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On Separating Sets of Words V

VACLAV FLASKA, TOMAS KEPKA, JUHA KORTELEINEN
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A locally final result concerning transitive closures of special replacement relations in free
monoids is proved.

1. Introduction

This article is an immediate continuation of [1], [2], [3], and [4]. References like
1.3.3 (I1.3.3, 1I1.3.3, IV.3.3, resp.) lead to the corresponding section and result of [1]
([2], [3], [4], resp.) and all definitions and preliminaries are taken from the same
source.

2. Technical results (a)

Troughout this note, let Z C A* be a strongly separating set of words and let
Y : Z — A* be a mapping.

Lemma 2.1 Letr, s,t € A* be reduced words such that neither rt nor ts is reduced.
Then:
(1) rt = riz1s1 and ts = ryzps0, where 71,20 € Z and ry, 1, 51,50 € A* are
reduced.
(1) r =rir3, S = 8§35, 21 = 131, 20 = §183 and t = rt18y, t; € A", 11 is reduced.
>ii1) rp, 51,713,583 € A |zl =2 2, |zo] = 2 and |t] > 2.
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@(iv) rts = riz1t12282 and tr(rts) = 2.
W) If t = Y(zo0) for some zy € Z, then the ordered triple (z1, 20, 22) is disturbing
(see 1l.7).

Proof. See1.6.2 and 11.7. O

Corollary 2.2 Letr, s,t € A* be reduced. Then either rt is reduced or ts is reduced,
provided that at least one of the following three cases holds:
| <1;
(2) rts is meagre;
(3) alph(rts) € AU {&}.

Lemma 2.3 Assume that, for every z € Z, either W(z)| < 1 or ¥(z) is reduced.
Furthermore, assume that the equivalent conditions of 11.7.3 are satisfied (e. g., if
W) CAUl{elorZ CA). Ifz1 € Zandr,s € A" are reduced, then either nj(z;) or
W(z1)s is reduced.

Proof. Combine 2.1(v) and 11.7.3. O
3. Technical results (b)

In this section, let x,y € A*, z1,...,zn € Z, m > I’le""’Z;z €Z,n>1,z = p;s,
i=1,2,...,m, z} =rjq;, j=12,....,n,r =rirp---rpand s = s, - - 5251. We will
assume that sx = yr.

Lemma 3.1 The following conditions are equivalent:
@) I < Ixl.
(1) Is| < [yl.
(iii)) x =tr and y = st for somet € A*.

Proof. Obvious. O
In the following six lemmas, assume that |x| < |r| (or, equivalently, |y| < |s|).

Lemma 3.2 r = tx and s = yt for some t € A*

Proof. Obvious. m|
Lemma 3.3 Assume that |s,| < |y|. Then:
1) m>2.
(i1) There is uniquely determined k such that 1 < k <m and |s,, - - - spe1] < Y <
<|sm -+ Skl

(iii) There is uniquely determined | such that 1 < | < n and |yr;-- 11| <
<|Sp--- skl < yri--- 1yl (here, yri-- 1y =y forl=1).

(iv) pSg-1---S1x=qr;---ry, where p = Sy, -+ spand q = yry---r-1 (p = s and
px=gqr;---ryfork=1;,qg=yforl=1).

) lgl < |pland p = qu, u € A*.

Vi) usg—y---syx=r;---ry(ux=r;---ryfork=1).
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Proof. We have [s| = s, + -+ [s1] + x| = |yl + |1l + -+ |ral, Is0] < |yl and
|x| < |ri|+ -+ |r,|. Consequently, |s,|+ |x| < |y| + |ri| + -+ |ry] and m > 2. The
existence of the uniquely determined number k follows from the inequalities |s,,| < [y|
and [y| < [s|. If |y - - - sl < |yryl, we put I = 1. If [yry| < |sy, - - - s¢l, then the existence
of the uniquely determined number / follows easily. The rest follows from the equality
SmcS2S1X = Yriry Iy, [m}

Lemma 3.4 Assume that |s,| < |y| (see 3.3). Then:

() =z =sk=rand py=q = &

() Ifk > 2andl < n, thenm > 3, n > 2, S_1-+-S1Xx = 1y - r, and
Smcec Sge1 =Y cccre (= y forl=1).

(i) Ifk > 2andl = n, thenm > 3, s = yr, s4_1 = -+ = 8§ = X = € and
Smt Skrl =Y Ipey (Y forn=1).

