
Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek; Tomáš Kepka
Finitely generated commutative division semirings

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 51 (2010), No. 1, 3--27

Persistent URL: http://dml.cz/dmlcz/143643

Terms of use:
© Univerzita Karlova v Praze, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/143643
http://project.dml.cz


3

2010	ac ta universitatis carolinae – mathematica et physica�vol.  51, no. 1

Finitely Generated Commutative Division Semirings
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One-generated commutative division semirings are found.

The aim of this (partially expository) note is to find all one-generated (commuta-
tive) division semirings (see Theorem 8.5). In particular, all such semirings turn out
to be finite. To achieve this goal, we have to correct some results from [1] (especially
Proposition 12.1 of [1]) and to complete some results from [2]. Anyway, all the pre-
sented results are fairly basic and (with two exceptions) we shall not attribute them to
any particular source.

1. I n t r o d u c t i o n

A semiring is an algebraic structure with two associative binary operations (usually
denoted as addition and multiplication) such that the addition is commutative and the
multiplication distributes over the addition from either side. If the multiplication is
commutative, the semiring is called so. In the sequel, we consider only commutative
semirings.

A semiring S is called
– congruence-simple if S has just two congruence relations;
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– ideal-simple if S is non-trivial and I = S whenever I is an ideal of S contain-
ing at least two elements;

– a division semiring if S is non-trivial and contains an element w such that
S \ {w} ⊆ S a for every a ∈ S \ {w};

– a semifield if S is non-trivial and contains a multiplicatively absorbing ele-
ment w such that S \ {w} is a subgroup of the multiplicative semigroup of S ;

– a parasemifield if the multiplicative semigroup of S is a non-trivial group.
We denote by N the semiring of positive integers, by N0 the semiring of non-

negative integers, by Z the ring of integers, by Q the field of rational numbers, by Q+
the parasemifield of positive rational numbers, by Q+0 the semifield of non-negative
rational numbers, and by R the field of real numbers. Put R+ = {a ∈ R : a > 0} and
R− = {a ∈ R : a < 0}.

Notice that all semifields and parasemifields are ideal-simple division semirings.
On the other hand, zero multiplication rings of finite odd prime order are both con-
gruence- and ideal-simple, but they are not division semirings. Observe that every
division semiring has at most two ideals.

For a semiring S , let Ida(S ) = {a ∈ S : a + a = a}. Clearly, Ida(S ) is either empty
or an ideal of S . The semiring S is called

– additively idempotent if Ida(S ) = S ;
– almost additively idempotent if the set S \ Ida(S ) has at most one element.

1.1 Lemma. Let S be an almost additively idempotent semiring and S \ Ida(S ) =
= {w}. Put s = w + w. Then:

(i) s ∈ Ida(S ).
(ii) wa = sa for every a ∈ Ida(S ).

(iii) Either w2 = w and s2 = s or else w2 = s2.

Proof. It is easy. �

1.2 Lemma. Let P be a parasemifield. Put K = {a ∈ P : a + 1P � 1P} and
L = {a ∈ P : a + 1P = 1P}. Then:

(i) K ∪ L = P and K ∩ L = ∅.
(ii) K � ∅.

(iii) If a ∈ L and a � 1P, then a−1 ∈ K.
(iv) L + L ⊆ L and LL ⊆ L.
(v) If L � ∅, then L is a subsemiring of P.

(vi) K + L ⊆ K.
(vii) P is additively idempotent if and only if 1P ∈ L.

(viii) If P is additively idempotent, then K + P ⊆ K.
(ix) If P is additively cancellative, then L = ∅.

Proof. It is easy. �

1.3 Lemma. Let P be a parasemifield and e ∈ P. Put Ke = Ke and Le = Le, where
K and L are as in 1.2. Then:
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(i) Ke = {a ∈ P : a + e � e} and Le = {a ∈ P : a + e = e}.
(ii) Ke ∪ Le = P and Ke ∩ Le = ∅.

(iii) Ke � ∅.
(iv) If a ∈ Le and a � e, then a−1e2 ∈ Ke.
(v) Le + Le ⊆ Le and LeLe ⊆ Lee = Le2 .

(vi) Ke + Le ⊆ Ke.
(vii) P is additively idempotent if and only if e ∈ Le.

(viii) If P is additively idempotent, then Ke + P ⊆ Ke.
(ix) If P is additively cancellative, then Le = ∅.

Proof. It follows from 1.2. �

Denote by P the variety of universal algebras with two binary operations (addi-
tion and multiplication) and one unary operation x−1, determined by the equations of
commutative semirings and the equations of (multiplicatively denoted) commutative
groups. Clearly, there is a one-to-one correspondence between parasemifields and the
non-trivial algebras from P. In this paper we prefer to consider parasemifields as spe-
cial semirings, rather than elements of P. However, there could be a confusion if we
need to speak about generating subsets of parasemifields. We say that a parasemifield
P (or any semiring) is generated by a subset X as a semiring if P is the least subsemir-
ing of P containing X. We say that a parasemifield P is generated by a subset X as a
parasemifield if P is the least subparasemifield of P containing X.

Similarly, we need to distinguish between subsets of a ring generating the given
ring as a subsemiring or as a subring.

1.4 Lemma. Let P be a parasemifield. Then P is not one-generated as a semiring.

Proof. Since P is a variety, there exists a one-generated free object F in P. It is
easy to see that F is isomorphic to the parasemifield Q+ (considered as an element
of P). Also, it is easy to see that Q+ is congruence-simple. From this it follows that
Q+ is, up to isomorphism, the only non-trivial one-generated algebra in P. Of course,
Q+ is one-generated as a parasemifield. On the other hand, it is easy to see that it is
not one-generated as a semiring. �

The following folklore type result is usually attributed to I. Kaplansky.

1.5 Lemma. Let A be an infinite field. Then A is not finitely generated as a semiring.

2. A u x i l i a r y r e s u l t s o n c o m m u t a t i v e s e m i g r o u p s

In this section let S be a non-trivial commutative semigroup (denoted multiplica-
tively), containing an element w such that T = S \ {w} ⊆ S a for every a ∈ T . (Clearly,
T ⊆ S S .)

2.1 Lemma. If w = 1S ∈ TT, then S is a group.
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Proof. We have 1S = ab for some a, b ∈ T . If c ∈ T \ {a}, then a = cd for some
c, d ∈ T and 1S = cdb. Thus every element of S has an inverse in S , which means
that S is a group. �

2.2 Lemma. If w = 1S � TT, then T is a subgroup of S .

Proof. The result is clear for |T | = 1. If a, b are two distinct elements of T , then
ac = b and bd = a for some c, d ∈ T ; we get acd = a and then obviuosly cd = 1T ;
now it is clear that T is a subgroup of S . �

2.3 Lemma. If w � 1S and wa = a for all a ∈ T, then w2 = 1T ∈ T and T is a
subgroup of S .

Proof. Since w � 1S , we have w2 ∈ T and then w2 = 1T . Furthermore, bc = wbc
for all b, c ∈ T and it follows that bc ∈ T . Now it is easy to see that T is a subgroup
of S . �

2.4 Lemma. If wa0 � a0 for at least one a0 ∈ T, then 1T ∈ T.

Proof. We have a0 = a0b0 for some b0 ∈ T . For every c ∈ T there is a d ∈ S with
c = a0d and then cb0 = c. Thus b0 = 1T ∈ T . �

2.5 Lemma. If wa0 � a0 for at least one a0 ∈ T and w1T = a1 ∈ T, then a1 � 1T ,
wa = a1a for every a ∈ T, w2 = a2

1, S S ⊆ T and T is a subgroup of S .

