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The present paper is a comprehensive survey of non-indempotent left distributive left
quasigroups. It contains several new results about free groupoids and normal forms of
terms in certain subvarieties. It is a continuation of a series of papers on selfdistributive
groupoids, started by [KepN,03].

1. I n t r o d u c t i o n

We consider groupoids (i.e., binary algebras, with the operation denoted usually
multiplicatively), that are left distributive, it means they satisfy the identity

x(yz) ≈ (xy)(xz) (LD)

and left quasigroups, it means that

for every a, b there is a unique c with ac = b. (LQ)

Equivalently, left distributive left quasigroups are groupoids, where all left transla-
tions are automorphisms.

This naturally defined class of algebras was studied by several authors, mostly in
the idempotent case. It has appeared under various names, such as pseudo-symmetric
sets [Nob,83], quandles [Joy,82b], automorphic sets [Bri,88], racks or wracks
[FenR,92] [Ryd,95], left-distributive algebras [Lar,99] etc. The investigations in-
clude both theory and applications. Perhaps the most remarkable use of idempotent
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left distributive left quasigroups is the construction of so called knot quandle, an in-
variant with respect to knot homotopy [Joy,82a] [Mat,84].

The research on non-idempotent left distributive left quasigroups was initiated by
T. Kepka in [Kep,94] and continued by E. Jeřábek and the author in [JeřKS,05],
[Sta,04a], [Sta,04b], [Sta,05] and [Sta,08]. The survey is based on these papers and
several unpublished results that appeared in the author’s PhD thesis [Sta,04a].

This is a continuation of a series of papers on selfdistributive groupoids, started
by [KepN,03]. We refer the reader into the part A1 for all undefined terminology
and notation, as well as for an introduction to general non-idempotent selfdistributive
groupoids.

2. B a s i c e x a m p l e s

We start with a couple of examples that play a central role in the theory of LD left
quasigroups.

Example 2.1 The groupoid Cn defined on the set {0, . . . , n − 1} by a · b = b + 1
(mod n) is an LD left quasigroup.

Example 2.2 The groupoid C∞ defined on the set of integers by a · b = b+ 1 is an
LD left quasigroup.

By a circle of length n we mean any groupoid isomorphic to the groupoid Cn.
Groupoids isomorphic to C∞ will be called infinite paths, or, sometimes, circles of
length ∞. In a sense, every LD left quasigroup can be built from an idempotent LD
left quasigroup by replacing its elements with circles and infinite paths, see Proposi-
tion 4.5.

Example 2.3 Let G be a group and put

a ∗ b = aba−1

for every a, b ∈ G. It is easy to check that G(∗) is an LDI left quasigroup, called the
conjugation groupoid of G.
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Example 2.4 Let G be a group, u a central element in G and put

a ∗u b = aba−1u

for every a, b ∈ G. Again, it is easy to check that G(∗u) is an LD left quasigroup. It is
idempotent iff u = 1.

Example 2.5 Let G be a group, u a central involution in G and put

a ∗u b = ab−1au

for every a, b ∈ G. Then G(∗u) is an LD left quasigroup. Moreover, it is left sym-
metric (see below). It is idempotent iff u = 1, and in this case it is called the core
of G.

For more constructions of LSLD groupoids from groups see Section 8. We finish
this section with a list of all (very) small LD left quasigroups. The classification of
the non-idempotent ones follows easily from Proposition 4.5.

Example 2.6 Every 2-element LD left quasigroup is isomorphic to one of the
following two groupoids:

a b
a a b
b a b

a b
a b a
b b a

Note that the former one is the conjugation groupoid of the group Z2 and the latter
one is a circle of length 2.

Example 2.7 Every 3-element idempotent LD left quasigroup is isomorphic to
one of the following three groupoids:

a b c
a a b c
b a b c
c a b c

a b c
a a c b
b a b c
c a b c

a b c
a a c b
b c b a
c b a c

Example 2.8 Every 3-element non-idempotent LD left quasigroup is isomorphic
to one of the following three groupoids:

a b c
a b c a
b b c a
c b c a

a b c
a a c b
b a c b
c a c b

a b c
a a b c
b a c b
c a c b

Note that the former one is a circle of length 3 and the latter two are formed from a
circle of length one and a circle of length two.
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Example 2.9 Every 4-element non-idempotent LD left quasigroup is isomorphic
to one of the following eleven groupoids:

a b c d
a b c d a
b b c d a
c b c d a
d b c d a

a b c d
a a x y z
b a c d b
c a c d b
d a c d b

a b c d
a b a u v
b b a u v
c r s d c
d r s d c

where {x, y, z} = {b, c, d} and {r, s} = {a, b} and {u, v} = {c, d}.

3. N o t a t i o n a n d b a s i c f a c t s

Identities. We start with a list of several frequently used groupoid identities:

(LD) x(yz) ≈ (xy)(xz) left distributivity
(M) (xy)(uv) ≈ (xu)(yv) mediality
(LI) (xx)y ≈ xy left idempotency
(I) xx ≈ x idempotency

(n-LS) x(x(· · · (x︸�����︷︷�����︸
n

y))) ≈ y left n-symmetry

Left symmetry refers implicitly to left 2-symmetry. Left 1-symmetric groupoids are
called right zero bands. Right distributivity, idempotency and symmetry are defined
dually. We note that mediality and idempotency imply both left and right distributiv-
ity.

We say that a groupoid G is left cancellative, if all its left translations are injective,
and left divisible, if all its left translations are onto. It is called a left quasigroup, if
it is both left divisible and left cancellative. It means that the equation ax = b has a
unique solution x for any a, b ∈ G; such x is usually denoted a\b.

Clearly, left n-symmetric groupoids are left quasigroups with

a\b = a(a(. . . (a︸�����︷︷�����︸
n−1

b))),

and every finite left quasigroup is left n-symmetric for some n. The class of left
distributive left quasigroups is not closed on subalgebras (consider the infinite path),
hence, it does not form a variety (not even a quasivariety). Left quasigroups how-
ever do form a variety when the left division is considered as basic operation; it is
axiomatized by the identities x(x\y) ≈ y and x\(xy) ≈ y.

Lemma 3.1 Let G be a left distributive left quasigroup. Then
(1) G is left idempotent;
(2) if G is right cancellative, it is idempotent;
(3) if G is right distributive, it is idempotent.
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Proof. (1) xy ≈ x(x(x\y)) ≈LD (xx)(x(x\y)) ≈ (xx)y.
(2) x(xx) ≈LD (xx)(xx) and use right cancellativity.
(3) (xx)(xx) ≈RD (xx)x and use left cancellativity. �

Since left distributive left quasigroups are left idempotent, we can (and will) ap-
ply the theory of LDLI groupoids developed by P. Jedlička [Jed,05] and the author
[Sta,04b], [Sta,08], see Section 4.