(v) Ifk=1andl < n, thenn > 2, x =ry -1y S=yri---rpand Sy -5y =
=yri---r- (=yforl=1)

V) Ifk=1andl =n, thens = yr, x =cand s;,---5y = yry---1ry—1 (= y for
n=1).

Proof. f Il < lul then lyry - ril = lgl + Iril < lgl + lul = Ip| = Isw---sil; a
contradiction. Thus |u| < |rl, r; = uuy, Sg1 -+ $1X = wirpy -+~ ra, 3 = 11q; = UU1G)
and s, - Sy = p=qu=yr, - r_iu.

If [s¢] < [ul then [y + [u] < |g| + [ul = |pl = Ism - Ske1l + skl < s -+ Skl + |u| and
[y| < |Spm -+ Ske1l, @ contradiction. Thus |u| < [sl, sk = uslt, Sy -+ Sgp1Udy = yry -+ 1y
and Zk = PkSk = PruxU.

We have proved that z; = pysy = prupu and z; = uu1q;. Since u # &, it follows that
% =u=z,and p = q; = u; = up = & Then sp = zx = 77 = r; = u. By 3.3 (vi),
USj—1-+-S1x = 17+ 1,. Consequently, sy ---s1x = 1411, fork > 2and [ < n;
Sp-1 =--=sy=x=¢gfork>2,l=n,x=ry1---r,fork=1,1 < n; x = ¢ for
k=1,1=n.

Ifk>2and! < n, then psg_y -+ $1Xx = Sy, -+ S1x = yry---rpimplies p = yry---1;.
But p = s,,--- s¢ and s = ;. Thus s,, - - - Sg41 = yry - -~ r—; in this case. The rest is
similar. ]

Lemma 3.5 Assume that |y| < |s,,|. Then:
(1) There is uniquely determined | such that 1 <[ < nand |yry---ri_1| < |sul <
<|yry---r (here, yry---ri_y =y forl=1).
(i1) pSp—1:---S1x = qry---ry, where p = s,, and g = yri---r_1 (p = s and
px=gqr;---r,form=1;,g=yforl=1).
(iii) |g| < |pl and p = qu, u € A*.
(v) uspy—1---s1x=rp--ry(ux=ry---ryform=1).

Proof. Similar to that of 3.3. O

Lemma 3.6 Assume that |y| < |s,,| (see 3.5). Then:
() zZm=z,=Sm=rand p, =q = &
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(xvi)) Ifl=m(=k)and 1 <l <n,thenn >3, x=ry;---rpandy=ry =---

() Ifm>2andl <n, thenn>72, Sy SiX =" -1pandy=r =--- =
=r_1=¢g(y=¢forl=1).

(i) fm>2andl =n,then sy = -+ =85 =X=y=Fr =+ ="ry| =&
(Sp—1 =---=8=x=y=¢cforn=1).
v) Ifm=1landl <n, thenn>2, x =ry---rpandy=r =---=r_] =€
(y=¢eforl=1)
W) Ifm=1andl=nthens=yrandx=y=r=---=r,_1=€(x=y=¢
forn=1).
Proof. Similar to that of 3.4. O

Lemma 3.7 There are uniquely determined k and | such that:
) 1<k<mandl1<l<n
(i) %=z =sx=randp,=q, =&
(i) 5y -+~ Seat] < Iy] < 15w -+ 5ul (5 -+ Sksr = & for k = m).
(V) lyri--real <lspe- sl < lyro--ml (yry - rep =y for 1= 1).
W Ifl<k<mandl <l<n thenm>3,n>3, S-S X="Fy- I, and
St Skl = YILc T

i) Ifl <k<mandl <l=n,thenm>3,n>2, 8541 =---=51=x=¢&and
Sm Sk+1 = Y1 Tp-1-

i) If l <k <mand 1 =1l<n, thenm >3, n>2, S_1--S1x =ry--r,and
Sm Sk+1 = Y-

(viii) If l <k <mand 1 =n(=1), thenm > 3, sx_1 = --- =51 = x = €and
Sm Sk+1 = Y.