Proof. We have wa = w1T a = a1a for every a ∈ T . Since wa0 � a0, we have
a1 � 1T . If b, c ∈ T , then bc = bc1T implies bc ∈ T and it follows that S T ⊆ T .

For every a ∈ T there is a d ∈ S with ad = 1T . If d = w, then 1T = aw = a1a and
we see that every element of T is invertible. Thus T is a group. Finally, a2

1 � a1 and
w21T = wa1 = a2

1. Thus w2 = a2
1. �

2.6 Lemma. If wa0 � a0 for at least one a0 ∈ T, w1T = w and 1T ∈ S w, then S is a
group.

Proof. We have 1T = 1S and the rest is clear. �

2.7 Lemma. If wa0 � a0 for at least one a0 ∈ T, w1T = w and 1T � S w, then
S w = {w} and T is a subgroup of S .

Proof. We have 1T = 1S and T is the set of invertible elements of S . Then, of
course, T is a subgroup of S . Since w is not invertible, we have S w = {w}. �

2.8 Proposition. Let S be a non-trivial commutative semigroup and w ∈ S be an
element such that T = S \ {w} ⊆ S a for every a ∈ T. Then either S is a group, or else
T is a subgroup of S and at least one of the following three cases takes place:

(1) w = 1S ;
(2) w1T = e ∈ T, w2 = e2 and wa = ea for all a ∈ T;
(3) wS = {w}.

Proof. Combine the preceding seven lemmas. �

math_10_1�indd   6 1�6�2010   20:40:34



7

2.9 Remark. If S is either a group or the two-element semilattice, then for an
arbitrary element w ∈ S the pair S ,w serves as an example for the above investigated
situation; in the semilattice case, with one choice of w we get the case 2.8(1) and with
the other one the case 2.8(3). If S is neither a group nor the two-element semilattice,
then the element w is unique and only one of the three cases 2.8(1),(2),(3) can take
place.

3. D i v i s i o n s e m i r i n g s – c l a s s i f i c a t i o n

Let S be a division semiring and and let w ∈ S be such that T = S \ {w} ⊆ S a
for every a ∈ T . If follows from 2.8 that the pair (S ,w) belongs to exactly one of the
following four types:

(I) S is a parasemifield;
(II) T is a subgroup of S (·) and w = 1S ;

(III) T is a subgroup of S (·), w1T = e ∈ T , w2 = e2 and wa = ea for all a ∈ T ;
(IV) T is a subgroup of S (·) and w is a multiplicatively absorbing element of S .
We say that S is of type (X) if there exists an element w ∈ S such that the pair

(S ,w) is of type (X). Clearly, the type of a division semiring is uniquely determined,
with just four exceptions: the two-element division semirings Z2, Z5, Z6, Z8 (see 4.1)
are of type (II) and of type (IV) at the same time.

If S is a parasemifield, then S is infinite and w can be any element of S . If S is
not a parasemifield, then the element w is uniquely determined by S together with the
specification of the type of S ; and if |S | ≥ 3, it is uniquely determined by S .

3.1 Example. Let S be a zero multiplication ring of finite prime order. Then S is
both congruence- and ideal-simple, but S is not a division semiring.

3.2 Example. Let S = {n
√

2 − m : n,m ∈ N0, n + m ≥ 1}. Define operations
⊕ and � on S by a ⊕ b = min(a, b) and a � b = a + b. Then S = S (⊕,�) is an
additively idempotent congruence-simple semiring that is not ideal-simple and that is
not a division semiring.

3.3 Example. The product S = Q+ × Q+ is a parasemifield, and hence S is an
ideal-simple division semiring. Of course, S is not congruence-simple.

3.4 Example. Let G be a commutative group (denoted multiplicatively), o � G
and S = G ∪ {o}. Put x + y = o for all x, y ∈ S and extend the multiplication of G
by xo = ox = o for all x ∈ S . Then S becomes a division semiring (moreover, a
semifield) and o is the only additive idempotent of S . If G is non-trivial, then S is not
congruence-simple.

3.5 Example. Let m be a non-negative integer. Put S = Z∪{w}where w is an element
not belonging to Z and define two binary commutative operations ⊕ and � on S as
follows: a � b = a + b for all a, b ∈ Z; w � x = x for all x ∈ S ; a ⊕ b = min(a, b)
for all a, b ∈ Z; w ⊕ a = min(0, a) for all a ∈ Z with a < m; w ⊕ a = w for all
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a ∈ Z with a ≥ m; finally, we define the element w ⊕ w to be either 0 or w. We
obtain two division semirings S = S (⊕,�) (they differ only by the value of w ⊕ w).
These division semirings are neither congruence- nor ideal-simple; they are almost
additively idempotent; only that one with w ⊕ w = w is additively idempotent.

4. A f e w c o n s t r u c t i o n s

4.1 Construction. The following eight semirings Z1, . . . ,Z8 are (up to isomorphism)
all two-element semirings:

+ 0 1

0 0 0
1 0 0

· 0 1

0 0 0
1 0 0

+ 0 1

0 0 0
1 0 0

· 0 1

0 0 0
1 0 1

Z1 Z2

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 0
1 0 0

+ 0 1

0 0 0
1 0 1

· 0 1

0 1 1
1 1 1

Z3 Z4

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 1
1 1 1

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 0
1 0 1

Z5 Z6

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 0

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Z7 Z8

All of them are congruence- and ideal-simple division semirings.
4.2 Construction. Let P be a parasemifield and let A be a subset of P such that
A + P ⊆ A, B + B ⊆ B and 1P + b = 1P for all b ∈ B, where B = P \ A.
4.2.1 Lemma.

(i) If B � ∅, then B is a subsemiring of P.
(ii) If b ∈ B and b � 1P, then b−1 ∈ A.

(iii) A is non-empty.
(iv) If 1P ∈ B, then P is additively idempotent.
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Proof. (i) Let b, c ∈ B. We have bc + b + c = b(c + 1P) + c = b + c ∈ B and hence
bc � A.

(ii) If b−1 ∈ B then b−1 = b−1(1P + b) = b−1 + 1P = 1P, so that b = 1P, a
contradiction.

(iii) follows from (ii) and (iv) is evident. �

Let w � P and S = P ∪ {w}. Define addition and multiplication on S (extending
the operations on P) by w = 1S (multiplicatively neutral in S ), w+a = a+w = 1P+a
for every a ∈ A and w + b = b + w = w for every b ∈ B. It remains to define the
element w + w = 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case, S will
be denoted by Z(P, A, 1). It is easy to check that S = Z(P, A, 1) is an additively
idempotent division semiring, (S ,w) is of type (II), P is a subparasemifield of S and
P is an ideal of S .