Translations. Let G be a groupoid and a ∈ G. The left translation by a in G is
a mapping La : G → G, x �→ ax; right translations are defined dually and denoted
Ra. For operations other than ·, for instance ∗, we use the notation L∗a, R∗a. For a left
quasigroup G, we define the left multiplication group LMlt(G), to be a subgroup of
the symmetric group over G generated by all La, a ∈ G.

It is often useful to translate identities into the language of translations.

Lemma 3.2 Let G be a groupoid. Then
(1) G is left distributive, iff La is an endomorphism for every a ∈ G;
(2) G is a left quasigroup, iff La is a permutation for every a ∈ G;
(3) G is left n-symmetric, iff (La)n = id for every a ∈ G;
(4) G is left idempotent, iff La = Laa for every a ∈ G;
(5) G is medial, iff the mapping G ×G → G, (a, b) �→ ab, is a homomorphism.

Proof. Easy to check. �

Lemma 3.3 Let G be a left distributive left quasigroup. Then
(1) Lϕ(a) = ϕLaϕ

−1 for every a ∈ G and every automorphism ϕ of G;
(2) Lab = LaLbL−1

a for every a, b ∈ G;
(3) the mapping λ : a �→ La is a homomorphism of G into the conjugation

groupoid of the left multiplication group of G.

Proof. (1) Since ϕ(ab) = ϕ(a)ϕ(b) for every a, b ∈ G, we have ϕLa = Lϕ(a)ϕ and
thus also Lϕ(a) = ϕLaϕ

−1 for every a ∈ G.
(2) follows from the fact that all left translations are automorphisms.
(3) According to (2), λ(ab) = Lab = LaLbL−1

a = λ(a) ∗ λ(b). �

Terms. In the present paper, we do not regard the left division \ as a basic operation.
However, it often happens that there is a (multiplicative) term t(x, y) such that a\b =
= t(a, b) for every a, b. In this case we say that the left quasigroup has term-definable
left division.

In order to decrease the number of parentheses in terms, we assume implicitly that
letters in terms are right associated, i.e. xyz = x · yz = x(yz). We define the n-th power
by

xn = x · · · xx︸��︷︷��︸
n

.

Due to the following lemma, the other possible definitions of a power are obsolete.
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Lemma 3.4 Let G be an LI groupoid. Then
(1) G satisfies the identity xny ≈ xy for every n ≥ 1;
(2) for every term t in a single variable x, G satisfies the identity t ≈ xd, where d

is the right depth of t;
(3) G satisfies the identity (xm)n ≈ (xn)m ≈ xm+n−1 for every m, n ≥ 1.

Proof. (1) The case n = 1 is trivial, the case n = 2 is LI and further we proceed by
induction: if G satisfies xn−1y ≈ xy, then

xny = (xxn−1)y ≈ (xn−1xn−1)y ≈ xn−1y ≈ xy.

(2) and (3) are obvious corollaries of (1). �

We say that a groupoid G (a variety V of groupoids, resp.) has exponent n, if n
is the least positive integer such that the identity xn+1 ≈ x holds in G (in V , resp.),
provided such n exists. Otherwise, we define the exponent to be ∞. Note that every
finite groupoid (or locally finite variety) has a finite exponent. The variety of n-LSLD
groupoids has exponent n.

Further, we will denote x[n]y the term

x · · · x︸︷︷︸
n

y = (Lx)n(y).

Hence the left n-symmetry can be written as x[n]y ≈ y.
Finally, we will denote FV (X) the free groupoid over a set X in a variety V and

assume its standard representation by terms modulo identities of V .

Substructures. A subgroupoid of a left quasigroup is not necessarily a left quasi-
group (it is indeed left cancellative, but not necessarily left divisible). We will thus
use the notion of left subquasigroup. Subgroupoids of left quasigroups with term-
definable left division are indeed left subquasigroups.

A non-empty subset I of a left quasigroup G is called a left ideal, if a ∈ G, b ∈ I
implies ab ∈ I (in other words, if GI ⊆ I). I is called a strong left ideal, if a ∈ G,
b ∈ I implies ab ∈ I and a\b ∈ I. Clearly, if I ⊂ G is a strong left ideal, then G � I
is also a strong left ideal. Ideals of left quasigroups with term-definable left division
are always strong.

Definable sets. A subset S of a groupoid G is called definable in G if there exists
a formula Φ with a single free variable such that S = {a ∈ G : Φ(a)}. A relation α
on G is called definable, if there exists a formula Φ with two free variables such that
α = {(a, b) ∈ G ×G : Φ(a, b)}. A relation α is called right stable, if (a, b) ∈ α implies
(ac, bc) ∈ α for every c.

Lemma 3.5 Let G be an LD left quasigroup. Then
(1) every definable subset in G is either empty, or a strong left ideal;
(2) every definable right stable equivalence on G is a congruence of G.
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Proof. Indeed, for every automorphism α of G and every a ∈ G, Φ(a) holds iff
Φ(α(a)) holds. Hence the claim follows from the fact that left translations and their
inverses are automorphisms. �

We use the lemma for the following observation: Note that the sets I pG of idem-
potent elements of an LD left quasigroup G and its complement KG = G � I pG are
either empty, or strong left ideals.

Remark 3.6 Lemma 3.5 holds also for sets and equivalences definable in the lan-
guage {·, ∈ J1, . . . , ∈ Jn}, where J1, . . . , Jn are strong left ideals and ∈ J1, . . . , ∈ Jn

the corresponding unary relational symbols. (We have no use for this more general
statement.)

4. T h e s m a l l e s t i d e m p o t e n t c o n g r u e n c e

The main feature for investigation of non-idempotent LD left quasigroups is the
fact that the smallest congruence with idempotent quotient, denoted by ip, has a very
nice structure. This was first observed by P. Jedlička in [Jed,05], more generally for
LDLI groupoids. We will need the following improvement of his result.

Let γk be the smallest congruence such that the corresponding factor satisfies the
identity xk+1 ≈ x. Indeed, γk ⊆ γ�, iff � | k. Particularly, γk ⊆ γ1 = ip for every k.

Proposition 4.1 Let G be an LDLI groupoid and k ≥ 1. Then
(1) γk is the smallest equivalence on the set G containing all pairs (a, ak+1), a ∈
∈ G;

(2) γk = {(a, b) ∈ G ×G : am = bn for some m, n such that k divides m − n};
(3) if (a, b) ∈ γk, then ac = bc holds for every c ∈ G.

Proof. (1) Clearly γk must contain all pairs (a, ak+1), a ∈ G. We prove that the
equivalence α generated by these pairs is a congruence. So we need to check that
(ab, ak+1b) ∈ α and (ba, bak+1) ∈ α for every a, b ∈ G. The first claim follows
from left idempotency, since ab = ak+1b. For the second claim, using k-times left
distributivity one obtains bak+1 = (ba)k+1. Consequently, α = γk.

