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Finitely Generated Commutative Division Semirings

JAROSLAV JEZEK and TOMAS KEPK A
Praha

Received October 26, 2009

One-generated commutative division semirings are found.

The aim of this (partially expository) note is to find all one-generated (commuta-
tive) division semirings (see Theorem 8.5). In particular, all such semirings turn out
to be finite. To achieve this goal, we have to correct some results from [1] (especially
Proposition 12.1 of [1]) and to complete some results from [2]. Anyway, all the pre-
sented results are fairly basic and (with two exceptions) we shall not attribute them to
any particular source.

1. Introduction

A semiring is an algebraic structure with two associative binary operations (usually
denoted as addition and multiplication) such that the addition is commutative and the
multiplication distributes over the addition from either side. If the multiplication is
commutative, the semiring is called so. In the sequel, we consider only commutative
semirings.

A semiring S is called

— congruence-simple if S has just two congruence relations;
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— ideal-simple if S is non-trivial and I = S whenever [ is an ideal of S contain-
ing at least two elements;

— a division semiring if S is non-trivial and contains an element w such that
S\{w}C SaforeveryaesS \{w};

— a semifield if S is non-trivial and contains a multiplicatively absorbing ele-
ment w such that S \ {w} is a subgroup of the multiplicative semigroup of S;

— a parasemifield if the multiplicative semigroup of S is a non-trivial group.

We denote by N the semiring of positive integers, by Ny the semiring of non-
negative integers, by Z the ring of integers, by Q the field of rational numbers, by Q"
the parasemifield of positive rational numbers, by Qg the semifield of non-negative
rational numbers, and by R the field of real numbers. Put R* = {a € R : a > 0} and
R ={aeR:a<0}

Notice that all semifields and parasemifields are ideal-simple division semirings.
On the other hand, zero multiplication rings of finite odd prime order are both con-
gruence- and ideal-simple, but they are not division semirings. Observe that every
division semiring has at most two ideals.

For a semiring S, let Ida(S) = {a € S : a + a = a}. Clearly, Ida(S) is either empty
or an ideal of §. The semiring S is called

— additively idempotent if Ida(S) = §;
— almost additively idempotent if the set S \ Ida(S) has at most one element.
1.1 Lemma. Let S be an almost additively idempotent semiring and S \ Ida(S) =
={w}. Put s =w+w. Then:
(1) s € Ida(S).
(i1) wa = sa for every a € Ida(S).
(iii) Either w* = w and s> = s or else w* = s°.

Proof. 1tis easy. O

1.2 Lemma. Let P be a parasemifield. Put K = {a € P : a+ lp # 1p} and
L={a€P:a+1p=1p}. Then:
i) KUL=Pand KNnL=0.
(i) K #0.
(iii) Ifa€ Land a # 1p, thena™' € K.
(iv) L+ LC Land LL C L.
(v) If L # O, then L is a subsemiring of P.
(vi) K+ LCK.
(vil) P is additively idempotent if and only if 1p € L.
(viii) If P is additively idempotent, then K + P C K.
(ix) If P is additively cancellative, then L = .

Proof. Tt is easy. O

1.3 Lemma. Let P be a parasemifield and e € P. Put K, = Ke and L, = Le, where
K and L are as in 1.2. Then:
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(i) K,={aeP:a+e+e}land L, ={ac€P:a+e=e}
(i) K,.UL,=Pand K,NL, = 0.
(i) K, # 0.
(iv) Ifa € L, and a # e, then a”'e* € K,.
v) Le+L.CL,and L,L, C L,e = L.
(vi) K, + L, C K,.
(vii) P is additively idempotent if and only if e € L,.
(viii) If P is additively idempotent, then K, + P C K,.
(ix) If P is additively cancellative, then L, = ().

Proof. Tt follows from 1.2. O

Denote by P the variety of universal algebras with two binary operations (addi-
tion and multiplication) and one unary operation x~!, determined by the equations of
commutative semirings and the equations of (multiplicatively denoted) commutative
groups. Clearly, there is a one-to-one correspondence between parasemifields and the
non-trivial algebras from P. In this paper we prefer to consider parasemifields as spe-
cial semirings, rather than elements of P. However, there could be a confusion if we
need to speak about generating subsets of parasemifields. We say that a parasemifield
P (or any semiring) is generated by a subset X as a semiring if P is the least subsemir-
ing of P containing X. We say that a parasemifield P is generated by a subset X as a
parasemifield if P is the least subparasemifield of P containing X.

Similarly, we need to distinguish between subsets of a ring generating the given
ring as a subsemiring or as a subring.

1.4 Lemma. Let P be a parasemifield. Then P is not one-generated as a semiring.

Proof. Since P is a variety, there exists a one-generated free object F in P. It is
easy to see that F is isomorphic to the parasemifield Q* (considered as an element
of P). Also, it is easy to see that Q* is congruence-simple. From this it follows that
Q" is, up to isomorphism, the only non-trivial one-generated algebra in P. Of course,
Q" is one-generated as a parasemifield. On the other hand, it is easy to see that it is
not one-generated as a semiring. |

The following folklore type result is usually attributed to I. Kaplansky.
1.5 Lemma. Let A be an infinite field. Then A is not finitely generated as a semiring.

2. Auxiliary results on commutative semigroups

In this section let S be a non-trivial commutative semigroup (denoted multiplica-
tively), containing an element w such that 7 = § \ {w} C Sa for every a € T. (Clearly,
TCSS)

21 Lemma. Ifw= 15 € TT, then S is a group.



Proof. We have 1g = ab for some a,b € T. If ¢ € T \ {a}, then a = c¢d for some
¢,d € T and 1g = cdb. Thus every element of S has an inverse in S, which means
that S is a group. O

22 Lemma. [fw=15 ¢ TT, then T is a subgroup of S.

Proof. The result is clear for |T| = 1. If a, b are two distinct elements of 7', then
ac = b and bd = a for some c¢,d € T; we get acd = a and then obviuosly cd = 17;
now it is clear that 7 is a subgroup of S. O

23Lemma. Ifw # lg and wa = aforalla € T, thenw*> = 1y € Tand T is a
subgroup of S.

Proof. Since w # 15, we have w? € T and then w? = 1. Furthermore, bc = whc
for all b,c € T and it follows that bc € T. Now it is easy to see that 7 is a subgroup
of §. O

2.4 Lemma. Ifway # ag for at least one ay € T, then 17 € T.

Proof. We have ay = apby for some by € T. Forevery ¢ € T there is ad € § with
c=apdand then cby = c. Thusby =17 €T. O

2.5 Lemma. [fway # ag for at least one ay € T and wly = a; € T, then a; # 17,
wa = aya for everya € T, w? = af, SS €T andT is a subgroup of S.

