(+) does not satisfy 3.4(1) (we have
% ¢ 1+ Aforevery m € N).

3.8 Example. Let A = {g € Q*|g > 1}. Then A is a subsemiring of Q" and A(+)
satisfies 3.4(1),(3). On the other hand, since f(g) # 1 for every ¢ > 1 and f €
€ End(A(+)), I ={g € A|g > 1} is a fully invariant ideal of A, and so A(+) does not
satisfy 3.4(2).

s neN, fi..... fug € QLx]\ {0}.
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3.9 Example. Let A = Q\ {0,1,—1}. Then A(:) is a cancellative commutative
semigroup without neutral element. Clearly, A satisfies 3.4(1),(2), however A does
not satisfy 3.4(3).

3.10 Example. Let F be a subfield of R and A = F*(+). Then A" is emc-imple for
every n € N.

4. Homomorphisms of strongly archimedean
commutative semigroups into R*(+)

In 4.1 — 4.6, we assume that A is archimedean. Let B be a subsemigroup of A and
¢ : B — R*(+) be a homomorphism such that ¢(a) > ¢(b) whenever a,b € B and
a € b + A. Further, in Ay we formally put ¢(0) = 0. Let w € A be arbitrary and put

p(w/):sup{M a1EB,azeBo,meN,a3€Ao,mw+a2=a1+a3}
m
and
b1) — (b
q(w):inf{M b1eB,bzeBo,neN,bger,bl:nw+b2+b3}.
n

The very basic idea of the following five easy lemmas goes back to [8] (but see
and consult also [1], [2], [3] and [13]).

4.1 Lemma. (i) 0 < p(w) < g(w) < +o0o.
(11) If w € B then p(w) = g(w) = @(w).

|
Now, put C,, = (B+Nw)UB, i.e., C,, is the subsemigroup of A generated by BU{w}.
¥

4.2 Lemma. Let  : C,, — R*(+) be a homomorphism such that y|B =
and Yy(u) = Y (v) whenever u,v € C,, are such that u € v+ A. Then p(w) < y(w) <
< qgw). O

4.3 Lemma. (i) If r € R* is such that p(w) < randm € N, a € By, b € B, ¢ € Ay
are such that mw + a = b + c then ¢(a) + mr > (D).
(i) If r € R* is such that r < gq(w) and n € N, a € By, b € B, ¢ € Ay are such that
b =nw+ a+ cthen nr + ¢(a) < p(b).
(iii) If r € R* is such that p(w) < r < gw) and k € N, a € By, b € B are such that
kw = a + b then o(b) = kr + ¢(a). O

4.4 Lemma. Let A be cancellative and r € R* be such that p(w) < r < g(w). If
ki,ky € Ny and by, b, € By are such that kyw + ay = kow + ap € A then kir + p(a;) =
= kyr + p(ay). O

4.5 Lemma. Assume that A is cancellative, 04 ¢ A and r € R* is such that
pw) < r < g(w). Then there is a homomorphism  : C,, = R*(+) such that y|B = ¢,
Yy(w) = rand Yy(u) > y(v) whenever u,v € C,, are such thatu € A + w. ]
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4.6 Proposition. Let A be cancellative and 04 ¢ A. For every a € A there is
a homomorphism ¢, : A — R*(+) such that ¢,(a) = 1.

Proof. Let 2 denote the set of all ordered pairs (B, ¢), where B is a subsemigroup
of A and ¢ : B — R*(+) is a homomorphism such that ¢(a) > ¢(b) whenever a, b € A,
a € b+ A. The set A is ordered by inclusion. By 4.5, if (B, ¢) is maximal in 4 then
B = A. Finally, if a € A then Na is isomorphic to N(+), and hence the mapping
na — n is an injective homomorphism of B = Na into R*(+) and a +— 1. O

4.7 Theorem. Let A be emc-simple of type 2.6(3). Then A imbeds into a cartesian
power of R*(+).

Proof. By 3.4, A is strongly archimedean. The rest is clear from 4.6. O

4.8 Example. Let G = Z(+) X Z(+) and A = {(i,m) € G|m > 1}. Then A is
a subsemigroup of G, G = A — A is the difference group of A and A is a strongly
archimedean semigroup. Of course, 2(1,1) = 2(0, 1), and hence A does not imbed
into any cartesian power of R*(+).