(2) First, let’s assume that (a, b) ∈ γk and we prove that am = bn for some m, n with
k | m − n. Since γk is generated as an equivalence by the set {(a, ak+1) : a ∈ G}, there
are c0, . . . , c� such that a = c0, b = c� and either ci = ck+1

i+1 , or ck+1
i = ci+1 for every

i = 0, . . . , � − 1. We proceed by induction on �. If � = 0, 1, it is trivial. So, assume
that am = cn

�−1 for some m, n with k | m − n. If c�−1 = bk+1, then

bn+k = (bk+1)n = cn
�−1 = am

and k | m − (n + k). If ck+1
�−1 = b, then

am+k = (am)k+1 = (cn
�−1)k+1 = (ck+1

�−1)n = bn

and, again, k | m + k − n.
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For the other inclusion, let’s assume that am = bn for some m, n with k | m − n.
Then also am+u = (am)u+1 = (bn)u+1 = bn+u for every u ≥ 0. Let m′, n′, q be such that
m = m′k + q and n = n′k + q. Since

(a, ak+1) ∈ γk, (ak+1, a2k+1) ∈ γk, . . . , (am′k+1, a(m′+1)k+1) ∈ γk,

we have (a, am′k+k+1) ∈ γk and similarly (b, bn′k+k+1) ∈ γk. Since

am′k+k+1 = am+(k+1−q) = bn+(k+1−q) = bn′k+k+1,

we obtain (a, b) ∈ γk.
(3) If (a, b) ∈ γk, then am = bn for some m, n and thus ac = amc = bnc = bc for

every c ∈ G by left idempotency. �

Corollary 4.2 Let G be an LDLI groupoid. Then
(1) ip is the smallest equivalence on the set G containing all pairs (a, aa), a ∈ G;
(2) ip = {(a, b) ∈ G ×G : am = bn for some m, n};
(3) if (a, b) ∈ ip, then ac = bc holds for every c ∈ G.

Consequently, every block of ip is a subgroupoid of G satisfying the identity xz ≈
≈ yz and it is term equivalent to a connected monounary algebra; the left translation
is the corresponding unary operation.

Corollary 4.3 Let G be an LD left quasigroup. Then every block of ip is either a
circle, or an infinite path. If G has exponent n, then every block is a circle of length
k | n.

We define the cycle type of an LD left quasigroup G to be the set of all k ∈ N∪{∞}
such that there is an ip-block isomorphic to Ck. Indeed, groupoids of exponent n have
only divisors of n in its cycle type. For example, the cycle type contains 1 if and only
if G has an idempotent element.

Note that the congruence lattice of Cn consists of the (pairwise different) congru-
ences γk, k | n. Consequently, we have the following:

Corollary 4.4 Circles of prime length are the only simple non-idempotent LD left
quasigroups.

Proposition 4.1 also yields the following description of LD left quasigroups. Let
H(∗) be an LDI left quasigroup, Bu, u ∈ H, pairwise disjoint circles (of possibly
infinite length), and fu,v, u, v ∈ H, isomorphisms from Bv to Bu∗v. Assume also that
fu,u(a) = aa for every u ∈ H, a ∈ Bu. We define a groupoid G(H, f ) as the disjoint
union of all Bu, u ∈ H, together with the operation

a · b = fu,v(b) for every a ∈ Bu, b ∈ Bv.

Indeed, the sets Bu become blocks of the congruence ip.

Proposition 4.5 (1) Let H, Bu and fu,v be as above. Then G(H, f ) is a left
quasigroup. It is left distributive, if and only if for every u, v,w ∈ H

fu,v∗w ◦ fv,w = fu∗v,u∗w ◦ fu,w.
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(2) Let G be an LD left quasigroup. Then G is isomorphic to G(G/ip, f ), where
fu/ip,v/ip(a) = ua for every u/ip, v/ip ∈ G/ip and a ∈ v/ip.

Proof. (1) The left quasigroup property is obvious from the construction. Since
for every a ∈ Bu, b ∈ Bv, c ∈ Bw

a · bc = fu,v∗w( fv,w(c)) and ab · ac = fu∗v,u∗w( fu,w(c)),

we get a · bc = ab · ac iff fu,v∗w ◦ fv,w = fu∗v,u∗w ◦ fu,w.
(2) According to Corollary 4.2(3), the mappings fu/ip,v/ip are well defined. And

they are automorphisms, because the left translation Lu restricted to the subgroupoid
v/ip is an automorphism. �

Later, we will use the following lemma, which is also an immediate consequence
of Proposition 4.1.

Lemma 4.6 Let G be an LD left quasigroup. Let t, s be terms such that the right-
most variables in t, s are distinct, but have the same depth. If G satisfies the identity
t ≈ s, then it is idempotent.

Proof. Assume that there is a ∈ G such that aa � a. Substitute aa for the rightmost
variable of t and a for all other variables. Then the value of t is a square of the value
of s and thus the equality fails. �

Remark 4.7 Proposition 4.1 and its corollaries originated in the paper of P. Jed-
lička [Jed,05] and were refined by the author in [Sta,08]. Proposition 4.5 is a particu-
lar case of Jedlička’s description of LDLI groupoids in [Jed,05].

5. V a r i e t i e s o f L D l e f t q u a s i g r o u p s

Let I denote the variety of idempotent groupoids. By the expression “variety of
LD left quasigroups” we mean any variety of groupoids that contains only LD left
quasigroups. For example, n-LSLD groupoids form a variety of LD left quasigroups
(of exponent n).

Lemma 5.1 Let G be an LD left quasigroup of exponent n, n ∈ N ∪ {∞}. Then
Cn is a homomorphic image of G, if and only if G is isomorphic to the direct product
Cn × (G/ip).

Proof. Pick a projection g : G → Cn and put f (x) = (g(x), x/ip). Then f : G →
→ Cn×(G/ip) is a homomorphism. Note that for k, � finite, there is a homomorphism
Ck → C� iff � | k, and there is no homomorphism Ck → C∞ for k finite. Hence every
ip-block in G is isomorphic to Cn, since g restricted to any ip-block is a homomor-
phism. Consequently, g is bijective on every ip-block, because all endomorphisms of
Cn are actually automorphisms, and thus f is an isomorphism. The other implication
is clear. �
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Lemma 5.2 Let V be a variety of LD left quasigroups of exponent n.
(1) If n is finite, then Ck ∈ V iff k | n.
(2) If n = ∞, then Ck ∈ V for every k ∈ N ∪ {∞}.

Proof. Since Ck, k finite, is 1-generated, its presence in V is determined by the
indentities of V in a single variable. By Lemma 3.4(2), every identity in a single
variable x is xu ≈ xv for some u, v ∈ N, and by cancellativity we get that it is equiva-
lent to xm ≈ x for m = u − v + 1. If n = ∞, then no such identity holds in V and thus
all Ck ∈ V . Otherwise, n | m and (1) follows.