(2) With P arbitrary, put 2w = 1P+1P. In this case, S will be denoted by Z(P, A, 2).
It is easy to check that S = Z(P, A, 2) is a division semiring, (S ,w) is of type (II), P is
a subparasemifield of S , P is an ideal of S and S is not additively idempotent.
4.2.2 Lemma. Let S = Z(P, A, 1).

(i) S and P are the only ideals of S .
(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.2.3 Lemma. Let S = Z(P, A, 1).
(i) The equivalence ρ = idS ∪ {(w, 1P), (1P,w)} is a congruence of the semiring

S and S/ρ � P.
(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.2.4 Lemma. Let S = Z(P, A, 1) and let r be a congruence of the semiring S such
that r � P = idP. Then either r = idS or r = ρ (see 4.2.3).

Proof. If r � idS , then (w, e) ∈ r for some e ∈ P. Now, (c, ce) = (cw, ce) ∈ r for
every c ∈ P, and hence c = ce and e = 1P. Thus r = ρ. �

4.2.5 Lemma. Let S = Z(P, A, 1) where B � ∅ and r be a congruence of the semiring
S such that P × P ⊆ r. Then r = S × S .

Proof. There are a ∈ A and b ∈ B with (a, b) ∈ r. Then (1P+a,w) = (a+w, b+w) ∈
∈ r and r = S × S . �

4.2.6 Lemma. Let S = Z(P, A, 1) where B = ∅.
(i) η = (P × P) ∪ {(w,w)} is a congruence of S and S/η � Z6.

(ii) If r is a congruence of S with P × P ⊆ r, then either r = η or r = S × S .

Proof. It is easy. �
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4.2.7 Proposition. Let S = Z(P, A, 1) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:

(i) If B � ∅, then idS , ρ and S × S are the only congruences of S ; we have
idS ⊆ ρ ⊆ S × S and S/ρ � P.

(ii) If B = ∅, then idS , ρ, η and S × S are the only congruences of S ; we have
idS ⊆ ρ ⊆ η ⊆ S × S , S/ρ � P and S/η � Z6.

Proof. Combine the previous four lemmas. �

4.2.8 Proposition. Let S = Z(P, A, 1).
(i) The semiring S is finitely generated if and only if P is finitely generated (as a

semiring).
(ii) S is not one-generated.

Proof. It is easy. �

4.2.9 Lemma. Let S = Z(P, A, 2).
(i) S and P are the only ideals of S .

(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.2.10 Lemma. Let S = Z(P, A, 2).
(i) The equivalence ρ = idS ∪ {(w, 1P), (1P,w)} is a congruence of the semiring

S and S/ρ � P.
(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.2.11 Proposition. Let S = Z(P, A, 2) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:

(i) If B � ∅, then idS , ρ and S × S are the only congruences of S ; we have
idS ⊆ ρ ⊆ S × S and S/ρ � P.

(ii) If B = ∅, then idS , ρ, η and S × S are the only congruences of S ; we have
idS ⊆ ρ ⊆ η ⊆ S × S , S/ρ � P and S/η � Z2.

Proof. It is similar to the proof of 4.2.7. �

4.2.12 Proposition. Let S = Z(P, A, 2) and let R be the subsemiring of S generated
by the element w.

(i) If 1P ∈ A, then R = {w, 2P, 3P, 4P, . . . }.
(ii) If P is additively idempotent (e.g., 1P ∈ B), then R = {w, 1P}.

(iii) If P is not additively idempotent, then 1P � R.
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Proof. (i) and (ii) are easy. In order to prove (iii), it is sufficient to prove that for
any n ≥ 2, the element nP (the sum of n copies of 1P) is different from 1P. This is
clear for n = 2. Let n ≥ 3 and suppose that nP = 1P. Then nP+(n−2)P = 1P+(n−2)P,
i.e., a+a = a where a = 1P+(n−2)P. We see that P contains an additively idempotent
element. But then all elements of P are additively idempotent, a contradiction. �

4.2.13 Proposition. Let S = Z(P, A, 2).
(i) The semiring S is finitely generated if and only if P is finitely generated (as a

semiring).
(ii) S is not one-generated.

Proof. It is easy. �

4.2.14 Lemma. Let S = Z(P, A, 2). The semiring S is almost additively idempotent
if and only if P is additively idempotent.

Proof. It is obvious. �

4.3 Construction. Let P be a parasemifield, e ∈ P, and let A be a subset of P such
that A + P ⊆ A, B + B ⊆ B and e + b = e for all b ∈ B, where B = P \ A.
4.3.1 Lemma.

(i) BB ⊆ Be.
(ii) If b ∈ B and b � e, then b−1e2 ∈ A.

(iii) A is non-empty.
(iv) If e ∈ B, then P is additively idempotent.

Proof. (i) Let b, c ∈ B. We have bc = ae for some a ∈ P. Suppose that a ∈ A. Then
(b+ c)e = b(c+ e)+ ce = ae+ be+ ce = (a+ b+ c)e, so that b+ c = a+ b+ c ∈ A∩ B,
a contradiction. Thus a ∈ B.

(ii) If b−1e2 ∈ B then b−1e2 = b−1e(e + b) = b−1e2 + e = e, so that b = e.
(iii) follows from (ii) and (iv) is evident. �

Let w � P and S = P ∪ {w}. Define addition and multiplication on S (extending
the operations on P) by w2 = e2, wc = cw = ec for every c ∈ P, w+ a = a+w = e+ a
for every a ∈ A and w + b = b + w = w for every b ∈ B. It remains to define the
element 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case, S will
be denoted by Z(P, A, e, 1). It is easy to check that S = Z(P, A, e, 1) is an additively
idempotent division semiring, (S ,w) is of type (III), P is a subparasemifield of S and
P is an ideal of S .

(2) With P arbitrary, put 2w = 2e. In this case, S will be denoted by Z(P, A, e, 2).
It is easy to check that S = Z(P, A, e, 2) is a division semiring, (S ,w) is of type (III),
P is a subparasemifield of S , P is an ideal of S and S is not additively idempotent.
4.3.2 Lemma. Let S = Z(P, A, e, 1).

(i) S and P are the only ideals of S .
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(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.3.3 Lemma. Let S = Z(P, A, e, 1).
(i) The equivalence ρ = idS ∪ {(w, e), (e,w)} is a congruence of the semiring S

and S/ρ � P.
(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.3.4 Proposition. Let S = Z(P, A, e, 1) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:

(i) If B � ∅, then idS , ρ and S × S are the only congruences of S ; we have
idS ⊆ ρ ⊆ S × S and S/ρ � P.

(ii) If B = ∅, then idS , ρ, η = (P×P)∪{(w,w)} and S ×S are the only congruences
of S ; we have idS ⊆ ρ ⊆ η ⊆ S × S , S/ρ � P and S/η � Z3.

Proof. It is similar to that of 4.2.7 or 4.2.11. �

4.3.5 Lemma. Let S = Z(P, A, e, 1); denote by R the subsemiring of S generated by
the element w and by R1 the subsemiring of P generated by e. Then R ⊆ R1 ∪ {w}.