Proof. We have wa = wlpa = aja for every a € T. Since way # ap, we have
a; # 1p. It b,c € T, then bc = bely implies be € T and it follows that ST C T.

Forevery a € T thereisad € S withad = 17. If d = w, then 17 = aw = aja and
we see that every element of 7T is invertible. Thus T is a group. Finally, a% # a; and

w?ly = wa; = a%. Thus w? = a%. O

2.6 Lemma. [fwagy # ag for at least one ay € T, wly = wand 17 € Sw, then S is a
group.
Proof. We have 1 = 15 and the rest is clear. O

2.7 Lemma. If way # ag for at least one ag € T, wiT = w and 17 ¢ Sw, then
Sw={w}and T is a subgroup of S.

Proof. We have 17 = Ig and T is the set of invertible elements of S. Then, of
course, T is a subgroup of §. Since w is not invertible, we have Sw = {w}. O

2.8 Proposition. Let S be a non-trivial commutative semigroup and w € S be an
element such that T = S \ {w} C Sa foreverya € T. Then either S is a group, or else
T is a subgroup of S and at least one of the following three cases takes place:

(1) w=lg;

) wir=eeT,w?=¢e*andwa = eaforallacT;

3) wS ={w}.

Proof. Combine the preceding seven lemmas. O



2.9 Remark. If § is either a group or the two-element semilattice, then for an
arbitrary element w € S the pair S, w serves as an example for the above investigated
situation; in the semilattice case, with one choice of w we get the case 2.8(1) and with
the other one the case 2.8(3). If S is neither a group nor the two-element semilattice,
then the element w is unique and only one of the three cases 2.8(1),(2),(3) can take
place.

3. Division semirings - classification

Let S be a division semiring and and let w € S be such that 7 = § \ {w} C Sa
for every a € T. If follows from 2.8 that the pair (S, w) belongs to exactly one of the
following four types:

(I) S is a parasemifield;
(II) T is a subgroup of S(:) and w = 1g;

(IIT) T is a subgroup of S(-), wly = e € T, w? = ¢*> and wa = ea for all a € T}

(IV) T is a subgroup of S(:) and w is a multiplicatively absorbing element of S'.

We say that S is of type (X) if there exists an element w € S such that the pair
(S, w) is of type (X). Clearly, the type of a division semiring is uniquely determined,
with just four exceptions: the two-element division semirings Z,, Zs, Zg, Zs (see 4.1)
are of type (II) and of type (IV) at the same time.

If S is a parasemifield, then S is infinite and w can be any element of S. If § is
not a parasemifield, then the element w is uniquely determined by S together with the
specification of the type of §; and if [S| > 3, it is uniquely determined by S.

3.1 Example. Let S be a zero multiplication ring of finite prime order. Then § is
both congruence- and ideal-simple, but S is not a division semiring.

3.2 Example. LetS = nV2-=m:nmeN,, n+m>1)}. Define operations
®@and©on S by a®b = min(a,b) anda®©b = a+b. Then S = S(®,0) is an
additively idempotent congruence-simple semiring that is not ideal-simple and that is

not a division semiring.

3.3 Example. The product S = Q" x Q" is a parasemifield, and hence S is an
ideal-simple division semiring. Of course, S is not congruence-simple.

3.4 Example. Let G be a commutative group (denoted multiplicatively), o ¢ G
and S = GU {o}. Putx+y = o forall x,y € S and extend the multiplication of G
by xo = ox = o for all x € S§. Then S becomes a division semiring (moreover, a
semifield) and o is the only additive idempotent of S. If G is non-trivial, then S is not
congruence-simple.

3.5 Example. Letm be anon-negative integer. Put S = ZU{w} where w is an element
not belonging to Z and define two binary commutative operations @ and ® on S as
follows: a©b =a+bforalla,be Z;wo x = xforall x € S; a® b = min(a, b)
forall a,b € Z; w ® a = min(0,a) for all a € Z witha < m; w ® a = w for all
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a € Z with a > m; finally, we define the element w & w to be either O or w. We
obtain two division semirings S = S (@, ©) (they differ only by the value of w & w).
These division semirings are neither congruence- nor ideal-simple; they are almost

additively idempotent; only that one with w & w = w is additively idempotent.

4. A few constructions

4.1 Construction. The following eight semirings Z, ..., Zg are (up to isomorphism)
all two-element semirings:

s o «lo1 o
ol oo ol oo o]l oo ol o
1l oo 1100 1l oo 11 01
Z Zy
+‘0 ‘ 1 +‘0 ‘01
0] o 0] o0 o 0] o ol 1 1
1lo1 1100 1o 1 11 11
Z3 Z4
+ ] o 0 1 ] o o
0] o 0] o 1 o]l oo ol o
1lo 1 1111 1l o 1 11 01
Zs Zs
s o «lo1 o
ol o1 o] oo ol o1 ol o
11 110 o0 I 11 0 1
7, Zg

All of them are congruence- and ideal-simple division semirings.

4.2 Construction. Let P be a parasemifield and let A be a subset of P such that
A+PCA B+BCBandlp+b=1pforall b e B, where B= P\ A.

4.2.1 Lemma.
(1) If B # 0, then B is a subsemiring of P.
(ii) Ifb € Band b # 1p, then b~ € A.
(iii) A is non-empty.
@iv) If 1p € B, then P is additively idempotent.



Proof. (i) Letb,c € B. Wehave bc + b+ c =b(c+ 1p)+c=b+c € Band hence
bc ¢ A.

() Ifb' € Bthenb™ = b'(Up+b) =b ' +1p = 1p,sothat b = 1p, a
contradiction.

(ii1) follows from (ii) and (iv) is evident. ]

Letw ¢ Pand S = P U {w}. Define addition and multiplication on S (extending
the operations on P) by w = 1g (multiplicatively neutral in §), w+a =a+w = lp+a
foreverya € Aand w+b = b +w = w for every b € B. It remains to define the
element w + w = 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case, S will
be denoted by Z(P,A,1). It is easy to check that S = Z(P,A,1) is an additively
idempotent division semiring, (S, w) is of type (II), P is a subparasemifield of S and
Pis anideal of S.

(2) With P arbitrary, put 2w = 1p+1p. In this case, S will be denoted by Z(P, A, 2).
It is easy to check that S = Z(P, A,?2) is a division semiring, (S, w) is of type (II), P is
a subparasemifield of S, P is an ideal of § and S is not additively idempotent.

4.2.2 Lemma. LetS = Z(P A, 1).
(1) S and P are the only ideals of S .
(ii) The semiring S is not ideal-simple.

Proof. It is obvious. |

4.23 Lemma. LetS = Z(P,A,1).
(1) The equivalence p = ids U {(w, 1p), (1p,w)} is a congruence of the semiring
S and S/p ~ P.
(i1) The semiring S is not congruence-simple.