4.9 Proposition. Let A be an archimedean commutative semigroup. The following
conditions are equivalent:
(1) A has no idempotent.
(ii) For every a € A there is a homomorphism ¢, : A — RY(+) with ¢,(a) = 1.

Proof. If (i) holds then A/o 4 is strongly archimedean and 4.6 applies. The con-
verse is obvious. O

4.10 Remark. Let A be a commutative semigroup and ¢ : A — R*(+) be a homo-
morphism. Define a relation < on A by a < b iff either a = b or p(a) < ¢(b). One
checks readily that this relation is a compatible (partial) order relation and a < a + b
for all a,b € A (i.e., every element from A is strictly positive in the order). Further-
more, the order is archimedean in the following sense: For all a,b € A thereism € N
with a < mb.

5. Endo-c-simple zeropotent semigroups

5.1 Lemma. Let w € A be such that E(w) = {w}and A,, = A X A. Then w = 04 is
absorbing and A + A = {w} (i.e., A is a constant semigroup).

Proof. E(w) = {w} implies 2w = w. If f € E and a € A then (a,w) € 4,,
fw)+w =2w =2w = w, and hence f(a) + w = w. In particular, a + w = w and w is
absorbing. Then, of course, idy(w) + b = w + b = w for every b € A, and therefore
a+b=1idy+b=wforalla,be A O
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5.2 Lemma. Let 0 = 04 € A be absorbing and E(o) = {o}. If r is a fully invariant
congruence of A such that r € A, then the set I = {a € A|(a,0) € r} is a fully
invariant ideal of A and |I| > 2.

Proof. Since r ¢ A,, we have (a,b) € r\ 4, for some a,b € A. Then, say,
f@)+x=0#v=f(b)+xforsome f € E and x € A. Of course, (0,v) € r and
|| > 2. The rest is clear. O

5.3 Proposition. Let A be emi-simple, 0 = 04 € A, E(0) = {0} and A + A # {0}
(i.e., A is not constant). Then the semigroup A1, is emc-simple.

Proof. By 5.1, A, # ida. Hence, using 5.2, 4, is a maximal proper fully invariant
congruence of A, and so A/4, is emc-simple. O
The following assertion is obvious:

5.4 Lemma. Let o = 04 € A be absorbing and E(0) = {o}. Then:
(1) A/A, is a semilattice iffa+ b = o for all a,b € A such that 2a + b = o;
(i1) A/ A, is constant iff A + A + A = {o}. ]

5.5 Proposition. Let A be emi-simple, 0 = 04 € A, E(0) = {0} # A+A and 2a+b =
=0 # a+ b for some a,b € A. Then the factorsemigroup A[A, is emc-simple of type
2.6(5). In particular, A is emc-simple iff 1, = id,.

Proof. By 5.3, the factorsemigroup B = A/ 4, is emc-simple, B is not a semilattice
with respect to 5.4(i) and, of course, B is not cancellative. Finally, / = A + A is a fully
invariant ideal, however I # {0}, and hence ] = A. Then A = A + A + A and B is not
constant due to 5.4(ii). Now it remains to use 2.6. O

5.6 Theorem. Let A be a non-trivial zeropotent semigroup and o = 04. Then A
is emc-simple of type 2.6(5) (i.e., A is not constant) if and only if the following two
conditions are satisfied:

e E(a)+ A = A foreverya e A\ {o} (ie., foralla,b € A\ {0} there are f € E
and ¢ € A with f(a) + ¢ = b).

e Forall a,b € A\ {o}, a # b, there are g € E and d € A such that {0} &
C (g(a) +d, g(b) + d).