Proof. It is easy. �

4.3.6 Proposition. Let S = Z(P, A, e, 1).
(i) The semiring S is finitely generated if and only if P is finitely generated (as a

semiring).
(ii) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.3.7 Lemma. Let S = Z(P, A, e, 2).
(i) S and P are the only ideals of S .

(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.3.8 Lemma. Let S = Z(P, A, e, 2).
(i) The equivalence ρ = idS ∪ {(w, e), (e,w)} is a congruence of the semiring S

and S/ρ � P.
(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.3.9 Proposition. Let S = Z(P, A, e, 2) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:
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(i) If B � ∅, then idS , ρ and S × S are the only congruences of S ; we have
idS ⊆ ρ ⊆ S × S and S/ρ � P.

(ii) If B = ∅, then idS , ρ, η = (P×P)∪{(w,w)} and S ×S are the only congruences
of S ; we have idS ⊆ ρ ⊆ η ⊆ S × S , S/ρ � P and S/η � Z1.

Proof. It is similar to that of 4.3.4. �

4.3.10 Lemma. Let S = Z(P, A, e, 2); denote by R the subsemiring of S generated
by the element w and by R1 the subsemiring of P generated by e. Then R ⊆ R1 ∪ {w}.

Proof. It is easy. �

4.3.11 Proposition. Let S = Z(P, A, e, 2).
(i) The semiring S is finitely generated if and only if P is finitely generated (as a

semiring).
(ii) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.3.12 Lemma. Let S = Z(P, A, e, 2). The semiring S is almost additively idempotent
if and only if P is additively idempotent.

Proof. It is obvious. �

4.4 Construction. Let P be a parasemifield, 0 � P, and put S = P ∪ {0}. Define
addition and multiplication on S (extending the operations on P) by v0 = 0v = 0 and
v + 0 = 0 + v = v for all v ∈ S (so that 0 is additively neutral and multiplicatively
absorbing in S ). We denote S constructed in this way by Z(P, 0). One can easily
check that S = Z(P, 0) is an ideal-simple division semiring, (S , 0) is of type (IV) and
P is a subparasemifield of S . Of course, S is a semifield and 1P = 1S .
4.4.1 Lemma. Let S = Z(P, 0).

(i) If r is a congruence of P, then r ∪ {(0, 0)} is a congruence of S .
(ii) η = (P × P) ∪ {(0, 0)} is a congruence of S and S/η � Z5.

Proof. It is obvious. �

4.4.2 Lemma. Z(P, 0) is not congruence-simple.

Proof. It follows from 4.4.1. �

4.4.3 Proposition. Let S = Z(P, 0) and assume that P is congruence-simple. Then S
is subdirectly irreducible and idS , η, S × S are the only congruences of S .

Proof. It is easy. �

4.4.4 Lemma. Z(P, 0) is additively idempotent if and only P is additively idempotent.

Proof. It is obvious. �
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4.4.5 Proposition. Let S = Z(P, 0).
(i) S is finitely generated if and only if P is finitely generated.

(ii) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.5 Construction. Let G be a commutative group (denoted multiplicatively), o � G
and S = G∪{o}. Define addition and multiplication on S (extending the multiplication
on G) by xo = ox = x and x + y = o for all x, y ∈ S . We denote S constructed in this
way by U(G). One can easily check that S = U(G) is a division semiring and (S , o)
is of type (IV); if |G| = 1 then S � Z2. Of course, S is a semifield.
4.5.1 Lemma. Let S = U(G).

(i) η = (G ×G) ∪ {(o, o)} is a congruence of S and S/η � Z2.
(ii) If |G| ≥ 2, then S is not congruence-simple.

Proof. It is easy. �

4.5.2 Proposition. Let S = U(G) where G is a finite group of prime order. Then idS ,
η and S × S are the only congruences of S .

Proof. It is easy. �

4.5.3 Proposition. Let S = U(G).
(i) S is finitely generated if and only if the group G is finitely generated.

(ii) S is one-generated if and only if G is a finite cyclic group.

Proof. It is easy. �

4.5.4 Lemma. let S = U(G).
(i) S is not additively idempotent.

(ii) S is almost additively idempotent if and only if |G| = 1. (Then S � Z2.)

Proof. It is obvious. �

4.6 Construction. Let G be a commutative group (denoted multiplicatively), o � G
and S = G∪{o}. Define addition and multiplication on S (extending the multiplication
on G) by xo = ox = o, x+y = o and x+ x = x for all x, y ∈ S with x � y. We denote S
constructed in this way by V(G). One can easily check that S = V(G) is an additively
idempotent division semiring and (S , o) is of type (IV); if |G| = 1 then S � Z6. Of
course, S is a semifield.
4.6.1 Proposition. V(G) is congruence-simple.

Proof. It is easy. �

4.6.2 Proposition. Let S = V(G).
(i) S is finitely generated if and only if the group G is finitely generated.

(ii) S is one-generated if and only if G is a non-trivial finite cyclic group.

Proof. It is easy. �
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4.7 Construction. Let P be a parasemifield, o � P, and put S = P ∪ {o}. Define
addition and multiplication on S (extending the operations on P) by vo = ov = v+o =
= o+v = o for all v ∈ S (so that o is a bi-absorbing element). We denote S constructed
in this way by U(P). One can easily check that S = U(P) is a division semiring, (S , o)
is of type (IV) and S is a semifield.
4.7.1 Lemma. Let S = U(P).

(i) If r is a congruence of P, then r ∪ {(o, o)} is a congruence of S .
(ii) η = (P × P) ∪ {(o, o)} is a congruence of S and S/η � Z6.

Proof. It is easy. �

4.7.2 Lemma. U(P) is not congruence-simple.

Proof. It follows from 4.7.1. �

4.7.3 Proposition. Let S = U(P) and assume that P is congruence-simple. Then S
is subdirectly irreducible and idS , η, S × S are the only congruences of S .

Proof. It is easy. �

4.7.4 Lemma. U(P) is additively idempotent if and only P is additively idempotent.

Proof. It is obvious. �

4.7.5 Proposition. Let S = U(P).
(i) S is finitely generated if and only if P is finitely generated.

(ii) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.8 Construction. Let P be a parasemifield and let T (·) be a commutative group such
that P(·) is a proper subgroup of T (·). Let o � T and S = T ∪ {o}. Define addition and
multiplication on S (extending the operations on P and the multiplication on T ) by

vo = ov = v + o = o + v = o for every v ∈ S ,
a + b = o for all a, b ∈ T such that a−1b � P,
a + b = (1T + a−1b)a ∈ T for all a, b ∈ T such that a−1b ∈ P.

Observe that if a−1b ∈ P then b−1a ∈ P, (1T + a−1b)b−1a = b−1a + 1T and a + b =
= (1T + a−1b)a = (1T + b−1a)b. It is easy to check that S is a divisible semiring. It
will be denoted by V(P, T (·)). Clearly, (S , o) is of type (IV), S is a semifield and P is
a subparasemifield of S .
4.8.1 Lemma. Let S = V(P, T (·)). Define a relation σ on S by (x, y) ∈ σ if and only
if either x = y or else x, y ∈ T and x−1y ∈ P. Then σ is a congruence of the semiring
S and S/σ � V(T (·)/P).