(x) Ifl<k=mand 1 <l<n thenm>2,n2>3, Sy_1 - -S1X =" Fr,and
y=rn=--=r1-1=¢&

X)Ifl<k=mandl <l=nthenm>2,n>2 sy 1 =---=85=x=y=
=r=-"=r,-1 =€&

xi) Ifl<k=mand1 =1l<n,thenm >2,n>2, Sy_1---S1X="ry -1, and
y=e&

xii)) Ifl <k=mand1 =n(=1),thenm=>2,§,.; =--=s=x=y==¢&

xii) If 1l =k <mand1 <1l < n, thenm > 2, n > 3, x = ry---r, and
sm...S2:yrl...rl_l'

xiv) Ifl =k <mand 1 <l =n,thenm >2,n>2 x=c¢cand S, -5, =
=yrycccrp-t-

xv) Ifl=k<mandl =l<n thenm>2,n>2, x=ry---r,and Sy --- 53 =Y.

(xvi) Ifl=k<mand 1 =n(=1),thenm>2, x=¢cand s;, -+ 55 = y.

=Tri-1 =¢&.

(xvil) Ifl=m(=k)and 1 <l=n,thenn>2, x=y=r = =r,.] = €&

54

xix) Ifl=m(=k)and1 =1l <n, thenn>2, x=ry---r,andy = &.
xx) Ifl=m(=k)and1 =n(=1), thenx =y =¢.

Proof. Combine 3.4 and 3.6. O



Proposition 3.8 x = tr and y = st for some t € A* (see 3.1), provided that at least
one of the following six conditions holds:

(1) m = 1and|z)] < yl;

(2) n=1and|z]| < |xl;

(3) All the words sy,...,s, are reduced;

4) All the words ry,...,r, are reduced;

(S) z#foralll <i<mand1 < j<n;

(6) si#rjforalll <i<mandl < j<n;

Proof. The result follows easily from 3.7. O

4. Technical results (c)

In this section, let r,s,7 € A* be reduced words such that (rs,) € 7. We have
rs = rozoSo, 20 € Z, ro, So reduced. By 1.6.2, r = rypg, s = qoso and zg = poqo, where
Po»>qo € A* are reduced (then |zg| > 2).

Since (rs,t) € 7, there is a p-sequence wg, Wi, ..., Wy, m > 1, such that wy = rs
and w,, = t. Clearly, tr(wg) = 1, tr(wy) > 1, ..., tr(w,—1) > 1 and tr(w,,) = 0. Now,
we will assume that tr(w;) = 1 fori = 2,...,m — 1 (cf. 11.6 and 111.4). Consequently,
w; = riz;8i, 2 € Z, r;, sireduced, i =0,1,...,m—1.

Lemma 4.1

(1) rs = res = wg = rpzpSo.
(1) rip(zi)si = wix1 = rig1Zis18i41 forevery i, 0 < i <m— 2.
(111) t=wy, = rm—ll//(zm—l)sm—b

Proof. Obvious. O

Lemma 4.2 Let 0 < i < m — 2. Then just one of the following three cases takes
place:
(1) rap(z;) is reduced, Y(z;)s; is not reduced, riy1 = rip.,,, ¥(2) = Pl Pi+1s
Si = Qiv1Si+1s Zivl = Pin1Qivls TW(Z) = 1Pl Pivt = T Piv1 and Y(z;)s; =
= P} Zis1Siss Phyy € AT and piv1, qiv1 € AT (P, Pist, Giv1 reduced);
(2) rip(z;) is not reduced, Y(z;)s; is reduced, ri = ris1piv1, Y(Z) = qin1q,,
Sitl = iy S Zivl = Pir1Givls TW(Z) = Fin1Zis1qh,, and Y(zi)Si = qiv1q),, Si =
= qis18is1, 4., € A" and piy1,qic1 € AT (4., Piv1, giv1 reduced);
(3) Both rip(z;) and y(z;)s; are reduced, r; = rix1piv1, Si = qir15ir1 and Zisy =

= Pin1¥(2)qis1-
Proof. The word ri(z;)s; = ris1Zis15i+1 is meagre, and hence it follows from 2.2
that at least one of the words r/(z;) and ¥(z;)s; is reduced. The rest is easy. O

Lemma4.3 LetO<i<m-2.
(i) If4.2(1) holds and |y(z;)| < 1, then Y(z;) = pir1 € Aand p), | = €.
(i) If4.2(2) holds and |y(z;)| < 1, then Y(z;) = qis1 € Aand q., | = &.
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Proof. Obvious. O

In the remaining part of this section, we will assume that p} , = & (q},, = &, resp.)
whenever 0 < i < m — 2 and 4.2(1) (4.2(2), resp.) is true.