Proof. Itis easy. O

4.2.4 Lemma. LetS = Z(P,A, 1) and let r be a congruence of the semiring S such
that r | P = idp. Then either r = ids or r = p (see 4.2.3).

Proof. If r # idg, then (w, e) € r for some e € P. Now, (¢, ce) = (cw, ce) € r for
every ¢ € P, and hence ¢ = ce and e = 1p. Thus r = p. O

4.2.5 Lemma. LetS = Z(P,A, 1) where B # 0 and r be a congruence of the semiring
S suchthat PXP Cr. Thenr =8 X §.

Proof. There area € A and b € B with (a,b) € r. Then (1p+a,w) = (a+w,b+w) €
erandr=S xS§. m|

4.2.6 Lemma. LetS = Z(P,A, 1) where B = 0.
(1) n=(PxP)U{(w,w)}is a congruence of S and S |n = Z.
(ii) If r is a congruence of S with P X P C r, then either r =norr =38 X §.

Proof. It is easy. O



4.2.7 Proposition. Let S = Z(P,A,1) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:
1) If B # 0, then ids, p and S X S are the only congruences of S; we have
ids CpCS xS andS/p=~P.
(i) If B = 0, then ids, p, n and S X S are the only congruences of S; we have
idg CpcncSxS,S/p=PandS/n=~Z.

Proof. Combine the previous four lemmas. O

4.2.8 Proposition. Let S = Z(P, A, 1).
(1) The semiring S is finitely generated if and only if P is finitely generated (as a
semiring).
(1) S is not one-generated.

Proof. 1tis easy. O

4.2.9 Lemma. LetS = Z(P A,2).
(1) S and P are the only ideals of S
(11) The semiring S is not ideal-simple.

Proof. Tt is obvious. O

4.2.10 Lemma. LetS = Z(P,A,?2).
(1) The equivalence p = ids U {(w, 1p), (1p,w)} is a congruence of the semiring
SandS/p = P.
(i1) The semiring S is not congruence-simple.

Proof. It is easy. O

4.2.11 Proposition. Let S = Z(P,A,2) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:
1) If B # 0, then idg, p and S X S are the only congruences of S; we have
ids CpC S xS andS/p=P.
(i) If B = 0, then ids, p, n and S X S are the only congruences of S; we have
ids CpCncSxS,S/p=PandS|n =2,

Proof. Tt is similar to the proof of 4.2.7. O

4.2.12 Proposition. Let S = Z(P,A,?2) and let R be the subsemiring of S generated
by the element w.
() If1p € A, then R = {w,2p,3p,4p,...}.
(1) If P is additively idempotent (e.g., 1p € B), then R = {w, 1p}.
(i) If P is not additively idempotent, then 1p ¢ R.
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Proof. (i) and (ii) are easy. In order to prove (iii), it is sufficient to prove that for
any n > 2, the element np (the sum of n copies of 1p) is different from 1p. This is
clear forn = 2. Letn > 3 and suppose that np = 1p. Thennp+(n—-2)p = lp+(n—2)p,
i.e.,a+a = awherea = 1p+(n—2)p. We see that P contains an additively idempotent
element. But then all elements of P are additively idempotent, a contradiction. O

4.2.13 Proposition. Let S = Z(P, A, 2).
(1) The semiring S is finitely generated if and only if P is finitely generated (as a
semiring).
(i1) S is not one-generated.

Proof. 1t is easy. O

4.2.14 Lemma. Let S = Z(P,A,?2). The semiring S is almost additively idempotent
if and only if P is additively idempotent.

Proof. 1t is obvious. O

4.3 Construction. Let P be a parasemifield, e € P, and let A be a subset of P such
tht A+ PCA,B+BCBande+b =-eforallb e B, where B= P\ A.

4.3.1 Lemma.
(i) BB C Be.
(i) Ifb € Band b # e, then b™'e* € A.
(iil) A is non-empty.
(iv) If e € B, then P is additively idempotent.

Proof. (i) Let b, c € B. We have bc = ae for some a € P. Suppose thata € A. Then
(b+c)e=b(c+e)+ce=ae+be+ce=(a+b+c)e,sothatb+c=a+b+ce€ ANB,
a contradiction. Thus a € B.

() Ifb'e* e Bthenb 'e®? = b le(e+b) =b ' +e =e,sothat b = e.

(ii1) follows from (ii) and (iv) is evident. ]

Letw ¢ Pand S = P U {w}. Define addition and multiplication on S (extending
the operations on P) by w? = €%, we = cw = ec foreveryc € P,w+a=a+w =e+a
foreverya € Aand w+ b = b +w = w for every b € B. It remains to define the
element 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case, S will
be denoted by Z(P, A, e, 1). It is easy to check that § = Z(P, A, e, 1) is an additively
idempotent division semiring, (S, w) is of type (III), P is a subparasemifield of S and
Pis anideal of S.

(2) With P arbitrary, put 2w = 2e. In this case, S will be denoted by Z(P, A, ¢, 2).
It is easy to check that S = Z(P, A, e,?2) is a division semiring, (S, w) is of type (III),
P is a subparasemifield of S, P is an ideal of S and S is not additively idempotent.
432 Lemma. LetS =Z(P A,e,1).

(1) S and P are the only ideals of S .
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(i) The semiring S is not ideal-simple.
Proof. It is obvious. O

433 Lemma. LetS =Z(P A, e, 1).
(1) The equivalence p = ids U {(w, e), (e,w)} is a congruence of the semiring S
and S /p = P.
(i1) The semiring S is not congruence-simple.

Proof. 1tis easy. O

4.3.4 Proposition. Let S = Z(P,A,e, 1) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:
G) If B # 0, then idg, p and S X S are the only congruences of S; we have
ids Cpc S xS andS/p=P.
(1) If B =0, thenids, p, n = (PXP)U{(w,w)} and S XS are the only congruences
of S; wehaveids CpCnCS XS,S/p=PandS/n=27Zs.

Proof. It is similar to that of 4.2.7 or 4.2.11. O

4.3.5 Lemma. LetS = Z(P,A,e, 1); denote by R the subsemiring of S generated by
the element w and by R the subsemiring of P generated by e. Then R C R U {w}.

Proof. It is easy. O

4.3.6 Proposition. Let S = Z(P,A,e, 1).
(1) The semiring S is finitely generated if and only if P is finitely generated (as a
semiring).
(1) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. O

4.3.7 Lemma. LetS =Z(P,A,e,2).
(1) S and P are the only ideals of S.
(i1) The semiring S is not ideal-simple.

Proof. It is obvious. O

4.3.8 Lemma. LetS = Z(P,A,e,?2).
(1) The equivalence p = idg U {(w, e), (e,w)} is a congruence of the semiring S
and S /p = P.
(i1) The semiring S is not congruence-simple.