Proof. It is easy. �

4.8.2 Lemma. The semiring V(P, T (·)) is not congruence-simple.

Proof. Use 4.8.1. �
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4.8.3 Remark. Let S = V(P, T (·)).
(i) For every congruence α of the parasemifield P we can construct a congruence

β = β(α) such that α = β ∩ (P × P) as follows. Put R = {a ∈ P : (a, 1S ) ∈ α},
so that R is a subgroup of P(·). Now, put β = α1 ∪ {(o, o)} where α1 = {(a, b) :
: a, b ∈ T, a−1b ∈ R}. Clearly, β is a congruence of the multiplicative semigroup
S (·). If (a, b) ∈ β where a, b ∈ T and c ∈ T is an element such that a−1c � P, then
b−1c � P, since a−1b ∈ P, and we have (a + c, b + c) = (o, o) ∈ β. If b−1c � P,
the proof is by symmetry. Finally, if a−1c ∈ P and b−1c ∈ P then (c−1a, c−1b) ∈ α,
(1S + c−1a, 1S + c−1b) ∈ α and (a + c, b + c) = ((1S + c−1a)c, (1S + c−1b)c) ∈ β. It
follows that β is a congruence of the semiring S . Clearly, α = β ∩ (P × P).

(ii) Let us prove that every congruence β of S other than S × S can be obtained as
β(α) for some congruence α of P. Clearly, β = β1 ∪ {(o, o)} where β1 = β∩ (T × T ) is
a congruence of the group T (·). Put α = β∩ (P×P). Clearly, α is a congruence of the
parasemifield P. Put R = {a ∈ T : (a, 1S ) ∈ β}. Then R is a subgroup of T (·) and, if
a ∈ R \ P, then a + 1S = o from which we get (o, 1S + 1S ) ∈ β, a contradiction. Thus
R ⊆ P and consequently β = β(α).

(iii) It follows that the congruence lattice of S is isomorphic to the congruence
lattice of P with a new top element added. In particular, S is subdirectly irreducible
if and only if P is. If P is congruence-simple, then idS , σ (see 4.8.1) and S × S are
the only congruences of the semiring S .
4.8.4 Lemma. The semiring V(P, T (·)) is additively idempotent if and only if P is
additively idempotent.

Proof. It is easy. �

4.8.5 Lemma. Let S = V(P, T (·)) and let M be a generating subset of the semiring S .
Then the set N = M ∩ T is non-empty and generates S , as well.

Proof. N is non-empty, since S � {o}. Denote by S 1 the subsemiring of S gen-
erated by N. If o � S 1, then S 1 = T and o = 1S + a ∈ S 1 for some a ∈ T \ P, a
contradiction. Thus o ∈ S 1 and S 1 = S . �

4.8.6 Lemma. Let S = V(P, T (·)) and let N ⊆ T be a generating subset of S . Then
the factor-group T (·)/P is generated by the set {aP : a ∈ N} of cosets as a semigroup.

Proof. Let b ∈ T . Then b = b1 + · · · + bn for some elements b1, . . . , bn (n ≥ 1)
belonging to the subsemigroup A of T (·) generated by N. For every i = 1, . . . , n we
have bi = b1ci for some ci ∈ P, and so b = b1c where c = c1 + · · · + cn ∈ P. Then
bP = b1P and the rest is clear. �

4.8.7 Lemma. Let S = V(P, T (·)) and let N be a subset of T such that the factor-
group T (·)/P is generated by {aP : a ∈ N} as a semigroup. If A is the subsemigroup
of T (·) generated by N, then T = AP.

Proof. It is easy. �
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4.8.8 Lemma. Let S = V(P, T (·)) and let N ⊆ T be a generating subset of S . Denote
by A the subsemigroup of T (·) generated by N. Then:

(i) B = AA−1 is a subgroup of T (·) and B is generated by N∪N−1 as a semigroup.
(ii) P is generated by the subgroup C = B ∩ P of B as a semiring.

Proof. (i) is obvious.
(ii) Let a ∈ P. We have a = a1 + · · · + an for some n ≥ 1 and elements ai ∈ A. For

every i we have ai = bia1 for some bi ∈ C, so that a = ba1 where b = b1 + · · ·+ bn. Of
course, a, b ∈ P, and so a1 = ab−1 ∈ A∩P = C. Consequently, the elements ai = bia1
belong to C.

�

4.8.9 Proposition. S = V(P, T (·)) is a finitely generated semiring if and only if P is
a finitely generated semiring and T (·)/P is a finitely generated group.

Proof. The direct implication follows from 4.8.5, 4.8.6 and 4.8.8, taking into ac-
count the following two well-known facts: any subgroup of a finitely generated com-
mutative group is finitely generated; if a commutative group is finitely generated, then
it is finitely generated as a semigroup. The converse follows from 4.8.7. �

4.8.10 Proposition. V(P, T (·)) is not a one-generated semiring.

Proof. Put S = V(P, T (·)) and suppose that S is generated by a single element s.
Clearly, s ∈ T and s � P. According to 4.8.6, the factor-group T (·)/P is a (non-trivial)
finite cyclic group, and so T (·)/P � Zm(+) for some m ≥ 2. It follows that am ∈ P for
every a ∈ T .

Take a ∈ P. We have a = l1sk1 + · · · + lnskn for some n ≥ 1, li ≥ 1, 1 ≤ k1 <
< k2 < · · · < kn. Since sk1 + ski � o, ski−k1 ∈ P and m divides ki − k1. Furthermore,
as−k1 = l11S + l2sk2−k1 + · · · + lnskn−k1 ∈ P, sk1 ∈ P and m divides k1. Consequently, m
divides all the numbers k1, . . . , kn and we conclude that the semiring P is generated
by the element sm, a contradiction with 1.4.

�

4.9 Construction. Let A be a subsemigroup of the additive group R(+) of real
numbers such that A ∩ R+ � ∅ � A ∩ R−. Define operations ⊕ and � on A by
a ⊕ b = min(a, b) and a � b = a + b. It is easy to check that with respect to these
operations, the set A becomes an additively idempotent semiring. This semiring will
be denoted by W(A). According to Lemma 5.1.1 of [1], W(A) is congruence-simple.
4.9.1 Lemma. The following conditions are equivalent:

(i) W(A) is ideal-simple;
(ii) W(A) is a division semiring;

(iii) W(A) is a parasemifield;
(iv) A is a subgroup of R(+).

Proof. It is easy. �
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4.9.2 Lemma.
(i) W(A) is a finitely generated semiring if and only if A is a finitely generated

semigroup.
(ii) W(A) is not one-generated.

Proof. It is easy. �

5. D i v i s i o n s e m i r i n g s o f t y p e ( I I )

In this section let S be a division semiring that is of type (II) with respect to an
element w. That is, w = 1S ∈ S and T = S \ {1S } is a subgroup of the multiplicative
semigroup S (·).
5.1 Lemma. If |T | = 1, then S is isomorphic to one of the semirings Z2, Z5, Z6, Z8.