To finish the proof, we need to check that if n = ∞, then C∞ ∈ V (note that C∞
is not 1-generated!). Let s ≈ t be an identity satisfied in V ; we can assume that it
contains at least two variables. Since V has no non-trivial identity in a single variable,
the terms s, t have the same depth of the rightmost variables. Hence, since V is non-
idempotent, by Lemma 4.6 the rightmost variables of s, t are equal. Consequently,
C∞ satisfies s ≈ t. �

Corollary 5.3 Every variety of LD left quasigroups has finite exponent.

Proof. If not, it contains the groupoid C∞, which has a subgroupoid that is not left
divisible. �

Theorem 5.4 Let V be a variety of LD left quasigroups of exponent n. Then
FV (X) is isomorphic to Cn × FV ∩I (X). Consequently, the variety V is generated by
(V ∩I ) ∪ {Cn}.

Proof. Since Cn ∈ V , it is a homomorphic image of FV (X). Hence, by Lemma
5.1, FV (X) � Cn × H, where H = FV (X)/ip. It is easy to see that H � FV ∩I (X),
because ip is the smallest idempotent congruence. �

Now, we can describe the lattice of varieties of LD left quasigroups.

Theorem 5.5 Let V be a variety of LD left quasigroups of exponent n. Let L
denote the lattice of subvarieties of V ∩ I , K its sublattice of varieties containing
right zero bands and N the lattice of positive integer divisors of n. The lattice of
subvarieties of the variety V is isomorphic to the lattice

(L × {1}) ∪ (K × (N � {1}))
(regarded as a subposet of L × N), mapping a variety U of exponent m to the pair
Φ(U ) = (U ∩I ,m).

Proof. First, we check that the mapping Φ is well-defined: the exponent m of a
subvariety U is clearly a divisor of n and since U contains Cm, it contains the right
zero band (Cm × Cm)/ip and thus it contains the whole variety of right zero bands
(because it is minimal). Next, Φ is injective: if U1 and U2 are distinct varieties
of exponent m, then U1 ∩ I and U2 ∩ I are distinct, because Ui is generated by
(Ui ∩ I ) ∪ {Cm}, i = 1, 2. The mapping Φ is onto, a pair (W ,m) is the image of
the variety generated by W ∪ {Cm}. Indeed, let G be an idempotent groupoid in the
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variety generated by W ∪ {Cm} and we show that G ∈ W . The case m = 1 is trivial,
so let m > 1. By Birkhoff’s HSP theorem, there are H ∈ W , K ≤ H × Ck

m (for
some k) and an onto homomorphism ϕ : K → G. Since ip is the smallest idempotent
congruence of K and G is idempotent, there is an onto homomorphism ψ : K/ip→ G.
Further, K/ip ≤ (K × Ck

m)/ip � K × (Ck
m/ip). However, Ck

m/ip is a right zero band
and thus it is in W . Consequently, G is a homomorphic image of a subgroupoid of
a groupoid from W , thus it is in W . Finally, Φ clearly preserves the order and it
follows from Theorem 5.4 that also Φ−1 preserves the order. Consequently, Φ is a
lattice isomorphism. �

Example 5.6 B. Roszkowska proved in [Ros,87] that the lattice of subvarieties of
left symmetric medial idempotent (LSMI) groupoids is isomorphic to the lattice of
positive integers ordered by divisibility with an additional top element. A number n
corresponds to the variety based by wn(x, y) ≈ y (relatively to LSMI), where

wn(x, y) = xyxyxy . . .︸������︷︷������︸
n

Note that right zero bands satisfy wn(x, y) ≈ y iff n is even. Thus, using Theorem 5.5,
it is easy to describe bases of all proper subvarieties of left symmetric left distributive
medial groupoids (relatively to LSLDM):

• xx ≈ x;
• wn(x, y) ≈ y and xx ≈ x, for every n;
• wn(x, y) ≈ y, for every n even.

(Note that mediality and idempotency imply left distributivity, however, non-idem-
potent medial groupoids are not necessarily left distributive.)

Example 5.7 J. Płonka [Pło,85] investigated n-LSLDI groupoids satisfying

x(yz) ≈ y(xz) and xz ≈ (yx)z

and called them n-cyclic groupoids. Płonka proved that the only non-trivial subvari-
eties of n-cyclic groupoids are m-cyclic groupoids for m | n. One can thus use Theo-
rem 5.5 to describe the subvarieties of the non-idempotent generalization of n-cyclic
groupoids. Every non-trivial one is generated by idempotent m-cyclic groupoids and
the groupoid Ck, for some divisors m, k of n; hence there are exactly q2 + 1 such
subvarieties, where q is the number of divisors of n.

Remark 5.8 A similar approach works for an arbitrary variety of LDLI groupoids
of finite exponent. For details, see [Sta,04b]. A particular case of Theorems 5.4 and
5.5 was proved by T. Kepka [Kep,94] for the variety of LSLD groupoids.

6. N o r m a l f o r m o f t e r m s f o r n - L S L D g r o u p o i d s

It is important to observe that any LD left quasigroup G satisfies the identity

xy · z ≈ xy · x(x\z) ≈LD xy(x\z).
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If G is left n-symmetric, it reads

xy · z ≈ xyx[n−1]z,

and similarly, by induction,

(x1x2 · · · xm) · z ≈ x1x2 · · · xm−1xmx[n−1]
m−1 · · · x

[n−1]
2 x[n−1]

1 z.

Consequently, using LD and n-LS, one can transform any term over an alphabet X into
an equivalent term of the form x1x2 · · · xm−1xm, for some m and x1, . . . , xm ∈ X. The
following theorem shows a useful normal form for terms in the variety of n-LSLDI
and n-LSLD groupoids, and a description of free groupoids.

Theorem 6.1 Let X be a non-empty set and n ≥ 2. Denote GX the free product of
|X| copies of the cyclic group Zn and HX the direct product GX ×Zn. We identify each
element of X with a generator of the respective copy of Zn.

(1) The free n-LSLDI groupoid over X is isomorphic to the subgroupoid gener-
ated by X in the conjugation groupoid GX(∗). Every term over X is n-LSLDI-
equivalent to a unique term of the form

x[k1]
1 x[k2]

2 · · · x
[km−1]
m−1 xm,

where x1, . . . , xm ∈ X, xi � xi+1 and ki ∈ {1, . . . , n − 1} for every i ≤ m − 1.
(2) The free n-LSLD groupoid over X is isomorphic to the subgroupoid generated

by X in the groupoid HX(∗(e,u)), where e is the unit of GX and u a generator
of Zn. Every term over X is n-LSLD-equivalent to a unique term of the form

x[k1]
1 x[k2]

2 · · · x
[km−1]
m−1 xkm

m ,

where x1, . . . , xm ∈ X, xi � xi+1 and ki ∈ {1, . . . , n− 1} for every i ≤ m− 1 and
km ∈ {1, . . . , n}.