Proof. 1tis easy. O

4.3.9 Proposition. Let S = Z(P,A,e,2) and assume that the parasemifield P is
congruence-simple. Then the semiring S is subdirectly irreducible and:
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(1) If B # 0, then idg, p and S X S are the only congruences of S; we have
idy CpCS xS andS/p=P.

(i1) If B =0, thenidg, p, n = (PXP)U{(w,w)} and S XS are the only congruences
of S;wehaveids CpCnCSXS,S/p=PandS|n=7Z.

Proof. It is similar to that of 4.3.4. O

4.3.10 Lemma. LetS = Z(P,A,e,2); denote by R the subsemiring of S generated
by the element w and by R, the subsemiring of P generated by e. Then R C Ry U {w}.

Proof. 1t is easy. O

4.3.11 Proposition. Let S = Z(P, A, e, ?2).
(1) The semiring S is finitely generated if and only if P is finitely generated (as a
semiring).
(i1) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. ]

4.3.12Lemma. LetS = Z(P,A,e,2). The semiring S is almost additively idempotent
if and only if P is additively idempotent.

Proof. It is obvious. o

4.4 Construction. Let P be a parasemifield, 0 ¢ P, and put S = P U {0}. Define
addition and multiplication on S (extending the operations on P) by vO = Ov = 0 and
v+0=0+v=vforall ve S (sothat 0 is additively neutral and multiplicatively
absorbing in S). We denote S constructed in this way by Z(P,0). One can easily
check that S = Z(P,0) is an ideal-simple division semiring, (S, 0) is of type (IV) and
P is a subparasemifield of S. Of course, S is a semifield and 1p = 15.

4.4.1 Lemma. LetS = Z(P,0).
(1) Ifris a congruence of P, then r U {(0,0)} is a congruence of S.
(1) n=(Px P)U{(0,0)} is a congruence of S and S |n ~ Zs.

Proof. 1t is obvious. O

4.4.2 Lemma. Z(P,0) is not congruence-simple.

Proof. Tt follows from 4.4.1. O

4.4.3 Proposition. Let S = Z(P,0) and assume that P is congruence-simple. Then S
is subdirectly irreducible and ids, n, S X S are the only congruences of S.

Proof. 1t is easy. O
4.4.4 Lemma. Z(P,0) is additively idempotent if and only P is additively idempotent.
Proof. Tt is obvious. O
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4.4.5 Proposition. Let S = Z(P,0).
(1) S is finitely generated if and only if P is finitely generated.
(i1) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. O

4.5 Construction. Let G be a commutative group (denoted multiplicatively), o ¢ G
and S = GU{o}. Define addition and multiplication on S (extending the multiplication
onG) by xo =ox =xand x+y = o for all x,y € S. We denote S constructed in this
way by U(G). One can easily check that S = U(G) is a division semiring and (S, 0)
is of type (IV); if |G| = 1 then S =~ Z,. Of course, S is a semifield.
4.5.1 Lemma. LetS = U(G).

(1) n=(G xG)U{(0,0)}is a congruence of S and S|n ~ Z,.

(1) If|G| = 2, then S is not congruence-simple.

Proof. Tt is easy. O
4.5.2 Proposition. Let S = U(G) where G is a finite group of prime order. Then ids,
nand S X S are the only congruences of S.

Proof. Tt is easy. O
4.5.3 Proposition. Let S = U(G).

(1) S is finitely generated if and only if the group G is finitely generated.
(1) S is one-generated if and only if G is a finite cyclic group.

Proof. Itis easy. O

4.5.4 Lemma. let S = U(G).
(1) S is not additively idempotent.
(i1) S is almost additively idempotent if and only if |G| = 1. (Then S ~ Z,.)

Proof. It is obvious. O

4.6 Construction. Let G be a commutative group (denoted multiplicatively), o ¢ G
and § = GU{o}. Define addition and multiplication on S (extending the multiplication
onG) by xo = ox =0,x+y =o0and x+x = xforall x,y € § with x # y. We denote S
constructed in this way by V(G). One can easily check that S = V(G) is an additively
idempotent division semiring and (S, 0) is of type (IV); if |G| = 1 then § ~ Zs. Of
course, S is a semifield.

4.6.1 Proposition. V(G) is congruence-simple.

Proof. 1tis easy. O
4.6.2 Proposition. Let S = V(G).

(1) S is finitely generated if and only if the group G is finitely generated.
(i1) S is one-generated if and only if G is a non-trivial finite cyclic group.

Proof. 1tis easy. O
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4.7 Construction. Let P be a parasemifield, o ¢ P, and put S = P U {0}. Define
addition and multiplication on S (extending the operations on P) by vo = ov = v+o0 =
=o0+v =oforallv € S (sothat o is a bi-absorbing element). We denote S constructed
in this way by U(P). One can easily check that S = U(P) is a division semiring, (S, 0)
is of type (IV) and S is a semifield.
4.7.1 Lemma. LetS = U(P).

(1) Ifris a congruence of P, then r U {(0,0)} is a congruence of S.

(i) n = (P X P)U{(0,0)} is a congruence of S and S |n ~ Zs.

Proof. It is easy. O

4.7.2 Lemma. U(P) is not congruence-simple.
Proof. 1t follows from 4.7.1. O

4.7.3 Proposition. Let S = U(P) and assume that P is congruence-simple. Then S
is subdirectly irreducible and ids, n, S X S are the only congruences of S.

Proof. Tt is easy. O

4.7.4 Lemma. U(P) is additively idempotent if and only P is additively idempotent.

Proof. 1t is obvious. O

4.7.5 Proposition. Let S = U(P).
(1) S is finitely generated if and only if P is finitely generated.
(ii) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. O

4.8 Construction. Let P be a parasemifield and let 7(-) be a commutative group such
that P(-) is a proper subgroup of 7(-). Leto ¢ T and S = T U{0}. Define addition and
multiplication on S (extending the operations on P and the multiplication on 7) by

vo=ov=v+o=o0+v=oforeveryves,

a+b=oforalla,be T suchthata™'b ¢ P,

a+b=(r+a'baeTforalla,b e T such thata™'b € P.
Observe thatif a'b € Pthenb'a e P, Iy +a 'b)b'la=b"'a+ 1y anda + b =
= (Ir +a'b)a = (17 + b~'a)b. Tt is easy to check that S is a divisible semiring. It
will be denoted by V(P, T(-)). Clearly, (S, o) is of type (IV), S is a semifield and P is
a subparasemifield of S.

4.8.1 Lemma. LetS = V(P,T(:)). Define a relation o on S by (x,y) € o if and only
if either x = y or else x,y € T and x™'y € P. Then o is a congruence of the semiring
S andS/o ~V(T(-)/P).