If 4.2(1) is satisfied, then ¥(z;) = pir1, i = Fiv1s Si = Giv1Sis1s Ziv1 = Y(2)Gir1
and we put g;;1 = € and hiy1 = g;41. Then ziy1 = g1 (zhiv1, i = rip18i+1 and
Si = hiz18i41.

If 4.2(2) is satisfied, then ¥(z;) = gir1, i = Fiv1Piv1s Si = Sivls Zisl = Pir1¥(2)
and we put g;y1 = pi+1 and hiy = e Again, Zivy = gim¥(z)hiv1, i = riv18i+1 and
§i = hiz18i41.

If 4.2(3) is satisfied, then r; = riv1pic1, Si = Giv18i+1 and zi1 = pi¥(Z)qiv1 and
we put giv1 = pis1 and hiyp = qiy1. Asusual, ziyyp = g Y(z)his, 1 = riv1giv1 and
§i = hiz18i41.

Furthermore, we put go = po and hy = ¢, so that zo = goho = goeho. Finally, we
put g,, = r,—1 and h,, = s,,1, so that t = g, W (1) -

Notice that all the words g, ..., g, and hy, ..., h,, are reduced.

The following three lemmas are easy.

Lemma 4.4
(i) z0 = goho = gocho, r = rogo and s = hyso.
(i) If1 <i<m—1, then z; = gp(zi—1)h;, ricy = rig; and si-) = h;s;.
(111) r= gmlr//(szl)hm-
@iv) All the words gy, ...,gm and hy, ..., h,, are reduced.
V) r=gm---g180and s = hohy - - - hy,.

Lemma 4.5 Put ¥’ = g,1---8180, 8" = hohy -+ -hp, ¥’ = gpu-1---81, s =
=hy - huy (" =e=5"ifm=1). Then:
(1) r=gur and s = §'hy,.

(1) rs = g’ s'hy,.

(i) s’ =r"z9s".

Av) (r's' Y(zm-1)) € T.

(V) (rs', gmp(zm-1)) € T.

(Vl) (V’S, w(zm—lhm)) €T

Lemma 4.6
(i) Ift = r, then r = gu(zm-1)hm and (guiy(Zm-1)hmhohy - - - -1, g (Zm-1)) =
=(rs', gm¥(Zm-1)) € T.
(i) Ift = s, then s = guiy(Zm—1)hm and (gm-1 - - - £1808m¥ Zm— 1> Y(Zm—1)hm) =
= (s, w(szl)hm) €T
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5. Technical results (d)

In this section, we will assume that Y(Z) C A U {&}.
Letr,s,t, p,q € A" be reduced words such that (rt, p) € 7 and (¢s, g) € 7. Then, of
course, neither rt nor ¢s is reduced and r, s, € A*.

Lemma 5.1 There are m > 1, 29,...,2u-1 € Z and reduced words gy, ..., gm,
ho,...,h, € A" such that:
(i) zo = goho.

(i) If 1 <i<m-—1, then z; = giy(zi_1)h,.

(ii)) p = gm¥(@m-1)hm.

(iv) 7= gm - 8180

V) t =hohy---hy,.

(Vl) (I"h()h] e hm—l,gmw(zm—l)) €T

Proof. Use 4.4 and 4.5(v). m]

’
m’ —1

Lemma 5.2 There are m’ > 1, z;,...,2
hy, ..., h,, € A" such that:
() z5 = gohy-
() If1 <i<m' -1, thenz. = gip(z_)h..
(iii) ¢ = g, W(2y_ .
@Av) s=hohy---h,.
V) 1=g, 88
(vi) (g,_, 8185 ¥(z,,_)h,) €T

€ Z and reduced words g, ...,g,,.

Proof. Use 4.4 and 4.5(vi). m]

Lemma 5.3
@) hohy---hm =1=g,, &8
(i) There is f € A" such that g,,, = hohy -+~ hy1f and hy, = fg,,_| - 818

Proof.
(i) See 5.1(v) and 5.2(v).
(ii) Combine (i), 3.1 and 3.8.

O
Lemma 5.4 Putt; = hohy---hy1, b = fandtz; = g, , | --- g8, Then:
(1) t = 3.

(i) (rt1, gmyp(zm-1)) € 7.

(i) (13s,4(z,_Dh,,) € 7.

(IV) p= gm(//(zm—l)lét}

(V) g =tiny(z,_Dh,.
Proof. Combine 5.1(iii), 5.2(iii) and 5.3. O
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6. Technical results (e)

Assume that /(Z) C A and v is strictly length decreasing (equivalently, ZNA = 0).
By II1.6.5, for every w € A" there exists a uniquely determined reduced word r such
that (w, r) € &.