Proof. First, assume that A is emc-simple and not constant. If a € A \ {0} then
E(a) + A is a fully invariant ideal, and hence E(a) + A = A (otherwise E(a) + A = {o}
and A is constant). Of course, 4, = ids (otherwise 4, = A X A and A is constant
by 5.1) and (2) immediately follows. Conversely, assume that the conditions (1) and
(2) are satisfied. Of course, (1) implies that A is not constant and / = A whenever /
is a fully invariant ideal of A with I # {o}. Further, the set J = {a € A|(a,0) € 4,}
is a fully invariant ideal of A, hence J = {o} (otherwise J = A, 1, = A X A and A is
constant) and (2) implies that (a,b) ¢ A, whenever a,b € A\ {0} and a # b. Thus
A, = ida, however A is neither idempotent nor cancellative, and so A is emc-simple
of type 2.6(5) by 5.3 and 2.6. O
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5.7 Remark. Suppose that A is non-trivial, zeropotent and satisfies 5.6(1) (i.e., A
is emi-simple with A + A = A).
(i) Take b,c € Asuchthata = b+c # opandput K = {f € E|b € A+ f(a)},
L={geFE|ceA+g(a)}. Obviously, both K and L are non-empty subsets of E. If
f1, f» € K then, for some u,v € A, u+ fi(a)=b=v+ frla)andb =u+ fi(b+c) =
=u+ fi(v) + fifa(a) + fi(c) and we see that f; f, € K. Proceeding similarly, we can
show that KK U KL C K nad LL U LK C L. Furthermore, if 4 € K N L then, for some
u,v € A,b=u+h(a),c =v+h(a)andoy # a = b+c =u+v+2h(a) = u+v+0o4 = oa,
a contradiction. Thus K N L = 0. The set M = K U L is a subsemigroup of the
multiplicative semigroup E(-) and both K and L are right ideals of M. Notice that
ida ¢ M.
(ii) Take z € A, z # 04, and define a relation ¢ on the set E(z) by t = idgy U
U{ (f(z), g(z))|f,g € Eand f(z) € A + g(z)}. Clearly, ¢ is reflexive and transitive.
Moreover, if f(z) = a + g(z) and g(z) = b + f(z) for some a,b € A then f(z) =
=a+b+ f(z) =2(a+b)+ f(z) =04 + f(2) = 04. Symmetrically, g(z) = 04 and we
see that ¢ is antisymmetric. Thus ¢ is an order relation on E(z) and o4 is the smallest
element in E(z). On the other hand, if 04 # f(2) € E(z) then f(z) = b + ¢ for some
b,c € A and, with respect to 5.6(1), b = g(z) + u and ¢ = k(z) + v for some g,k € E
and u,v € A. Clearly, (f(2),g(z)) € t and (f(z),k(z)) € t. If f(2) = g(z) = k(z) then
f(@) =b+c=2f(z) +u+v=o04,acontradiction. Thus the set £(z) has no maximal
element and the sets E(z), E and A are infinite.

5.8 Example. Let .77 denote the set of all infinite countable subsets of an uncount-
able set S and put .¥ = J U {S}. Define an addition on . by R+ T = RUT
ifRNT =0and R+ T = S otherwise. Then . becomes a commutative zeropotent
semigroup, .’ +.% = . and 0.» = S. One checks easily that automorphisms operate
transitively on .7 and the conditions 5.6(1),(2) are satisfied, i.e., . is emc-simple.

5.9 Example. Let .# denote the set of all infinite subsets of N and define an addi-
tionon L byl+J=IUJifINJ=0and I+ J =N otherwise. Again, .# becomes
a commutative zeropotent semigroup, ¥ + . = . and oy = N.

LetI,J € . be such that I # N # J and « be a bijection of I onto J. For K € .#,
put f(K) = {a(m)|m € K} € J whenever K C I and f(K) = N otherwise. Then
f(I) = J and f is an endomorphism of .#(+). For, let K,L € .. If f(K) = N then
fK)+ f(L)y=N,KZ I, K+ L¢Iand f(K + L) = N. Symmetrically, if f(L) = N
then f(K) + f(L) = N = f(K + L). Now, suppose that f(K) # N # f(L). Then
KUL C I If KnL = 0 then, a being injective, f(K) N f(L) = @ and we have
f(K+L)=f(KUL) = f(K)U f(L) = f(K) + f(L). Finally, if K N L # 0 then
f(KNL)C f(K)N f(L), hence f(K)N f(L) # ® and f(K + L) =N = f(K) + f(L).