Proof. 1t is easy. |

4.8.2 Lemma. The semiring V(P,T(-)) is not congruence-simple.

Proof. Use 4.8.1. O
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4.8.3 Remark. LetS = V(P, T()).

(i) For every congruence « of the parasemifield P we can construct a congruence
B = B(a) such that @ = BN (P X P) as follows. PutR = {a € P : (a,1s) € «a},
so that R is a subgroup of P(-). Now, put 8 = a; U {(0,0)} where a; = {(a,b) :
ca,b €T, a'beR). Clearly, Bis a congruence of the multiplicative semigroup
S(). If (a,b) € B where a,b € T and ¢ € T is an element such that a~'c ¢ P, then
b~'c ¢ P, since a”'b € P, and we have (a + ¢,b +¢) = (0,0) € 8. If b™'c ¢ P,
the proof is by symmetry. Finally, if a~'c € P and b~!c € P then (¢c"'a,c”'b) € a,
(Is +cla,lg + ')y e wand (@ + ¢, b+ ¢) = (Is + ¢ 'a)e,(1s + ¢ 'b)c) € B. Tt
follows that 8 is a congruence of the semiring §. Clearly, « = SN (P X P).

(i1) Let us prove that every congruence 3 of S’ other than S X S can be obtained as
B(a) for some congruence « of P. Clearly, 8 = 81 U {(0,0)} where By = N (T XT)is
a congruence of the group 7'(-). Put @ = SN (P X P). Clearly, a is a congruence of the
parasemifield P. Put R = {a € T : (a, 15) € B}. Then R is a subgroup of 7'(:) and, if
a € R\ P, then a + Iy = o from which we get (0, 1g + 1g) € 3, a contradiction. Thus
R € P and consequently 8 = B(@).

(iii) It follows that the congruence lattice of S is isomorphic to the congruence
lattice of P with a new top element added. In particular, S is subdirectly irreducible
if and only if P is. If P is congruence-simple, then idg, o (see 4.8.1) and § X § are
the only congruences of the semiring S.

4.8.4 Lemma. The semiring V(P,T(")) is additively idempotent if and only if P is
additively idempotent.

Proof. 1tis easy. O

4.8.5Lemma. LetS = V(P,T(-)) and let M be a generating subset of the semiring S .
Then the set N = M N T is non-empty and generates S, as well.

Proof. N is non-empty, since S # {o}. Denote by S| the subsemiring of S gen-
erated by N. If o ¢ S|, then S| =T ando = lg +a € S; forsomea € T\ P, a
contradiction. Thusoe Syand S| = S. m]

4.8.6 Lemma. LetS = V(P,T(:)) and let N C T be a generating subset of S. Then
the factor-group T(-)/ P is generated by the set {aP : a € N} of cosets as a semigroup.

Proof. Letb € T. Thenb = by + --- + b, for some elements by,...,b, (n > 1)
belonging to the subsemigroup A of 7'(-) generated by N. For everyi = 1,...,n we
have b; = byc; for some ¢; € P, and so b = bjc where c = ¢; +--- + ¢, € P. Then
bP = by P and the rest is clear. O

4.8.7 Lemma. LetS = V(P,T(:)) and let N be a subset of T such that the factor-
group T(-)/ P is generated by {aP : a € N} as a semigroup. If A is the subsemigroup
of T(-) generated by N, then T = AP.

Proof. It is easy. O
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4.88 Lemma. LetS = V(P,T(-))andlet N C T be a generating subset of S. Denote
by A the subsemigroup of T(-) generated by N. Then:
(i) B = AA~Visasubgroup of T(-) and B is generated by NUN~" as a semigroup.
(ii) P is generated by the subgroup C = BN P of B as a semiring.

Proof. (i) is obvious.

(i1) Let a € P. We have a = a; + - -+ + a, for some n > 1 and elements a; € A. For
every i we have a; = b;a; for some b; € C, so that a = ba; where b = by +---+b,. Of
course, a,b € P,andsoa; =ab-' e ANP=C. Consequently, the elements a; = b;a;
belong to C.

O

4.8.9 Proposition. S = V(P,T(")) is a finitely generated semiring if and only if P is
a finitely generated semiring and T(-)/P is a finitely generated group.

Proof. The direct implication follows from 4.8.5, 4.8.6 and 4.8.8, taking into ac-
count the following two well-known facts: any subgroup of a finitely generated com-
mutative group is finitely generated; if a commutative group is finitely generated, then
it is finitely generated as a semigroup. The converse follows from 4.8.7. O

4.8.10 Proposition. V(P,T(-)) is not a one-generated semiring.

Proof. Put S = V(P,T(-)) and suppose that S is generated by a single element s.
Clearly, s € T and s ¢ P. According to 4.8.6, the factor-group 7'(-)/P is a (non-trivial)
finite cyclic group, and so 7(-)/P = Z,,(+) for some m > 2. It follows that a” € P for
everyaeT.

Take a € P. Wehave a = ;s + - + [,s forsomen > 1,; > 1,1 < k; <
<k < -+ < ky. Since s + 55 # 0, s57% € P and m divides k; — k;. Furthermore,
as™™ = [|1g + Lse™ M 4. 4,55k € P s5 € P and m divides k. Consequently, m
divides all the numbers ki, ..., k, and we conclude that the semiring P is generated
by the element s™, a contradiction with 1.4.

O

4.9 Construction. Let A be a subsemigroup of the additive group R(+) of real
numbers such that A N R* # 0 # A N R™. Define operations @ and ® on A by
a®b = min(a,b) and a © b = a + b. It is easy to check that with respect to these
operations, the set A becomes an additively idempotent semiring. This semiring will
be denoted by W(A). According to Lemma 5.1.1 of [1], W(A) is congruence-simple.

4.9.1 Lemma. The following conditions are equivalent:
(1) W(A) is ideal-simple;
(i) W(A) is a division semiring;
(iii)) W(A) is a parasemifield;
(iv) A is a subgroup of R(+).

Proof. It is easy. O
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4.9.2 Lemma.
(1) W(A) is a finitely generated semiring if and only if A is a finitely generated
semigroup.
(i) W(A) is not one-generated.

Proof. It is easy. O

5.Division semirings of type (II)

In this section let S be a division semiring that is of type (II) with respect to an
element w. Thatis,w = 1g € S and T = S \ {lg} is a subgroup of the multiplicative
semigroup S (-).

5.1 Lemma. If|T| =1, then S is isomorphic to one of the semirings Z,, Zs, Zg, Zg.

Proof. See 4.1. O

5.2 Lemma. [f|T| > 2, then T is a subparasemifield of S .

Proof. T(-) is a non-trivial group. If a,b € T are such that a + b = lg, then
ls =a+b=aly +bly =(a+b)ly = 151y = 17, a contradiction. Thus T+ 7T C T
and T is a parasemifield. O

53Lemma. IfaeTissuchthatls +a€T,thenlg+a=17+a.