Proposition 6.1 Let r,s € A* be reduced and let p,q € A* be such that pg # €.
Then either (rpq,r) & & or (gps, s) € &.

Proof. Since pg # €, we have rpg # r and gps # s. Now, proceeding by contra-
diction, assume that (rpg,r) € T, (gps, s) € T and |rs| is minimal. Of course (II1.6.4,
I11.6.5), we can assume that both p and g are reduced. The rest of the proof is divided
into five parts:

(i) Let ¢ = €. Then p # &, (rp,r) € T and (ps,s) € 1. According to 5.4,
p = pip2p3, (nbu) € 7, (p3s,v) € T, ¥ = upaps, S = p1p2v, u, v reduced. We get
(upap3pi,u) € 7, (p3p1p2v,v) € T and, if (p3p1, p4) € &, where p4 is reduced, then
(upapa,u) € €, (papav,v) € £.If py = € = py, then p3p; # e(since p # €)and py # €
(since € ¢ Y(Z)), a contradiction. Thus pyps # € and (upyps, u) € T, (p4p2v,v) € T.
But [u| + |[v| < |r] + |s], a contradiction with the minimality of |rs].

(i1) Let g = &. This case is analogous to (i).

(iii) Let p # € # g and r = r'q, where (rp,r’) € £ and r’ is reduced. Furthermore,
let (gp,t) € &, where t is reduced. Then ('gp,r') = (rp,1r’) € &, (Fgp,r't) € & (since
(gp. 1) € &), and hence (r't,7') € £ Similarly, (gps,ts) € & (since (gp,t) € &), and
hence (zs, s) € & (since (gps, s) € 7). Since gp # &, we have t # € and (+'t,1) € T,
(ts, s) € 7. But this is a contradiction since || + |s| < |r| + |s].

(iv) Let p # € # g and s = ¢gs’, where (ps, s’) € € and s’ is reduced. This case is
analogous to (iii).

(v)Letp # e #qgandr'qg # r, gs" # s, where r/, s’ are reduced and such that
(rp,r’) € £ and (ps, s”) € £&. We have (r'q,r) € T and (¢s’, s) € 7. According to 5.4,
q = 919293, (F'q1,u) € 7, (q35",v) € T, r = ugaqs and s = qq,v, u, v reduced. Now,
(rp,r’) € & implies (ug2q3pq1,1'q1) = (rpqi,r'q1) € &, and hence (ug2q3pq1,u) € 7.
Quite similarly, (g3pq1g2v,v) € 7. Finally, if (g3pq,,t) € & where ¢ is reduced, then
(ugat,u) € & and (tqyv,v) € & Of course, t # &, (ugat,u) € 1, (tgav,v) € T and
lu| + [v| < |r| + |s| (since g # &), a contradiction. O

7. Main result
Assume that ¥(Z) € A and y is strictly length decreasing.
Theorem 7.1 Let 71,25 € Z be such that 71 # 2o and W(z1) = a = Y(20) (a € A).
Furthermore, let r,s € A* and w € A*. Then either (w,rz1s) & & or (w,rzp8) & & (of
course, (rzis,ras) € p and (rzas, ras) € p).
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Proof. We can assume without loss of generality that both r and s are reduced.
If (w,rzis) € & and (w,rzps) € &, then P(rzys,rzas) # 0 (see IV.5) and we can
assume that w € Q(rz; s, rzps) (use IV.5.3). According to IV.6.1, either w = rz;xz;s,
(rzix,r) € 7, (x225,5) € T, x reduced or w = rzoxzys, (rzax,r) € 7, (x715,5) € T, X
reduced. In both cases, (rax, r) € £ and (xas, s) € &, a contradiction with 6.1. |

8. Examples

Example 8.1 Let z; = a?b?, 25 = a’bab®, r| = &, 1, = b*, 51 = a, s, = &,
r=a,s = bab? and t = b*a. Then all the words ry, 5, 51, 8, 1, S, t are reduced and
rat = a’b’a = riz1s1 and tas = b*a’*bab® = ryzys,. Furthermore, (rat,y(z1)a) € p
and (tas, b*y(22)) € p.

If Y(z1) = &, then (rat,a) € p. If Y(z1) = b?, then (rat,t) € p. If Y(z2) = a, then
(tas,t) € p.

Notice also that sat = bab*ab’a and tar = b*a® are reduced.
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