Proof. We have just seen that every term is n-LSLD-equivalent to a term
x1x2 · · · xm, xi ∈ X. Collect equal neighbours and use left n-symmetry (or idem-
potency in (1), for the rightmost variable) to decrease the exponents below n. The
resulting term has the described form. Now we prove its uniqueness.

(1) Denote FX the subgroupoid generated by X in GX(∗). Clearly, FX is left
n-symmetric, because it is generated by elements of order n. Consider a term t =
= x[k1]

1 x[k2]
2 · · · x

[km−1]
m−1 xm, x1, . . . , xm ∈ X, xi � xi+1 and ki ∈ {1, . . . , n − 1} for every i.

The value of t in FX (when variables are identified with the respective generators) is

x[k1]
1 ∗ x[k2]

2 ∗ · · · ∗ x[km−1]
m−1 ∗ xm = xk1

1 xk2
2 . . . x

km−1
m−1xmx−km−1

m−1 . . . x
−k2
2 x−k1

1 .

This word is irreducible in the free product GX , so for different t’s we get different
values.

(2) Denote FX the subgroupoid generated by X in HX(∗(e,u)). Clearly, FX is left
n-symmetric, because it is generated by elements of order n. Consider a term t =
= x[k1]

1 x[k2]
2 · · · x

[km−1]
m−1 xkm

m , x1, . . . , xm ∈ X, xi � xi+1 and ki ∈ {1, . . . , n − 1} for every
i ≤ m − 1 and km ∈ {1, . . . , n}. The value of t in FX is

x[k1]
1 ∗ x[k2]

2 ∗ · · · ∗ x[km−1]
m−1 ∗ xkm

m = xk1
1 xk2

2 . . . x
km−1
m−1xmx−km−1

m−1 . . . x
−k2
2 x−k1

1 e−1+
∑

i ki .
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Again, for different t’s we get different values. �

Remark 6.2 Note that the normal form of (2) follows directly from (1) and The-
orem 5.4.

Remark 6.3 The free groupoid over X in the variety generated by LDI left quasi-
groups is isomorphic to the subgroupoid generated by X in the conjugation groupoid
of the free group over X (see [DráKM,94]). Consequently, for the variety of LDI left
quasigroups in the language {·, \}, there is a normal form similar to that from Theorem
6.1.

An important particular case is the variety of (2-)LSLD groupoids, and also its
medial subvariety [Ros,87].

Theorem 6.4 Let X be a non-empty set and (X,�) a linear order.
(1) Every term over X is LSLDI-equivalent to a unique term of the form

x1x2 · · · xn−1xn, x1, . . . , xn ∈ X and xi � xi+1, i = 1, . . . , n − 1.

(2) Every term over X is LSLD-equivalent to a unique term of the form

x1x2 · · · xn−1xn, x1, . . . , xn ∈ X and xi � xi+1, i = 1, . . . , n − 2.

(3) Every term over X is LSMI-equivalent to a unique term of the form

x1x2 . . . xn−1x, x1, . . . , xn−1, x ∈ X,
{x1, x3, . . . } ∩ {x2, x4, . . . } = ∅, x � {xn−1, xn−3, . . . }
x1 � x3 � x5 . . . and x2 � x4 � x6 . . .

(4) Every term over X is LSLDM-equivalent to a unique term of the form

x1x2 . . . xn−1x, x1, . . . , xn−1, x ∈ X,
{x1, x3, . . . } ∩ {x2, x4, . . . } = ∅,
x1 � x3 � x5 . . . and x2 � x4 � x6 . . .

Proof. (1) and (2) are immediate corollaries of Theorem 6.1. For (3) and (4), note
that mediality is equivalent to the identity

xyzu ≈ zyxu

and consider the subgroupoid F generated by X in the core of the free abelian group
over X. It is easy to check that different terms in the described form have different
values in F. �

Remark 6.5 Theorem 6.1 appeared in the author’s PhD thesis [Sta,04a] and has
never been published. Its partial corollary, Theorem 6.4, appeared in [Sta,05]. The
representation of free groupoids presented in the original paper was different: free
LSLDI groupoids were represented as subgroupoids of the core of free groups, see
Section 8.
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7. A n a l t e r n a t i v e d e s c r i p t i o n o f n - L S L D g r o u p o i d s

We show an equivalence of the variety of n-LSLD groupoids and the variety An of
algebras A(◦, f ) satisfying the following conditions:

(1) A(◦) is an idempotent n-LSLD groupoid;
(2) f is an automorphism of A(◦) of order n;
(3) f (x) ◦ y ≈ x ◦ y holds in A.

Note that (2) can be expressed by the identities

f . . . f︸�︷︷�︸
n

(x) ≈ x and f (x ◦ y) ≈ f (x) ◦ f (y),

hence An is a variety.

Lemma 7.1 Let G be an n-LSLD groupoid and put

x ◦ y = xyn and f (x) = xx.

Then G(◦, f ) ∈ An.

Proof. Note that xyn ≈ (xy)n and recall Lemma 3.4(3) saying that LI implies
(xm)n ≈ xm+n−1. Hence A(◦) satisfies LD, since x ◦ (y ◦ z) = x(yzn)n ≈ x · y((z)n)n ≈
≈ x ·yz2n−1 ≈LI x ·ynz2n−1 ≈LD (xyn)(xz2n−1) ≈ (xyn)(xzn)n = (x◦y)◦ (x◦z). Also, A(◦)
satisfies n-LS, because x ◦ . . . ◦ x ◦ y = x(x(. . . (xy)n . . . )n)n ≈ x . . . x(((yn)n) . . . )n ≈
≈ x . . . xyn2−n+1 ≈LS yn2−n+1 ≈LS y. Clearly, A(◦) is idempotent, since x◦x = xn+1 ≈ x.

Now, f n(x) ≈LI xn+1 ≈LS x, so f is a permutation of order n and f (x ◦ y) =
= (xyn)(xyn) ≈LD x(ynyn) ≈LI (xx)(y2n−1) ≈ (xx)(yy)n = f (x) ◦ f (y) shows that it is a
homomorphism. Finally, f (x) ◦ y = (xx)yn ≈LI xyn = x ◦ y. �

Lemma 7.2 Let A(◦, f ) ∈ An and put

x • y = f (x ◦ y).

Then A(•) is an n-LSLD groupoid.