Proof. 1s+a=(s+a)ly=Igly+aly =17 +a. m|
54 Lemma. IfaeT issuchthat 1g +a = lg, then 17 +a = 17.

Proof. We have 1y = 171g = Ir(1s +a) = 17lg + l7a= 17 + a. O

5.5 Lemma.
() If 1s + 15 = g, then S is additively idempotent.
(i1) Ifls +1g €T, thenlg +1g =17 + 17.

Proof. (i) is obvious. If 1 + 1g = a € T, thenab = b+ b forevery b € T. In
particular, a = aly = 17 + 17. O

PutA={aeT : ls+a=1y+aland B={beT :1g +b = 1g}.

5.6 Lemma.
i) AUB=Tand AN B = 0.
(i) A+T CA.
(iii) B+ B C B.
@iv) 17+ b = 17 for every b € B.

Proof. Use 5.3 and 5.4. O
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5.7 Proposition. Precisely one of the following four cases takes place:
(1) S is isomorphic to either Zs or Zg and is additively idempotent;
(2) S is isomorphic to either Z, or Zg and S is not additively idempotent (but is
almost additively idempotent);
(3) T is a subparasemifield of S, S ~ Z(T, A, 1) and S is additively idempotent;
(4) T is a subparasemifield of S, S ~ Z(T,A,2) and S is not additively idempo-
tent; it is almost additively idempotent if and only it T is idempotent.

Proof. Combine 5.5, 5.6 and 4.2. |

5.8 Corollary. The following conditions are equivalent:
(1) S is congruence-simple;
(1) S is ideal-simple;
(iii) |S|=2.
5.9 Corollary. S is a one-generated semiring if and only if it is isomorphic to either
Z2 or Zg.

6. Division semirings of type (III)

In this section let S be a division semiring that is of type (III) with respect to an
element w. Thatis,we §, T =S \ {w} is a subgroup of the multiplicative semigroup
SC),wlr =eeT,w? =e?>and wa = ea foreverya e T.

6.1 Lemma. If|T| =1, then S is isomorphic to one of the semirings Z,, Z3, Z4, Z7.

Proof. See4.1. O
6.2 Lemma. If|T| > 2, then T is a subparasemifield of S .

Proof. It remains to show that 7+ 7 C T. If a,b € T are such that a + b = w, then
w=a+b=aly +bly =(a+b)ly =wly = e, acontradiction. O

63Lemma. IfaecTissuchthatw+a€T,thenw+a=e+a.

Proof. w+a=W+a)ly =wlr+alr =e+a. O
6.4 Lemma. IfbeT issuchthatw+b=w,thene+b =e.

Proof. Wehavee =wly =W+ b)ly =wlp +bly =e+b. O
6.5. Lemma. Ifw+weT, thenw+w=c¢e+e.

Proof. Wehavew +w =W+ w)lp =wlr +wly =e+e. O

6.6 Lemma. [fw+w =w, then S is additively idempotent.

Proof. We have e = wlpy = (w + w)ly = wlp + wly = e + e. Consequently,
a=a+aforallaeT. O
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PutA={aeT - w+a=e+alandB={beT :w+b=w}

6.7 Lemma.
(i) AUB=Tand ANB=0.
(i) A+T CA.

(iii) B+ BC B.
(iv) e+ b =eforeveryb € B.

Proof. Use 6.3 and 6.4. O

6.8 Proposition. Precisely one of the following four cases takes place:
(1) S is isomorphic to either Z3 or Z4 and is additively idempotent;
(2) S is isomorphic to either Z) or Z; and S is not additively idempotent (but is
almost additively idempotent);
3) T is a subparasemifield of S, S ~ Z(T,A, e, 1)and S is additively idempotent;
4) T is a subparasemifield of S, S ~ Z(T,A,e,2) and S is not additively idem-
potent; it is almost additively idempotent if and only it T is idempotent.

Proof. Combine 6.4, 6.5, 6.7 and 4.3. m]

6.9 Corollary. The following conditions are equivalent:
(i) S is congruence-simple;
(i1) S is ideal-simple;
(iii) |S] = 2.
6.10 Corollary. S is a one-generated semiring if and only if it is isomorphic to one
szl, Z3, Z4, Z7.

7. Division semirings of type (IV)

In this section let S be a division semiring that is of type (IV) with respect to
an element w. That is, w is a multiplicatively absorbing element and 7 = § \ {w}
is a subgroup of the multiplicative semigroup S(:). Thus S is a semifield and § is
ideal-simple.

7.1 Lemma. If|T| =1, then S is isomorphic to one of Z,, Zs, Zg, Zg.

Proof. See 4.1. m|

7.2 Lemma. 17 = lg is multiplicatively neutral in S.

Proof. Tt is obvious. O

7.3 Lemma. Either w = oy is additively absorbing in S or w = Qg is additively
neutral in S
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Proof. Wehave w+w = (Ig+1g)w=w. If lg+w =w,thenw = aw = a(lg+w) =
=alg+aw =a+wforeverya € T, and sow = og. On the other hand, if 1g +w # w,
then 1g = (1s + w)"'(1s + w) = (15 + w)~' + w. From this, a = a(lg + w)™' + aw =
=a(lsg +w)y'+wanda+w=a(lg +w) ' +w+w=a(lg +w)~! +w = a for every
aeT. Thusw = Og. m|

7.4 Lemma. Ifw = Qg, then either S is a field, or S ~ Zs, or T is a subparasefimield
of S and S ~ Z(T,0).

Proof. It |S| = 2, then S is isomorphic either to Zs or to the two-element field
Zg. Let |S| > 3. Consider first the case when a + b = Og for some a,b € T. Then
c+ca'b=ca'(a+b)=ca'0s = 0g for every ¢ € T and it follows that S (+) is a
group. Then, obviously, S is a field. The remaining case is when 7+ T C T. Then,
clearly, T is a subparasemifield and S =~ Z(T, 0). m|

In the next seven lemmas assume that |7'| > 2 and w = oy = o is bi-absorbing.
7.5 Lemma. If T +a = {o}foratleastonea €T, then S +S = {o}and S ~ U(T(-)).

Proof. Wehave T + ab = (T + a)b = {o} forevery b € T. Thus T + T = {0} and
S + S = {o}. The rest is clear. O

Now, assume that 7 + a # {o} foreverya € T. Put A, = {y e S : x+y = o} for
every x € S.

7.6 Lemma.

(i) oeA,andS +A, CA..

(ii)) Ay C Ay forall x,y€S.
(i) A, =S.

@iv) A, # S foreveryaeT.

(v) aAp, = bA, foralla,beT.
(vi) Ap =a 'bA, foralla,b e T.
(vii) A, = aAj foreveryaeT.