Proof. See 4.1. �

5.2 Lemma. If |T | ≥ 2, then T is a subparasemifield of S .

Proof. T (·) is a non-trivial group. If a, b ∈ T are such that a + b = 1S , then
1S = a + b = a1T + b1T = (a + b)1T = 1S 1T = 1T , a contradiction. Thus T + T ⊆ T
and T is a parasemifield. �

5.3 Lemma. If a ∈ T is such that 1S + a ∈ T, then 1S + a = 1T + a.

Proof. 1S + a = (1S + a)1T = 1S 1T + a1T = 1T + a. �

5.4 Lemma. If a ∈ T is such that 1S + a = 1S , then 1T + a = 1T .

Proof. We have 1T = 1T 1S = 1T (1S + a) = 1T 1S + 1T a = 1T + a. �

5.5 Lemma.
(i) If 1S + 1S = 1S , then S is additively idempotent.

(ii) If 1S + 1S ∈ T, then 1S + 1S = 1T + 1T .

Proof. (i) is obvious. If 1S + 1S = a ∈ T , then ab = b + b for every b ∈ T . In
particular, a = a1T = 1T + 1T . �

Put A = {a ∈ T : 1S + a = 1T + a} and B = {b ∈ T : 1S + b = 1S }.
5.6 Lemma.

(i) A ∪ B = T and A ∩ B = ∅.
(ii) A + T ⊆ A.

(iii) B + B ⊆ B.
(iv) 1T + b = 1T for every b ∈ B.

Proof. Use 5.3 and 5.4. �
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5.7 Proposition. Precisely one of the following four cases takes place:
(1) S is isomorphic to either Z5 or Z6 and is additively idempotent;
(2) S is isomorphic to either Z2 or Z8 and S is not additively idempotent (but is

almost additively idempotent);
(3) T is a subparasemifield of S , S � Z(T, A, 1) and S is additively idempotent;
(4) T is a subparasemifield of S , S � Z(T, A, 2) and S is not additively idempo-

tent; it is almost additively idempotent if and only it T is idempotent.

Proof. Combine 5.5, 5.6 and 4.2. �

5.8 Corollary. The following conditions are equivalent:
(i) S is congruence-simple;

(ii) S is ideal-simple;
(iii) |S | = 2.

5.9 Corollary. S is a one-generated semiring if and only if it is isomorphic to either
Z2 or Z8.

6. D i v i s i o n s e m i r i n g s o f t y p e ( I I I )

In this section let S be a division semiring that is of type (III) with respect to an
element w. That is, w ∈ S , T = S \ {w} is a subgroup of the multiplicative semigroup
S (·), w1T = e ∈ T , w2 = e2 and wa = ea for every a ∈ T .
6.1 Lemma. If |T | = 1, then S is isomorphic to one of the semirings Z1, Z3, Z4, Z7.

Proof. See 4.1. �

6.2 Lemma. If |T | ≥ 2, then T is a subparasemifield of S .

Proof. It remains to show that T + T ⊆ T . If a, b ∈ T are such that a+ b = w, then
w = a + b = a1T + b1T = (a + b)1T = w1T = e, a contradiction. �

6.3 Lemma. If a ∈ T is such that w + a ∈ T, then w + a = e + a.

Proof. w + a = (w + a)1T = w1T + a1T = e + a. �

6.4 Lemma. If b ∈ T is such that w + b = w, then e + b = e.

Proof. We have e = w1T = (w + b)1T = w1T + b1T = e + b. �

6.5. Lemma. If w + w ∈ T, then w + w = e + e.

Proof. We have w + w = (w + w)1T = w1T + w1T = e + e. �

6.6 Lemma. If w + w = w, then S is additively idempotent.

Proof. We have e = w1T = (w + w)1T = w1T + w1T = e + e. Consequently,
a = a + a for all a ∈ T . �
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Put A = {a ∈ T : w + a = e + a} and B = {b ∈ T : w + b = w}.
6.7 Lemma.

(i) A ∪ B = T and A ∩ B = ∅.
(ii) A + T ⊆ A.

(iii) B + B ⊆ B.
(iv) e + b = e for every b ∈ B.

Proof. Use 6.3 and 6.4. �

6.8 Proposition. Precisely one of the following four cases takes place:
(1) S is isomorphic to either Z3 or Z4 and is additively idempotent;
(2) S is isomorphic to either Z1 or Z7 and S is not additively idempotent (but is

almost additively idempotent);
(3) T is a subparasemifield of S , S � Z(T, A, e, 1) and S is additively idempotent;
(4) T is a subparasemifield of S , S � Z(T, A, e, 2) and S is not additively idem-

potent; it is almost additively idempotent if and only it T is idempotent.

Proof. Combine 6.4, 6.5, 6.7 and 4.3. �

6.9 Corollary. The following conditions are equivalent:
(i) S is congruence-simple;

(ii) S is ideal-simple;
(iii) |S | = 2.

6.10 Corollary. S is a one-generated semiring if and only if it is isomorphic to one
of Z1, Z3, Z4, Z7.

7. D i v i s i o n s e m i r i n g s o f t y p e ( I V )

In this section let S be a division semiring that is of type (IV) with respect to
an element w. That is, w is a multiplicatively absorbing element and T = S \ {w}
is a subgroup of the multiplicative semigroup S (·). Thus S is a semifield and S is
ideal-simple.

7.1 Lemma. If |T | = 1, then S is isomorphic to one of Z2, Z5, Z6, Z8.

Proof. See 4.1. �

7.2 Lemma. 1T = 1S is multiplicatively neutral in S .

Proof. It is obvious. �

7.3 Lemma. Either w = oS is additively absorbing in S or w = 0S is additively
neutral in S .
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Proof. We have w+w = (1S +1S )w = w. If 1S +w = w, then w = aw = a(1S +w) =
= a1S +aw = a+w for every a ∈ T , and so w = oS . On the other hand, if 1S +w � w,
then 1S = (1S + w)−1(1S + w) = (1S + w)−1 + w. From this, a = a(1S + w)−1 + aw =
= a(1S +w)−1 +w and a +w = a(1S +w)−1 +w +w = a(1S +w)−1 +w = a for every
a ∈ T . Thus w = 0S . �

7.4 Lemma. If w = 0S , then either S is a field, or S � Z5, or T is a subparasefimield
of S and S � Z(T, 0).

Proof. If |S | = 2, then S is isomorphic either to Z5 or to the two-element field
Z8. Let |S | ≥ 3. Consider first the case when a + b = 0S for some a, b ∈ T . Then
c + ca−1b = ca−1(a + b) = ca−10S = 0S for every c ∈ T and it follows that S (+) is a
group. Then, obviously, S is a field. The remaining case is when T + T ⊆ T . Then,
clearly, T is a subparasemifield and S � Z(T, 0). �

In the next seven lemmas assume that |T | ≥ 2 and w = oS = o is bi-absorbing.
7.5 Lemma. If T +a = {o} for at least one a ∈ T, then S +S = {o} and S � U(T (·)).

Proof. We have T + ab = (T + a)b = {o} for every b ∈ T . Thus T + T = {o} and
S + S = {o}. The rest is clear. �

Now, assume that T + a � {o} for every a ∈ T . Put Ax = {y ∈ S : x + y = o} for
every x ∈ S .
7.6 Lemma.