Proof. We have x•(y•z) = f (x◦ f (y◦z)) ≈(2) f (x)◦( f 2(y)◦ f 2(z)) ≈(3) f 2(x)◦( f 2(y)◦
◦ f 2(z)) ≈LD ( f 2(x) ◦ f 2(y)) ◦ ( f 2(x) ◦ f 2(z)) ≈(2) f ( f (x ◦ y) ◦ f (x ◦ z)) = (x • y) • (x • z)
and x•. . .•x•y ≈(2) f (x)◦ f 2(x)◦. . .◦ f n(x)◦ f n(y) ≈(3) f (x)◦ f (x)◦. . .◦ f (x)◦ f n(y) ≈
≈LS f n(y) ≈(2) y. �

Lemma 7.3 Let G be an n-LSLD groupoid and G(•) the groupoid that results
through application first the construction from Lemma 7.1 and then that of Lemma
7.2. Then G(•) = G.

Proof. Straightforward computation. �

Lemma 7.4 Let A(◦, f ) ∈ An and let A(∗, g) be the algebra that results through
application first the construction from Lemma 7.2 and then that of Lemma 7.1. Then
A(∗, g) = A(◦, f ).

Proof. Straightforward computation. �
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Theorem 7.5 The varieties of n-LSLD groupoids and An are term equivalent.

Proof. It follows immediately from the preceding lemmas. �

Remark 7.6 The contents of this section are based on an idea of T. Kepka and
have never been published before.

8. L S L D o p e r a t i o n s o n g r o u p s

Let G be a group, f an involutory automorphism of G, g an involutory antiauto-
morphism g of G (i.e., a permutation of G such that g(xy) = g(y)g(x)) and u ∈ G. We
put for all a, b ∈ G

a ∗g b = ag(b)a (a)

a ◦ f ,u b = a f (a−1bu) (b)

a � f ,u b = a f (ba−1u) (c)

a �u b = aua−1b (d)

Let Z(G) denote the center of the group G.

Lemma 8.1 Let G be a group.
(a) G(∗g) is an LSLD groupoid, provided that a2g(a2) = 1 and ag(a) ∈ Z(G) for

all a ∈ G;
(b) G(◦ f ,u) is an LSLD groupoid, provided that u2 = 1 and f (u) = u;
(c) G(� f ,u) is an LSLD groupoid, provided that u2 = 1, ua = a f (u) and a f (a) ∈
∈ Z(G) for all a ∈ G;

(d) G(�u) is an LSLD groupoid, provided that u2 = 1.
Moreover, G(� f ,e) is medial. If G is abelian, then both G(∗g) and G(◦ f ,e) = G(� f ,e)
are medial too.

Proof. Straightforward coputation. �

Note that
(a) a ∗g a = a iff g(a) = a−1; hence G(∗g) is idempotent iff g is the inverse

operation of the group G; in this case, G(∗g) is the core of G.
(b) G(◦ f ,u) is idempotent iff u = 1; otherwise, it contains no idempotent elements.
(c) G(� f ,u) is idempotent iff u = 1; otherwise, it contains no idempotent elements.
(d) G(�u) is idempotent iff u = 1; in this case, it is a right zero band; otherwise,

it contains no idempotent elements.
Let A (B, C , D resp.) denote the variety generated by all G(∗g) (G(◦ f ,e), G(� f ,e),
G(�e), resp.). Let Aab denote the variety generated by all G(∗g), G an abelian group.

Theorem 8.2 (1) The varieties A ∩I and B ∩I coincide with the variety
of LSLDI groupoids.

(2) The varieties Aab∩I and C∩I coincide with the variety of LSMI groupoids.
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(3) The varieties A , B and D coincide with the variety of LSLD groupoids.
(4) The varieties Aab and C coincide with the variety of LSLDM groupoids.

Proof. (1),(2) Let X be a set. It is sufficient to find in each of the varieties a
groupoid, where all terms over X in the normal form from Theorem 6.4 have different
values. Let GX denote the free group over X and AX the free abelian group over X. It
is straightforward to check that the following groupoids have the property:

(a) GX(∗ι), where ι stands for the inverse operation;
(b) GX∪X̄(∗ f ,1), where X̄ is a copy of X and f is the ivolution that maps x↔ x̄ for

every x ∈ X.
(c) AX(∗ι) = AX(�ι,1), where ι stands for the inverse operation.

(3),(4) First, let’s prove the case of the variety D . Similarly as above, it is easy to
check that the free product of GX and Z2 equipped with the operation �u, where u is
the nonzero element of Z2, has the property that all terms over X in the normal form
from Theorem 6.4 have different values. To prove the rest, just notice that the circle
C2 is in any non-idempotent LSLD variety (see Corollary 4.3) and thus one can use
Theorem 5.4. �

Remark 8.3 One can consider a different non-idempotent generalization of the
core. Put

a � f b = a f (b)a
for all a, b ∈ G. Then G(� f ) is an LSLD grupoid, provided that f is an involutory
automorphism of G and it satisfies a2 f (a2) = 1 and a f (a) ∈ Z(G) for every a ∈ G.
Clearly, G(� f ) is idempotent iff f is the inverse operation. However, in this case,
G is abelian. Note that the variety generated by all G(� f ), G a group, is a proper
subvariety of LSLD groupoids, because it satisfies the equation

xyzxyzuzyxzyxv ≈ uv.

Remark 8.4 In this section, we gathered entirely from the paper [Sta,05].

9. S u b d i r e c t l y i r r e d u c i b l e n o n - i d e m p o t e n t
L D l e f t q u a s i g r o u p s

We recall that, according to Corollary 4.4, there are very few simple non-idem-
potent LD left quasigroups. However, considering the subdirectly irreducible ones,
we find a relatively rich, though rather tame, structure. Its description is the topic of
the present section. The results were published recently as a (rather long) selfcon-
tained paper [Sta,08]. For this reason, we omit many details here, and some proofs
are rather sketchy. For a complete account, see the original paper.

We recall that a groupoid G is subdirectly irreducible, if it has the smallest non-
trivial congruence, called the monolith and denoted µG. We also recall that

I pG = {a ∈ G : aa = a} and KG = {a ∈ G : aa � a}
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are either empty, or strong left ideals in an LD left quasigroup G.

Lemma 9.1 Let G be a non-idempotent subdirectly irreducible LD left quasigroup.
Then KG contains no proper strong left ideal. Consequently, it contains no definable
proper subset.

Proof. Let I ⊂ KG be a proper strong left ideal in KG and denote ρI the set of all
(a, b) ∈ ip such that a = b or a, b ∈ I. This equivalence is a non-trivial congruence of
G. Now, apply the same to the strong left ideal J = KG � I, obtain ρJ and note that
ρI and ρJ have trivial intersection, contradicting subdirect irreducibility of G. The
second statement follows from Lemma 3.5. �

Theorem 9.2 Let G be a non-idempotent subdirectly irreducible LD left quasi-
group. Then there is a prime p and a number r such that the cycle type of G is {pr} or
{1, pr}. Consequently, the monolith of G is below γpr−1 .
Moreover, if G has term-definable left division, the monolith of G is γpr−1 .