Proof. It is easy. O

7.7 Lemma.
(i) P+ P C Pand PP C P (i.e., P is a subsemiring of S).
(i1) P() is a subgroup of S (-).
(iii) Ifa,b €T, thena+b # o ifand only ifa'b € P.

Proof. (i)Ifa,b € P,then lg+a # oand 15 +b # 0. Consequently, 15 +a+b+ab =
= (s +a)(lsg +b) # o. Butthen lg +a+ b # o, 1g + ab # o and it follows that
a+bePandabeP.

(i) Iflg +a # o, thena™ + 15 # o.

(iii) We have a + b # o if and only if 15 + a~'b # o. O
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7.8 Remark. We have A;; = T\ P and P is a subgroup of 7'(-). Now it is easy to see
that1s ¢ A, and P={a €T : A, = aAi, = Ay,.

7.9 Lemma. Leta,b € T be such that a + b # o (equivalently, a~'b € P). Then
ls+a'beP ls+blacPanda+b=a(lg +a'b) =b(lg + b 'a).

Proof. 1tis easy (use 7.7). O

7.10 Lemma. If|P| =1, then P = {1g}and S ~ V(T(")).

Proof. Combine 7.7 and 7.9. O

7.11 Lemma. IfP =T, then S ~ U(P).

Proof. Tt is easy. O

7.12 Proposition. Let S be a division semiring of type (IV) with respect to w and
T =S \ {w}. Then one of the following cases takes place:
(1) S isafield or S is isomorphic to one of Z,, Zs, Zg;
(2) T is a subparasemifield of S and S ~ Z(T,0) (then S is additively idempotent
if and only if T is);
B) T =2and S =~ U(T(-)) (then S is not additively idempotent),
@) |T| = 2, w = og is bi-absorbing, 1s + a = og for every a € T \ {15} and
S = V(T(")) (then S is additively idempotent);
(5) w = og is bi-absorbing, T is a subparasemifield of S and S ~ U(T) (then S
is additively idempotent if and only if T is);
(6) w = og is bi-absorbing, P = {a € T : lg + a # os} is a subparasemifield
of S, P#T,and S = V(P,T(:)) (then S is additively idempotent if and only
if P is).

Proof. Combine 7.1,7.3,7.4,7.5,7.10 and 7.11. O

7.13 Corollary. S is congruence-simple if and only if either S is a field or |S| = 2 or
S =~ V(G(+)) for a commutative group G(-).

7.14 Corollary. S is one-generated if and only if one of the following three cases
takes place:

(D ISI=2;

(2) S is a finite field;

3) S = V(G(.)) for a non-trivial finite cyclic group G(-);

4) S = U(G()) for a non-trivial finite cyclic group G(-).

Proof. Easy, using 1.5. O
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8. Summary

8.1 Theorem. Division semirings are commutative semirings of (exactly) one of the
following twelve types:
(1) The two-element semirings Z1, . ..,Z7 (see 4.1);
(2) Fields,
(3) Parasemifields;
(4) The semifields U(G), where G is a non-trivial commutative group (see 4.5);
(5) The semifields V(G), where G is a non-trivial commutative group (see 4.6);
(6) The semifields U(P), where P is a parasemifield (see 4.7);
(7) The semifields Z(P,0), where P is a parasemifield (see 4.4);
(8) The semifields V(P,T(-)), where P is a parasemifield and the multiplicative
group P(-) is a proper subgroup of a commutative group T(-) (see 4.8);
(9) The semirings Z(P, A, 1), where P is an additively idempotent parasemifield
and A is a non-empty subset of P suchthat A+ P C A, (P\A)+(P\A) C P\A
and 1p + x = 1p for every x € P\ A (see 4.2);

(10) The semirings Z(P, A, 2), where P is a parasemifield and A is as in (9) (see
4.2);

(11) The semirings Z(P,A,e, 1), where P is an additively idempotent parasemi-
field, e € P and A is a non-empty subset of P such that A+ P C A, (P\ A) +
+(P\A)C P\Aande+ x = e forevery x € P\ A (see 4.3);

(12) The semirings Z(P, A, e,2), where P is a parasemifield, e € P and A is as in
(11) (see 4.3);

Proof. Combine 5.7, 6.8, 7.12. ]

8.2 Remark. The semirings Z3, Z4, Zs, Zg, V(G), Z(P, A, 1) and Z(P, A, e, 1) are addi-
tively idempotent. The semirings U(P), Z(P,0) and V(P, T(-)) are additively idempo-
tent if and only if the parasemifield P is. The semirings Z(P, A,2) and Z(P, A, e, 2) are
almost additively idempotent if and only if P is additively idempotent. The semirings
U(P) contain just one additively idempotent element.

8.3 Remark. The semirings Zi,...,Z; are finite, and hence finitely generated. A
field is a finitely generated semiring if and only if it is finite. The semirings U(G) and
V(G) are finitely generated if and only if the group G is finitely generated. The semi-
rings U(P), Z(P,0), Z(P, A, 1), Z(P,A,2), Z(P,A,e, 1), Z(P, A, e, 2) are finitely gener-
ated if and only if the parasemifield P is finitely generated. The semirings V(P, T'(-))
are finitely generated if and only if P is finitely generated and the factor-group 7'(-)/P
is finitely generated.

8.4 Remark. Taking into account 8.2 and 8.3, we conclude that the following two
statements are equivalent:
(A) A parasemifield is additively idempotent, provided that it is a finitely gener-
ated semiring.
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(B) A finitely generated division semiring is either almost additively idempotent
or it is a finite field or a copy of the semifield U(G) for a non-trivial finitely
generated commutative group G.

8.5 Theorem. One-generated division semirings are just (copies of) the two-element
semirings 21, Zy, 73, Z4, Z7, finite fields and the semifields U(G) and V(G), where G
is a non-trivial finite cyclic group. In particular, all such semirings are finite.

Proof. Combine 4.1, 4.2.8, 4.2.13, 4.3.6, 4.3.11, 4.4.5, 45.3, 4.6.2, 4.7.5, 4.8.9
and 4.8.10. O

8.6 Remark. Division semirings containing an additively neutral element are just
the following ones:

(1) The two-element semirings Zs, ..., Z7;

(2) Fields;

(3) The semifields Z(P,0).
8.7 Remark. Division semirings containing a multiplicatively neutral element are
just the following ones:

(1) The two-element semirings Z,, Zs, Zs;

(2) Fields;

(3) The semifields U(G);

(4) The semifields V(G);

(5) The semifields U(P);

(6) The semifields Z(P,0);

(7) The semifields V(P, T(-));

(8) The semirings Z(P, A, 1);

(9) The semirings Z(P, A, 2).