Now it is clear that endomorphisms operate transitively on .# \ {N} and . satisfies
the conditions 5.6(1),(2). Thus .# is emc-simple. Notice that automorphisms do not
operate transitively on .# \ {N}. Namely, if f is an automorphism of .7 and I is a
cofinite subset of N then f(7) is cofinite.
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5.10 Example. ([7]) Let R be a subsemigroup of a left cancellative semigroup S =
= S(-) such that aS N bR # ( for all a € S and b € R. Furthermore, assume that
uR N vR = O for some u,v € R. Now, denote by Z the set of all non-empty subsets A
of S such that AR C A and define an additionon Z by A+ B=AUBifANB =10
and A + B = S otherwise. Then R,S € %, % becomes a commutative zeropotent
semigroup, o = S andr = {(A,B) € ZxZ |forall C € Z,ANC =0iff BNC =0}
is a congruence of Z. Put .¥ = Z/r and denote by 7 the natural projection of &
onto ..

(i) We have (aS,S) € r for every a € S (indeed, if C € # and ¢ € C then 0 #
#aS NcR € al). Hence, if r = id, then S is a group.

(i) If A,B € # and a € S then (a(A + B),aA + aB) € r. Indeed, if ANB = 0
then A+ B= AU B and a(A + B) = aA U aB. Since S is left cancellative, we have
aANaB =0 and aA +aB = aAUaB. On the other hand, if ANB #OthenA+B =S,
a(A+B)=aS,aANaB #0,aA +aB =S and (aS,S) € r by (i).

(iii) If (A, B) € r then (aA,aB) € r for every a € S. Indeed, if C € Z is such that
aANC#0thenAND+#0,where D={deS|adeC}e X%, hence BND # 0 and
aBNC #0.

(iv) Using (ii) and (iii), we get a multiplicative homomorphism « : S — End(%),
where a(a)(7(A)) = n(aA) foralla € S, A € Z.

(v) If o is a fully invariant congruence of .% such that (m(R),7(S)) € o then o =
=.x.%. Indeed, put s = n~' (o). Then s is a congruence of %, r C s and if (A, B) €
s then (aA,aB) € s for every a € §. Further, (R,S) € s, (aR,aS) € s for every
a € § and, since (aS,S) € r C s, we get (aR,S) € s. In particular, if A € Z is
such that (aR,A) € s then (A,S) € s. On the other hand, if a € S, (aR,A) ¢ s and
B € % is maximal with respect to B C A and B N aR = 0, then (A,B U aR) € s,
(BUaR,S) = (B+aR,B+ S) € s and, again, (A,S) € S. Thus s = Z X % and
oc=9%x9.

(vi) We have uR,vR € %, (uR,vR) ¢ r and (R,S) ¢ r. Indeed, R is a subsemigroup,
and hence uR,vR € Z#. Further, (uR,vR) ¢ r, since uR N uR # 0 and vR N uR = 0.
Finally, if (R,S) € r then (uR,uS) € r and (VR,vS) € r, however (uS,S) € r and
(vS,S) € r, and hence («R, vR) € r, a contradiction.

(vii) Now, suppose that 7 is a fully invariant congruence of . maximal with respect
to (n(R),n(S)) ¢ 7. Then J = ¥/t is emc-simple of type 2.6(5). Indeed, .7 is
a non-trivial zeropotent semigroup. If ¢ is a fully invariant congruence of .7 such
that ¢ # id, then o = ¥~'(0), ¥ being the natural projection of . onto .7, is a fully
invariant congruence of . and & . Thus (7(R), 7(S)) € o, o = . X.¥ by (v), and
hence o = .7 x 7. Finally, it remains to show that .7 is not constant. Let / be a right
ideal of R maximal with respect to vR C I and uRN I = () (we know that uRNVvR = 0).
Then uR+1 = uRUI, uRUIL,R) € r, n(uR) + () = n(R) and (w(uR) +n(I), n(S)) & 7.

5.11 Remark. As a particular case of 5.10, we can take for R the free semigroup
of words over two letters u, v and for S any group containing R. For instance, S can
be the free group over u and v or S can be chosen to be free metabelian over u and v.
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