Proof. First, assume that all non-trivial ip-blocks are infinite. Then γk � γl for
every k � l, and so there is an infinite decreasing sequence

γ2 ⊃ γ4 ⊃ · · · ⊃ γ2k ⊃ · · ·
with trivial intersection, a contradiction. So, let n be the least number ≥ 2 that ap-
pears in the cycle type of G. Then Kn = {a ∈ G : an+1 = a} is a strong left ideal and
thus Kn = KG. It means that the cycle type is {n} or {1, n}. If n = kl for some rela-
tively prime k, l, then γk and γl are non-trivial congruences with trivial intersection, a
contradiction. Hence n is a prime power and µG ⊆ γpr−1 .

If G has term-definable left division, consider the strong left ideal

I = {a ∈ G : (a, b) ∈ µG for some b � a}.
According to Lemma 9.1, I = KG and thus µG = γpr−1 . �

Let Aut(G) denote the automorphism group of a groupoid G and let

Autn(G) = {ϕ ∈ Aut(G) : ϕn = id}.
It is easy to check that Autn(G) is a left n-symmetric subgroupoid of the conjugation
groupoid of Aut(G).

Lemma 9.3 Let K be an idempotent-free LD left quasigroup and I be a left sub-
quasigroup of the conjugation groupoid of Aut(K). Let G be the disjoint union of I
and K. Then the following conditions are equivalent.

(1) The operations of I and K can be extended onto G so that G becomes an LD
left quasigroup with

ϕ · u = ϕ(u)
for all ϕ ∈ I, u ∈ K.

(2) LK
u ϕ(LK

u )−1 ∈ I and (LK
u )−1ϕLK

u ∈ I for all ϕ ∈ I, u ∈ K; here LK
u denotes the

left translation of u in K.
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If the conditions are satisfied, the operation on G is uniquely determined and

u · ϕ = LK
u ϕ(LK

u )−1 = LK
u ∗ ϕ

for all ϕ ∈ I, u ∈ K.
Moreover, G is n-LS, if and only if K is n-LS and ϕn = id for every ϕ ∈ I.

Proof. This is a rather long but straightforward computation. �

We will denote the groupoid G from Lemma 9.3 by I � K and call it the extension
of K by I.

I � K ψ v
ϕ ϕψϕ−1 ϕ(v)
u LK

u ψ(LK
u )−1 uv

The full extension of K is the extension Full(K) = Aut(K)�K and the full n-extension
of K is Fulln(K) = Autn(K) � K.

We are ready to prove the main theorem, describing the structure of non-idem-
potent subdirectly irreducible LD left quasigroups.

Theorem 9.4 Let G be a non-idempotent subdirectly irreducible LD left quasi-
group. Then G embeds into Full(KG) by an injective homomorphism Φ defined

Φ(u) = u for u ∈ KG and Φ(a) = La|KG for a ∈ I pG.

Moreover, if G is n-LS, then it embeds by Φ into Fulln(KG).

Proof. Using Lemma 3.2, it is easy to check that the mapping Φ is a homomor-
phism. To prove injectivity, we define an equivalence α on G by setting (a, b) ∈ α
iff a = b or a, b are idempotent and La|KG = Lb|KG . This is a congruence of G and
the intersection of α and ip is trivial. Hence α is trivial and La|KG � Lb|KG for all
idempotent elements a � b.

Finally, if G is n-LS, then it embeds into Fulln(KG), because (La)n = id. �

It follows that every subdirectly irreducible LD left quasigroup is isomorphic to
some I � K, where K is an idempotent-free LD left quasigroup and I is a left sub-
quasigroup of the conjugation groupoid of Aut(K). In further text, we will address
this situation by saying that G = I � K.

Let k, � be positive integers. Denote C(k, �) the set

{0, . . . , k − 1} × {0, . . . , � − 1},
P(k, �) the group of all permutations π on the set C(k, �) such that

π(i, a) = ( j, b) implies π(i, a + 1) = ( j, b + 1)

(here addition means mod �) and

Pn(k, �) = {π ∈ P(k, �) : πn = id}.
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Corollary 9.5 Let G be a non-idempotent subdirectly irreducible LD left quasi-
group of cycle type {1, pr} with k non-trivial ip-blocks. Then

|G| ≤ kpr + |P(k, pr)| = kpr + k!(pr)k.

Moreover, if G is n-LS, then

|G| ≤ kpr + |Pn(k, pr)|.
The upper bound on the number of idempotent elements is optimal. For every k

and pr, there is a subdirectly irreducible LD left quasigroup G of cycle type {1, pr}
with k non-trivial ip-blocks such that |G| = kpr + |P(k, pr)|. The bound is optimal also
in the case of n-LSLD groupoids, provided n has a proper divisor not greater than k
(and indeed pr | n, for otherwise there is no such n-LSLD groupoid).

Example 9.6 Let K = C(k, pr) and put

(i, a) · ( j, b) = ( j, b + 1)

for every 0 ≤ i, j < k and 0 ≤ a, b < pr. Easily, K is an LD left quasigroup and
Aut(K) = P(k, pr). Moreover, K is n-LS iff pr | n, and Autn(K) = Pn(k, pr). Thus
|Full(K)| and |Fulln(K)| attain the upper bound from Corollary 9.5. One can prove that
Full(K) and Fulln(K) are subdirectly irreducible whenever n is divisible by pr and by
some number q with 1 < q ≤ k (use Theorem 9.10).

The upper bound for n-LSLD groupoids is not necessarily reached when k is too
small, i.e. when no 1 < q ≤ k divides n. For example, we prove that there is no
subdirectly irreducible 3-LSLD groupoid (of cycle type {1,3}) with two non-trivial
ip-blocks, regardless the number of idempotent elements. First, note that P3(2, 3)
is not transitive and the sets {i} × {0, 1, 2}, i = 0, 1 are its orbits. Second, note that
there is only one (up to isomorphism) two-element idempotent LD left quasigroup
(see Example 2.6) and thus every idempotent-free 3-LSLD groupoid K with two ip-
blocks contains two proper (strong) left ideals (namely, each of the two ip-blocks)
and so does Full3(K). Hence, according to Lemma 9.1, Full3(K) is not subdirectly
irreducible.

We also note that the above considerations are not limited to finite groupoids; if k
is an infinite cardinal number, then the upper bound on the number of idempotents in
a subdirectly irreducible LD left quasigroup with k (finite) blocks is 2k and this bound
is reached by a simple modification of Example 9.6. (The condition “q | n for some
1 < q ≤ k” becomes trivial here.)

We finish the section with a couple of properties of subdirectly irreducible LD left
quasigroups. Proofs are omitted, see [Sta,08].

Let G be an LD left quasigroup and k ≥ 1. We define a mapping

ρk : G → G, ρk(a) = ak.