8.8 Remark. Division semirings containing an additively absorbing element are just
the following ones:

(1) The two-element semirings Zi, ..., Zg;

(2) The semifields U(G);

(3) The semifields V(G);

(4) The semifields U(P);

(5) The semifields V(P, T(-)).

8.9 Remark. Division semirings containing a multiplicatively absorbing element
are just the following ones:

(1) The two-element semirings Zi, ..., Z7;

(2) Fields;

(3) The semifields U(G);

(4) The semifields V(G);

(5) The semifields U(P);

(6) The semifields Z(P,0);

(7) The semifields V(P, T(+)).
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Notice that (except for Z;, Z3, Z4 and Z7) all these semirings have a multiplicatively
neutral element. Furthermore, except for Z;, fields and the semifields Z(P,0), the
other semirings have an additively absorbing element.

8.10 Remark. All division semirings have at most two ideals. The ideal-simple ones
among them are just the following semirings:

(1) The two-element semirings Zi, ..., Z7;

(2) Fields;

(3) Parasemifields (these are ideal-free);

(4) The semifields 8.1(4),...,(8).

8.11 Remark. Congruence-simple division semirings are just the following ones:
(1) The two-element semirings Zi, ..., Z7;
(2) Fields;
(3) Congruence-simple parasemifields (see 8.19);
(4) The semifields V(G), where G is a non-trivial commutative group.

8.12 Remark. Finite division semirings are just the following ones:
(1) The two-element semirings Z, ..., Z7;
(2) Finite fields;
(3) The semifields U(G), where G is a non-trivial finite commutative group;
(4) The semifields V(G), where G is a non-trivial finite commutative group.
Notice that every finite division semiring is ideal-simple.

8.13 Remark. LetS be a non-trivial semiring that is a division semiring with respect
to two different elements of . According to 2.9, § is either a parasemifield or a two-
element semiring isomorphic to one of the semirings Z,, Zs, Zs, Z3.

8.14 Theorem. Ideal-simple commutative semirings are just the semirings of one of
the following five types:

(1) The two-element semirings Z,, ..., Zgs;

(2) Fields,

(3) Zero multiplication rings of finite prime order;

(4) Parasemifields (these are ideal-free);

(5) Proper semifields (i.e., semifields that are not fields).

Proof. Let S be an ideal-simple commutative semiring with at least three elements.
If S is aring, then either (2) or (3) takes place. Let S be neither a ring nor a parasemi-
field. The multiplicative semigroup S (-) is not a group, and hence it is not a division
semigroup. Consequently, the set A = {a € S : Sa # S} is non-empty. Since § is
ideal-simple, there exists an element w € S such that Sa = {w} for every a € A. Of
course, w is additively idempotent and multiplicatively absorbing and we see that A
is an ideal of S. If A = {w}, then Sx = § forevery x € S \ {w}, S is a division ring
and it follows from 8.1 and 8.9 that S is a proper semifield. Now, assume that A = §,
ie.,SS ={w}. Theset B=S + wis anideal of S.

Let B=S. Forevery a € S there exists an element b € S with a = b + w; we have
a+w=b+w+w=>b+w=a. Thusw = Oy is an additively neutral element. The
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setC={ceS :weS +clisanideal of S. If C = S, then S(+) is a group and
S is aring, a contradiction. Thus C = {w},sothat T + T C T, where T = S \ {w}.
If R is a proper subsemigroup of 7'(+), then R U {w} is an ideal of S, a contradiction.
Consequently, 7(+) has no proper subsemigroups, and hence |T| = 1 and |S| = 2,
again a contradiction.

Next, let B = {w}. Then w is a bi-absorbing element in S. Let, for a moment, d € S
besuchthatS +d =S. Thend # w,d = d+ e forsome e € S and ¢ = d + f for some
feS.Clearly,e #w # fande+e=d+ f +e =d+ f = e. Now, {w, e} is an ideal
of S, {w,e} =S and |S| = 2, a contradiction. It means that S +d # S foreveryd € S.
ButS +disanidealof S, S +d ={w}and S +S = {w}.

We have S = {w} = S + §. Every subset of S containing the element w is an
ideal, and therefore |S| = 2, the final contradiction. O

8.15 Theorem. Semifields are just the semirings of one of the following seven types:
(1) The two-element semirings 7, Zs, Zg;
(2) Fields,
(3) The semifields U(G), where G is a non-trivial commutative group;
(4) The semifields V(G), where G is a non-trivial commutative group;
(5) The semifields U(P), where P is a parasemifield;
(6) The semifields Z(P,0), where P is a parasemifield;
(7) The semifields V(P,T(-)), where P is a parasemifield and the multiplicative
group P(-) is a proper subgroup of a commutative group T (-).

Proof. Every semifield is a division semiring and thus the classitication follows
from 8.1. O

8.16 Remark. The (ideal-simple) semirings Z3, Zy, Zs, Zg, V(G) are additively
idempotent. The semifields U(P), Z(P,0) and V(P, T(-)) are additively idempotent if
and only if the parasemifield P is additively idempotent.

8.17 Remark. The following two statements are equivalent:
(A) A parasemifield is additively idempotent, provided that it is a finitely gener-
ated semiring.
(B’) A finitely generated ideal-simple commutative semiring is either additively
idempotent or it is finite or it is a copy of the semifield U(G) for an infinite,
finitely generated commutative group G.

8.18 Remark. One-generated ideal-simple commutative semirings are just (copies
of) the two-element semirings Z;, Z,, Z3, Z4, finite fields, zero multiplication rings of
finite prime order and the semifields U(G) and V(G), where G is a non-trivial finite
cyclic group. All these semirings are finite.

8.19 Theorem. Congruence-simple commutative semirings are just the semirings of
one of the following six types:

(1) The two-element semirings Z,, . .., Zs;
(2) Fields;
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(3) Zero multiplication rings of finite prime order;

(4) The semifields V(G), where G is a non-trivial commutative group;

(5) The semirings W(A), where A is a subsemigroup of R(+) with ANR" # 0 #

#ANR";

(6) Subsemirings S of the parasemifield R* of positive real numbers such that
(6a) foralla,b € S there exist c € S and a positive integer n with b + ¢ = na;
(6b) for all a,b,c,d € S with a # b there exist e, f € S with ae + bf + ¢ =

=af +be+d;
(6¢) forall a,b € S there exist c,d € S such that bc + d = a.

Proof. This is Theorem 10.1 of [1]. m]

8.20 Remark.

(i) Every finitely generated congruence-simple commutative semiring is either
finite or additively idempotent.

(i) One-generated congruence-simple commutative semirings are just (copies of)
the two-element semirings Z;, Z,, Zs, Z4, finite fields, zero multiplication
rings of finite prime order and the semifields V(G), where G is a non-trivial
finite cyclic group. All these semirings are finite.
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