(i) o ∈ Ax and S + Ax ⊆ Ax.
(ii) Ax ⊆ Ax+y for all x, y ∈ S .

(iii) Ao = S .
(iv) Aa � S for every a ∈ T.
(v) aAb = bAa for all a, b ∈ T.

(vi) Ab = a−1bAa for all a, b ∈ T.
(vii) Aa = aA1S for every a ∈ T.

Proof. It is easy. �

7.7 Lemma.
(i) P + P ⊆ P and PP ⊆ P (i.e., P is a subsemiring of S ).

(ii) P(·) is a subgroup of S (·).
(iii) If a, b ∈ T, then a + b � o if and only if a−1b ∈ P.

Proof. (i) If a, b ∈ P, then 1S +a � o and 1S +b � o. Consequently, 1S +a+b+ab =
= (1S + a)(1S + b) � o. But then 1S + a + b � o, 1S + ab � o and it follows that
a + b ∈ P and ab ∈ P.

(ii) If 1S + a � o, then a−1 + 1S � o.
(iii) We have a + b � o if and only if 1S + a−1b � o. �
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7.8 Remark. We have A1S = T \ P and P is a subgroup of T (·). Now it is easy to see
that 1S � A1S and P = {a ∈ T : Aa = aA1S = A1S .

7.9 Lemma. Let a, b ∈ T be such that a + b � o (equivalently, a−1b ∈ P). Then
1S + a−1b ∈ P, 1S + b−1a ∈ P and a + b = a(1S + a−1b) = b(1S + b−1a).

Proof. It is easy (use 7.7). �

7.10 Lemma. If |P| = 1, then P = {1S } and S � V(T (·)).

Proof. Combine 7.7 and 7.9. �

7.11 Lemma. If P = T, then S � U(P).

Proof. It is easy. �

7.12 Proposition. Let S be a division semiring of type (IV) with respect to w and
T = S \ {w}. Then one of the following cases takes place:

(1) S is a field or S is isomorphic to one of Z2, Z5, Z6;
(2) T is a subparasemifield of S and S � Z(T, 0) (then S is additively idempotent

if and only if T is);
(3) |T | ≥ 2 and S � U(T (·)) (then S is not additively idempotent);
(4) |T | ≥ 2, w = oS is bi-absorbing, 1S + a = oS for every a ∈ T \ {1S } and

S � V(T (·)) (then S is additively idempotent);
(5) w = oS is bi-absorbing, T is a subparasemifield of S and S � U(T ) (then S

is additively idempotent if and only if T is);
(6) w = oS is bi-absorbing, P = {a ∈ T : 1S + a � oS } is a subparasemifield

of S , P � T, and S � V(P, T (·)) (then S is additively idempotent if and only
if P is).

Proof. Combine 7.1, 7.3, 7.4, 7.5, 7.10 and 7.11. �

7.13 Corollary. S is congruence-simple if and only if either S is a field or |S | = 2 or
S � V(G(·)) for a commutative group G(·).
7.14 Corollary. S is one-generated if and only if one of the following three cases
takes place:

(1) |S | = 2;
(2) S is a finite field;
(3) S � V(G(·)) for a non-trivial finite cyclic group G(·);
(4) S � U(G(·)) for a non-trivial finite cyclic group G(·).

Proof. Easy, using 1.5. �
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8. S u m m a r y

8.1 Theorem. Division semirings are commutative semirings of (exactly) one of the
following twelve types:

(1) The two-element semirings Z1, . . . ,Z7 (see 4.1);
(2) Fields;
(3) Parasemifields;
(4) The semifields U(G), where G is a non-trivial commutative group (see 4.5);
(5) The semifields V(G), where G is a non-trivial commutative group (see 4.6);
(6) The semifields U(P), where P is a parasemifield (see 4.7);
(7) The semifields Z(P, 0), where P is a parasemifield (see 4.4);
(8) The semifields V(P, T (·)), where P is a parasemifield and the multiplicative

group P(·) is a proper subgroup of a commutative group T (·) (see 4.8);
(9) The semirings Z(P, A, 1), where P is an additively idempotent parasemifield

and A is a non-empty subset of P such that A+P ⊆ A, (P\A)+ (P\A) ⊆ P\A
and 1P + x = 1P for every x ∈ P \ A (see 4.2);

(10) The semirings Z(P, A, 2), where P is a parasemifield and A is as in (9) (see
4.2);

(11) The semirings Z(P, A, e, 1), where P is an additively idempotent parasemi-
field, e ∈ P and A is a non-empty subset of P such that A + P ⊆ A, (P \ A) +
+ (P \ A) ⊆ P \ A and e + x = e for every x ∈ P \ A (see 4.3);

(12) The semirings Z(P, A, e, 2), where P is a parasemifield, e ∈ P and A is as in
(11) (see 4.3);

Proof. Combine 5.7, 6.8, 7.12. �

8.2 Remark. The semirings Z3, Z4, Z5, Z6, V(G), Z(P, A, 1) and Z(P, A, e, 1) are addi-
tively idempotent. The semirings U(P), Z(P, 0) and V(P, T (·)) are additively idempo-
tent if and only if the parasemifield P is. The semirings Z(P, A, 2) and Z(P, A, e, 2) are
almost additively idempotent if and only if P is additively idempotent. The semirings
U(P) contain just one additively idempotent element.

8.3 Remark. The semirings Z1, . . . ,Z7 are finite, and hence finitely generated. A
field is a finitely generated semiring if and only if it is finite. The semirings U(G) and
V(G) are finitely generated if and only if the group G is finitely generated. The semi-
rings U(P), Z(P, 0), Z(P, A, 1), Z(P, A, 2), Z(P, A, e, 1), Z(P, A, e, 2) are finitely gener-
ated if and only if the parasemifield P is finitely generated. The semirings V(P, T (·))
are finitely generated if and only if P is finitely generated and the factor-group T (·)/P
is finitely generated.

8.4 Remark. Taking into account 8.2 and 8.3, we conclude that the following two
statements are equivalent:

(A) A parasemifield is additively idempotent, provided that it is a finitely gener-
ated semiring.
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(B) A finitely generated division semiring is either almost additively idempotent
or it is a finite field or a copy of the semifield U(G) for a non-trivial finitely
generated commutative group G.

8.5 Theorem. One-generated division semirings are just (copies of ) the two-element
semirings Z1, Z2, Z3, Z4, Z7, finite fields and the semifields U(G) and V(G), where G
is a non-trivial finite cyclic group. In particular, all such semirings are finite.

Proof. Combine 4.1, 4.2.8, 4.2.13, 4.3.6, 4.3.11, 4.4.5, 4.5.3, 4.6.2, 4.7.5, 4.8.9
and 4.8.10. �

8.6 Remark. Division semirings containing an additively neutral element are just
the following ones:

(1) The two-element semirings Z3, . . . ,Z7;
(2) Fields;
(3) The semifields Z(P, 0).

8.7 Remark. Division semirings containing a multiplicatively neutral element are
just the following ones:

(1) The two-element semirings Z2, Z5, Z6;
(2) Fields;
(3) The semifields U(G);
(4) The semifields V(G);
(5) The semifields U(P);
(6) The semifields Z(P, 0);
(7) The semifields V(P, T (·));
(8) The semirings Z(P, A, 1);
(9) The semirings Z(P, A, 2).