This is an automorphism of G, because (xy)k ≈LD xyk ≈LI xkyk. Moreover, ρk com-
mutes with any automorphism ϕ of G, because ϕ(ak) = ϕ(a)k for every a ∈ G. Con-
sequently, {ρk} is a one-element strong left ideal in Full(K) for any idempotent-free
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LD left quasigroup K. If G is a subgroupoid of Full(K), we will denote G− the sub-
groupoid G � {ρk : k ∈ N}.

Proposition 9.7 Let G = I � K. Then G is subdirectly irreducible, if and only if
G− is subdirectly irreducible.

Proposition 9.8 Let G1 = I1 � K and G2 = I2 � K be non-idempotent LD left
quasigroups with I1 ⊆ I2. If G1 is subdirectly irreducible, then G2 is so.

The following theorems settle conditions, when an idempotent-free LD left quasi-
group possesses a subdirectly irreducible extension.

Theorem 9.9 Let K be an idempotent-free LD left quasigroup. The following
statements are equivalent:

(1) There is a subdirectly irreducible LD left quasigroup G with KG = K.
(2) Full(K) is subdirectly irreducible.
(3) Full(K)− is subdirectly irreducible.

The three statements are implied by
(4) There is a congruence ν of K such that every non-trivial Aut(K)-invariant

congruence of K contains ν.
Moreover, if K has term-definable left division and cycle type {pr}, then each of the
four statements is equivalent to

(5) Every non-trivial Aut(K)-invariant congruence of K contains γpr−1 .

Theorem 9.10 Let K be an idempotent-free n-LSLD groupoid of cycle type {pr}.
The following statements are equivalent:

(1) There is a subdirectly irreducible n-LSLD groupoid G with KG = K.
(2) Fulln(K) is subdirectly irreducible.
(3) Fulln(K)− is subdirectly irreducible.
(4) Every non-trivial Autn(K)-invariant congruence of K contains γpr−1 .

Remark 9.11 The study of subdirectly irreducible LSLD groupoids was initi-
ated by T. Kepka [Kep,94] and the restriction of the results of this section to LSLD
groupoids was published by T. Kepka, E. Jeřábek and the author in [JeřKS,05], to-
gether with many examples. The results were generalized to the present form in
[Sta,08], where one also finds a list of small subdirectly irreducible LD left quasi-
groups.

10. F u r t h e r r e s u l t s

We say that a left quasigroup G has the left inverse property, if for every a ∈ G
there is an element b ∈ G such that (La)−1 = Lb. In other words, such that a\u = bu
for every u ∈ G. (Hence b may be considered as “a−1”.)
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Proposition 10.1 Every LD left quasigroup G can be embedded into an LD left
quasigroup H such that for every integer n and for every a ∈ H, there is b ∈ H with
(La)n = Lb.

Proof. Let H = G × Z and put (a, k) · (b, l) = (a[k]b, l). Clearly, a �→ (a, 1) is an
embedding of G into H. The groupoid H is a left quasigroup, since any left translation
L(a,k) acts on each G × {l} like the permutation (La)k. It is left distributive, since
(a, k) · ((b, l) · (c,m)) = (a, k) · (b[l]c,m) = (a[k]b[l]c,m) =LD ((a[k]b)[l]c,m) = (a[k]b, l) ·
(a[k]c,m) = ((a, k) · (b, l)) · ((a, k) · (c,m)). And for every integer n and (a, k) ∈ H, we
claim that (L(a,k))n = L(a,kn). Indeed, (a, k)[n] · (b, l) = (a[kn]b, l) = (a, kn) · (b, l). �

Corollary 10.2 Every LD left quasigroup can be embedded into an LD left quasi-
group with the left inverse property.

In fact, to obtain just the left inverse property, one can do slightly better: restrict
the second coordinate to ±1 and obtain a smaller H = G × {1,−1}.

There is a connection between congruences of an LD left quasigroup and normal
subgroups of its left multiplication group.

Proposition 10.3 Let G be an LD left quasigroup.
(1) For a congruence ρ of G, put Nρ = 〈LaL−1

b : (a, b) ∈ ρ〉. Then Nρ is a normal
subgroup of LMlt(G).

(2) For a normal subgroup N of LMlt(G), put (a, b) ∈ ρN, iff there is ϕ ∈ N such
that ϕ(a) = b. Then ρN is a congruence of G.

Proof. (1) It is sufficient to show that LcLaL−1
b L−1

c ∈ Nρ for every (a, b) ∈ ρ and
c ∈ G. Due to Lemma 3.3(2), this expression is equal to LcaL−1

cb and indeed (ca, cb) ∈
∈ ρ.

(2) Clearly, ρN is an equivalence on G. Let (a, b) ∈ ρN and c ∈ G. We have
bc = ϕ(a)c = ϕ(a)(a\ac) = Lϕ(a)L−1

a (ac) = ϕLaϕ
−1L−1

a (ac), and so (ac, bc) ∈ ρN ,
because ϕ ∈ N and, by normality of N, also Laϕ

−1L−1
a ∈ N. Further, cb = cϕ(a) =

= ϕ(ϕ−1(c)a) = ϕ(ϕ−1(c)(c\ca)) = ϕLϕ−1(c)L−1
c (ca) = LcϕL−1

c (ca), and so (ca, cb) ∈
∈ ρN , because LcϕL−1

c ∈ N. �

Remark 10.4 Both statements appeared in the author’s PhD thesis [Sta,04a].
Proposition 10.3 is a straightforward generalization of observations of H. Nagao
[Nag,79] for LSLD groupoids.
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In the paper, commutative semigroups with almost transitive endomorphism semirings are
investigated.

In many classical situations, endomorphisms and/or automorphisms operate tran-
sitively on some algebraic structures. Such considerations appeared e.g. in our inves-
tigation of commutative semigroups that are simple over their endomorphism semir-
ings (see [1]). In this note, we present a slight generalization of the transitive action.

Throughout the paper, let A = A(+) be a commutative semigroup and E =

= End(A(+)) be the full endomorphism semiring of A (clearly, E is a unitary semir-
ing and A is a left E-semimodule). Further, Aut(A) is the group of automorphisms of
A(+), N denotes the set of positive integers and N0 is the set of non-negative integers.
As usual, 0 = 0A (o = oA, resp.) will denote the neutral (absorbing, resp.) element
of A and 0A ∈ A (o ∈ A, resp.) means that A has the neutral (absorbing, resp.) ele-
ment. An element a ∈ A is idempotent if a = a + a and Id(A) denotes the set of all
idempotent elements. A is a semilattice if A = Id(A). A subset I of A is an ideal if
I � ∅ and A + I ⊆ I. A subsemigroup B of A is fully invariant if f (B) ⊆ B for every
f ∈ E. We shall say that A is ems-simple if |A| ≥ 2 and |B| = 1 whenever B is a fully
invariant subsemigroup with B � A (then B = {a} for some a ∈ Id(A)).
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