8.8 Remark. Division semirings containing an additively absorbing element are just
the following ones:

(1) The two-element semirings Z1, . . . ,Z6;
(2) The semifields U(G);
(3) The semifields V(G);
(4) The semifields U(P);
(5) The semifields V(P, T (·)).

8.9 Remark. Division semirings containing a multiplicatively absorbing element
are just the following ones:

(1) The two-element semirings Z1, . . . ,Z7;
(2) Fields;
(3) The semifields U(G);
(4) The semifields V(G);
(5) The semifields U(P);
(6) The semifields Z(P, 0);
(7) The semifields V(P, T (·)).
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Notice that (except for Z1, Z3, Z4 and Z7) all these semirings have a multiplicatively
neutral element. Furthermore, except for Z7, fields and the semifields Z(P, 0), the
other semirings have an additively absorbing element.
8.10 Remark. All division semirings have at most two ideals. The ideal-simple ones
among them are just the following semirings:

(1) The two-element semirings Z1, . . . ,Z7;
(2) Fields;
(3) Parasemifields (these are ideal-free);
(4) The semifields 8.1(4),. . . ,(8).

8.11 Remark. Congruence-simple division semirings are just the following ones:
(1) The two-element semirings Z1, . . . ,Z7;
(2) Fields;
(3) Congruence-simple parasemifields (see 8.19);
(4) The semifields V(G), where G is a non-trivial commutative group.

8.12 Remark. Finite division semirings are just the following ones:
(1) The two-element semirings Z1, . . . ,Z7;
(2) Finite fields;
(3) The semifields U(G), where G is a non-trivial finite commutative group;
(4) The semifields V(G), where G is a non-trivial finite commutative group.

Notice that every finite division semiring is ideal-simple.
8.13 Remark. Let S be a non-trivial semiring that is a division semiring with respect
to two different elements of S . According to 2.9, S is either a parasemifield or a two-
element semiring isomorphic to one of the semirings Z2, Z5, Z6, Z8.
8.14 Theorem. Ideal-simple commutative semirings are just the semirings of one of
the following five types:

(1) The two-element semirings Z2, . . . ,Z6;
(2) Fields;
(3) Zero multiplication rings of finite prime order;
(4) Parasemifields (these are ideal-free);
(5) Proper semifields (i.e., semifields that are not fields).

Proof. Let S be an ideal-simple commutative semiring with at least three elements.
If S is a ring, then either (2) or (3) takes place. Let S be neither a ring nor a parasemi-
field. The multiplicative semigroup S (·) is not a group, and hence it is not a division
semigroup. Consequently, the set A = {a ∈ S : S a � S } is non-empty. Since S is
ideal-simple, there exists an element w ∈ S such that S a = {w} for every a ∈ A. Of
course, w is additively idempotent and multiplicatively absorbing and we see that A
is an ideal of S . If A = {w}, then S x = S for every x ∈ S \ {w}, S is a division ring
and it follows from 8.1 and 8.9 that S is a proper semifield. Now, assume that A = S ,
i.e., S S = {w}. The set B = S + w is an ideal of S .

Let B = S . For every a ∈ S there exists an element b ∈ S with a = b + w; we have
a + w = b + w + w = b + w = a. Thus w = 0S is an additively neutral element. The
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set C = {c ∈ S : w ∈ S + c} is an ideal of S . If C = S , then S (+) is a group and
S is a ring, a contradiction. Thus C = {w}, so that T + T ⊆ T , where T = S \ {w}.
If R is a proper subsemigroup of T (+), then R ∪ {w} is an ideal of S , a contradiction.
Consequently, T (+) has no proper subsemigroups, and hence |T | = 1 and |S | = 2,
again a contradiction.

Next, let B = {w}. Then w is a bi-absorbing element in S . Let, for a moment, d ∈ S
be such that S + d = S . Then d � w, d = d+ e for some e ∈ S and e = d+ f for some
f ∈ S . Clearly, e � w � f and e + e = d + f + e = d + f = e. Now, {w, e} is an ideal
of S , {w, e} = S and |S | = 2, a contradiction. It means that S + d � S for every d ∈ S .
But S + d is an ideal of S , S + d = {w} and S + S = {w}.

We have S S = {w} = S + S . Every subset of S containing the element w is an
ideal, and therefore |S | = 2, the final contradiction. �

8.15 Theorem. Semifields are just the semirings of one of the following seven types:
(1) The two-element semirings Z2, Z5, Z6;
(2) Fields;
(3) The semifields U(G), where G is a non-trivial commutative group;
(4) The semifields V(G), where G is a non-trivial commutative group;
(5) The semifields U(P), where P is a parasemifield;
(6) The semifields Z(P, 0), where P is a parasemifield;
(7) The semifields V(P, T (·)), where P is a parasemifield and the multiplicative

group P(·) is a proper subgroup of a commutative group T (·).

Proof. Every semifield is a division semiring and thus the classitication follows
from 8.1. �

8.16 Remark. The (ideal-simple) semirings Z3, Z4, Z5, Z6, V(G) are additively
idempotent. The semifields U(P), Z(P, 0) and V(P, T (·)) are additively idempotent if
and only if the parasemifield P is additively idempotent.
8.17 Remark. The following two statements are equivalent:

(A) A parasemifield is additively idempotent, provided that it is a finitely gener-
ated semiring.

(B′) A finitely generated ideal-simple commutative semiring is either additively
idempotent or it is finite or it is a copy of the semifield U(G) for an infinite,
finitely generated commutative group G.

8.18 Remark. One-generated ideal-simple commutative semirings are just (copies
of) the two-element semirings Z1, Z2, Z3, Z4, finite fields, zero multiplication rings of
finite prime order and the semifields U(G) and V(G), where G is a non-trivial finite
cyclic group. All these semirings are finite.
8.19 Theorem. Congruence-simple commutative semirings are just the semirings of
one of the following six types:

(1) The two-element semirings Z1, . . . ,Z6;
(2) Fields;
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(3) Zero multiplication rings of finite prime order;
(4) The semifields V(G), where G is a non-trivial commutative group;
(5) The semirings W(A), where A is a subsemigroup of R(+) with A ∩ R+ � ∅ �
� A ∩ R+;

(6) Subsemirings S of the parasemifield R+ of positive real numbers such that
(6a) for all a, b ∈ S there exist c ∈ S and a positive integer n with b+ c = na;
(6b) for all a, b, c, d ∈ S with a � b there exist e, f ∈ S with ae + b f + c =

= a f + be + d;
(6c) for all a, b ∈ S there exist c, d ∈ S such that bc + d = a.

Proof. This is Theorem 10.1 of [1]. �

8.20 Remark.
(i) Every finitely generated congruence-simple commutative semiring is either

finite or additively idempotent.
(ii) One-generated congruence-simple commutative semirings are just (copies of)

the two-element semirings Z1, Z2, Z3, Z4, finite fields, zero multiplication
rings of finite prime order and the semifields V(G), where G is a non-trivial
finite cyclic group. All these semirings are finite.
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